最新锐角三角函数复习教案
- 格式:doc
- 大小:91.00 KB
- 文档页数:5
初中锐角三角函数教案教学目标:1. 了解锐角三角函数的定义和意义。
2. 掌握30°、45°、60°角的正弦、余弦和正切值。
3. 能够运用锐角三角函数解决实际问题。
教学重点:1. 锐角三角函数的定义和意义。
2. 30°、45°、60°角的正弦、余弦和正切值。
教学难点:1. 理解锐角三角函数的概念。
2. 运用锐角三角函数解决实际问题。
教学准备:1. 教师准备PPT课件。
2. 学生准备笔记本和文具。
教学过程:一、导入(5分钟)1. 教师通过引入直角三角形中的边角关系,引导学生思考锐角三角函数的定义和意义。
2. 学生分享对锐角三角函数的理解,教师总结并板书。
二、新课讲解(15分钟)1. 教师讲解锐角三角函数的定义,引导学生理解锐角三角函数的概念。
2. 教师讲解30°、45°、60°角的正弦、余弦和正切值,引导学生掌握锐角三角函数的数值。
3. 教师通过例题讲解,引导学生运用锐角三角函数解决实际问题。
三、课堂练习(10分钟)1. 学生独立完成课堂练习题,巩固所学知识。
2. 教师巡回指导,解答学生疑问。
四、总结与反思(5分钟)1. 教师引导学生总结本节课所学内容,巩固知识点。
2. 学生分享学习心得,教师给予鼓励和指导。
五、课后作业(课后自主完成)1. 学生根据课堂所学,完成课后作业,巩固知识点。
教学反思:本节课通过引入直角三角形中的边角关系,引导学生思考锐角三角函数的定义和意义。
在讲解过程中,注意引导学生理解锐角三角函数的概念,并通过例题讲解让学生掌握锐角三角函数的数值和运用方法。
在课堂练习环节,学生能够独立完成练习题,巩固所学知识。
总体来说,本节课达到了预期的教学目标。
在今后的教学中,要继续加强对学生的引导和鼓励,提高学生的参与度和积极性。
同时,注重课后作业的布置和批改,及时了解学生掌握情况,为下一步教学提供参考。
第28章 锐角三角函数复习教案锐角三角函数(第一课时) 教学三维目标:一.知识目标:初步了解正弦、余弦、正切概念;能较正确地用siaA 、cosA 、tanA 表示直角三角形中两边的比;熟记功30°、45°、60°角的三角函数,并能根据这些值说出对应的锐角度数。
二.能力目标:逐步培养学生观察、比较、分析,概括的思维能力。
三.情感目标:提高学生对几何图形美的认识。
教材分析:1.教学重点: 正弦,余弦,正切概念2.教学难点:用含有几个字母的符号组siaA 、cosA 、tanA 表示正弦,余弦,正切 教学程序: 一.探究活动1.课本引入问题,再结合特殊角30°、45°、60°的直角三角形探究直角三角形的边角关系。
2.归纳三角函数定义。
siaA=斜边的对边A ∠,cosA=斜边的邻边A ∠,tanA=的邻边的对边A A ∠∠3例1.求如图所示的Rt ⊿ABC 中的siaA,cosA,tanA 的值。
4.学生练习P21练习1,2,3 二.探究活动二1.让学生画30°45°60°的直角三角形,分别求sia 30°cos45° tan60° 归纳结果2. 求下列各式的值(1)sia 30°+cos30°(2)2sia 45°-21cos30°(3)004530cos sia +ta60°-tan30°三.拓展提高P82例4.(略) 1. 如图在⊿ABC 中,∠A=30°,tanB=23,AC=23,求AB 四.小结 五.作业课本解直角三角形应用(一) 一.教学三维目标 (一)知识目标使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.(二)能力训练点通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.(三)情感目标渗透数形结合的数学思想,培养学生良好的学习习惯. 二、教学重点、难点和疑点 1.重点:直角三角形的解法.2.难点:三角函数在解直角三角形中的灵活运用.3.疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边. 三、教学过程 (一)知识回顾1.在三角形中共有几个元素?2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢? (1)边角之间关系 sinA=c a cosA=c b tanA=ba(2)三边之间关系a 2+b 2=c 2(勾股定理) (3)锐角之间关系∠A+∠B=90°.以上三点正是解直角三角形的依据,通过复习,使学生便于应用. (二) 探究活动1.我们已掌握Rt △ABC 的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形).3.例题评析例 1在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且b= 2 a=6,解这个三角形.例2在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且b= 20 B ∠=350,解这个三角形(精确到0.1).解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.完成之后引导学生小结“已知一边一角,如何解直角三角形?”答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底.例 3在Rt △ABC 中,a=104.0,b=20.49,解这个三角形. (三) 巩固练习在△ABC 中,∠C 为直角,AC=6,BAC ∠的平分线AD=43,解此直角三角形。
《锐角三角函数复习》教学设计教学目标:1.复习正弦函数、余弦函数和正切函数的概念、性质和图像特点。
2.熟练掌握正弦函数、余弦函数和正切函数的基本变换和图像特征的确定。
3.能够解决与锐角三角函数相关的实际问题。
教学重难点:1.正弦函数、余弦函数和正切函数的图像特点的确定。
2.锐角三角函数的基本变换和反函数的确定。
教学准备:1.教师准备PPT、黑板、粉笔、计算器等教学工具。
2.学生预习锐角三角函数的基本概念和性质。
教学过程:Step 1 引入新课 (10分钟)教师通过提问和简短的介绍,引导学生回顾正弦函数、余弦函数和正切函数的概念和性质,并明确本节课的学习目标。
Step 2 复习正弦函数和余弦函数 (30分钟)2.1概念复习教师用简洁明了的语言复习正弦函数和余弦函数的基本概念,要求学生回答问题,例如:正弦函数和余弦函数的定义是什么?它们的定义域和值域分别是什么?2.2图像特点复习教师通过PPT演示和实际画图的方式,复习正弦函数和余弦函数的图像特点。
教师可以提问学生相关的问题,让学生回答出正弦函数和余弦函数的对称轴、最大值、最小值、周期等。
2.3基本变换复习教师通过PPT演示和实例分析,复习正弦函数和余弦函数的基本变换,例如:平移、伸缩、翻转等。
教师可以为学生提供一些基本的变换函数,让学生求出经过变换后的函数的表达式。
Step 3 复习正切函数 (20分钟)3.1概念复习教师简明扼要地复习正切函数的定义、定义域和值域。
3.2图像特点复习教师通过PPT演示和实际画图的方式,复习正切函数的图像特点。
教师可以通过探究正切函数的增减性和周期性,让学生发现正切函数的特殊图像。
3.3基本变换复习教师通过PPT演示和实例分析,复习正切函数的基本变换,包括平移、伸缩、翻转等。
教师可为学生提供一些基本的变换函数,让学生求出经过变换后的函数的表达式。
Step 4 锐角三角函数的反函数(30分钟)4.1概念介绍教师介绍锐角三角函数的反函数的概念,引导学生理解反函数的定义和性质。
锐角三角函数复习教案(总6页) -本页仅作为预览文档封面,使用时请删除本页-锐角三角函数复习教案锐角三角函数复习教案一、案例实施背景本节课是九年级解直角三角形讲完后的一节复习课二、本章的课标要求:1、通过实例锐角三角函数(sinA、cosA、tanA)2、知道特殊角的三角函数值3、会使用计算器由已知锐角求它的三角函数值,已知三角函数值求它对应的锐角4、能运用三角函数解决与直角三角形有关的简单实际问题此外,理解直角三角形中边、角之间的关系会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形,进一步感受数形结合的数学思想方法,通过对实际问题的思考、探索,提高解决实际问题的能力和应用数学的意识。
三、课时安排:1课时四、学情分析:本节是在学完本章的前提之下进行的总复习,因此本节选取三个知识回顾和四个例题,使学生将有关锐角三角函数基础知识条理化,系统化,进一步培养学生总结归纳的能力和运用知识的能力.因此,本节的重点是通过复习,使学生进一步体会知识之间的相互联系,能够很好地运用知识.进一步体会三角函数在解决实际问题中的作用,从而发展数学的应用意识和解决问题的能力.五、教学目标:知识与技能目标1、通过复习使学生将有关锐角三角函数基础知识条理化,系统化.2、通过复习培养学生总结归纳的能力和运用知识的能力.过程与方法:1、通过本节课的复习,使学生进一步体会知识之间的相互联系,能够很好地运用知识.2、通过复习锐角三角函数,进一步体会它在解决实际问题中的作用.情感、态度、价值观充分发挥学生的积极性,让学生从实际运用中得到锻炼和发展.六、重点难点:1.重点:锐角三角函数的定义;直角三角形中五个元素之间的相互联系.2.难点:知识的深化与运用.七、教学过程:知识回顾一:(1)在Rt△ABC中,C=90,AB=6,AC=3,则BC=_________,sinA=_________,cosA=______,tanA=______,A=_______,B=________.知识回顾二:(2)比较大小:sin50______sin70cos50______cos70tan50______tan70.知识回顾三:(3)若A为锐角,且cos(A+15)=,则A=________.本环节的设计意图:通过三个小题目回顾:1、锐角三角函数的定义:在Rt△ABC中,C=90锐角A的正弦、余弦、和正切统称A的锐角三角函数。
课题:锐角三角函数(复习课)复习目标(1)知识与技能:1.通过复习进一步巩固锐角三角函数的定义,并能灵活运用定义进行有关计算。
2.通过复习牢记特殊角的三角函数值,并能进行有关计算。
3.通过复习进一步巩固直角三角形的边角关系,并能进行解直角三角形的知识应用。
(2)过程与方法:通过对本章的复习,让学生学会将千变万化的实际问题转化为数学问题来解决的能力,培养学生用数学的意识。
(3)情感与价值:通过测量避雷针的高,认识到数与形相结合的意义和作用,体验到学好知识,能应用于社会实践,通过选式的诀窍,可简便计算,从而体会探索,发现科学的奥秘和意义。
复习重点:特殊角的三角函数值,并能进行有关计算;解直角三角形的知识应用。
复习难点:解直角三角形的知识应用。
教学方法:讲练结合法课型:复习课教具准备:多媒体课件教学过程一、锐角三角函数的定义在△中,/ C= 90°,/ A,/ B,/ C的对边分别为a, b, c.则人 b 4£2 22 K a 2V 2 cos A - --- ----- ,tan A -- ------ ----c 6 3 b 472 4自己动手:1、在等腰△中,5, 6,求,,2、求适合下列各式的锐角a3tan 3、特殊角的三角函数值30°45° 60°2范例1、在 Rt △ ABC 中,/ C=90 ° , a=2 , sinA= 1,求 cosA 和tanA 的值。
c 解:sin 3A 旦, c c a sin A 根据勾股定理得:1 A2 — 6。
3 c 2 a 2 62 224 2 b例 2 sin 30 cos 45 tan 60求下列各式的值:(11 2sin30 cos30(23ta n30 tan45 2sin60三、 解直角三角形1、 解直角三角形的定义:利用已知元素,求出未知元素的过程。
2、 解直角三角形的性质:① 三边间关系:② 两锐角间关系:③ 边角间关系:3、 解直角三角形条件:已知两边,或已知一边一角。
中考锐角三角函数复习教案【教案内容】一、教学目标1.知识与技能(1)复习锐角三角函数的定义;(2)掌握常见锐角三角函数的计算方法;2.过程与方法(1)通过讲解、分析和解题等学习方法,帮助学生全面复习锐角三角函数的相关知识;(2)通过练习题,巩固学生的计算能力和应用能力;3.情感态度价值观通过学习锐角三角函数,培养学生的数学思维能力,提高学生的逻辑思维和分析问题的能力,培养学生的合作意识和团队精神。
二、教学重点1.锐角三角函数的定义;2.常见锐角三角函数的计算方法。
三、教学难点1.锐角三角函数的综合运用;2.有关锐角三角函数的实际问题。
四、教学过程1.复习(1)复习锐角三角函数的定义;(2)回顾与锐角三角函数相关的练习题。
2.讲授(1)解析定义法解析定义法是指通过三角形的几何关系来定义锐角三角函数的方法。
其基本定义如下:- 正弦函数sinA:在一个锐角三角形中,对于任意锐角A,a/b就是其正弦函数。
- 余弦函数cosA:在一个锐角三角形中,对于任意锐角A,b/c就是其余弦函数。
- 正切函数tanA:在一个锐角三角形中,对于任意锐角A,a/c就是其正切函数。
(2)练习题演练通过一些具体的练习题,帮助学生巩固解析定义法的运用。
3.拓展(1)锐角三角函数的性质-在锐角三角形中,锐角的对边是锐角三角函数的对边,锐角的邻边是锐角三角函数的邻边。
-在锐角三角形中,正弦函数的值总是小于等于1,余弦函数的值总是小于等于1,正切函数的值没有上界。
(2)常用锐角三角函数的计算- 根据锐角的大小和所在象限,计算sinA、cosA和tanA的值。
- 根据锐角的大小和所在象限,计算cscA、secA和cotA的值。
(3)练习题演练通过一些具体的练习题,帮助学生巩固常用锐角三角函数的计算方法。
4.整合与应用(1)综合运用通过一些综合的锐角三角函数计算题,帮助学生综合应用所学知识解答问题。
(2)实际问题通过一些与现实生活相关的锐角三角函数问题,帮助学生发现锐角三角函数在实际应用中的重要性和作用。
锐角三角函数复习教案一、【教材分析】二、【教学流程】运用第2题图3.式子2cos30°-tan45°-(1-tan60°)2的值是 ( )A.2 3-2B.0C.2 3D.24.在△ABC中,若|cos A-12|+(1-tan B)2=0,则∠C的度数是 ( )A.45°B.60°C.75°D.105°【组内交流】学生根据问题解决的思路和解题中所呈现的问题进行组内交流,归纳出方法、规律、技巧.【成果展示】教师要有意识引导学生体会锐角三角函数在题目解决中所体现的解题规律.给学生充足的时间思考分析通过学生思考梳理锐角三角函数的知识运用.一生展示,其它小组补充完善,展示问题解决的方法,注重一题多解及解题过程中的共性问题,教师注意总结问题的深度和广度.直击1.(威海中考)如图,在下列网格中,小正方形的边长均为1,点A,B,O都在格点上,则∠AOB的正弦值是( )3101110A B C D102310....第1题图2.(重庆中考)计算6tan 45°-2cos 60°的结果是( )A. B.4 C. D.5教师展示问题,学生有针对性独立思考解答,3435三、【板书设计】锐角三角函数复习作 业必做题1.(重庆中考)如图,△ABC 中,AD ⊥BC ,垂足为点D ,若BC =14,AD =12,tan ∠BAD =求sin C 的值.1题图2.(苏州中考)如图,在△ABC ,AB =AC =5,BC =8.若∠BPC = ∠BAC , 则tan ∠BPC = .选做题 2题图 3.的值,求为锐角,若αααααcos sin 34cos sin -=+第一,二题学生课下独立完成,延续课堂.第三题课下交流讨论有选择性完成.以生为本,正视学生学习能力、认知水平等个体差异,让不同的学生都能学有所得,学有所成,体验学习带来的成功与快乐.34,12锐角三角1、锐角三角函数的定义⑴、正弦⑵、余弦⑶、正切四、【教后反思】。
课题:锐角三角函数
(复习课)
复习目标
(1)知识与技能:
1.通过复习进一步巩固锐角三角函数的定义,并能灵活运用定义进行有关计算。
2.通过复习牢记特殊角的三角函数值,并能进行有关计算。
3.通过复习进一步巩固直角三角形的边角关系,并能进行解直角三角形的知识应用。
(2)过程与方法:通过对本章的复习,让学生学会将千变万化的实际问题转化为数学问题来解决的能力,培养学生用数学的意识。
(3)情感与价值:通过测量避雷针的高,认识到数与形相结合的意义和作用,体验到学好知识,能应用于社会实践,通过选式的诀窍,可简便计算,从而体会探索,发现科学的奥秘和意义。
复习重点:特殊角的三角函数值,并能进行有关计算;解直角三角形的知识应用。
复习难点:解直角三角形的知识应用。
教学方法:讲练结合法
课型:复习课
教具准备:多媒体课件
教学过程
一、锐角三角函数的定义
在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,
c .则
∠A 的正弦:sin A=_______________ ∠A 的余弦:cos A =________ ∠A 的正切:tan A =_______________
、在Rt △ABC 中,∠C=90°,a =2,
B
自己动手:
1、在等腰△ABC 中,AB=AC=5,BC=6,求sinB ,cosB ,tanB.
2、求适合下列各式的锐角α
3=α3tan
二、特殊角的三角函数值
60
-
例
sin
22⋅
45
30
cos
tan
练习检测:
求下列各式的值:
2
1
1)
(
sin
︒
︒
30
-30
cos
30
tan
tan
(
45
2)
3
︒
︒
+
2
-
︒60
sin
三、解直角三角形
1、解直角三角形的定义:利用已知元素,求出未知元素的过程。
2、解直角三角形的性质:
①三边间关系:
②两锐角间关系:
③边角间关系:
3、解直角三角形条件:已知两边,或已知一边一角。
自己动手:在Rt△ABC中,∠C=90°,a、b、c分别为
∠A 、∠B、∠C的对边.根据已知条件,
解直角三角形.c=8,∠A =60°
四、拓展升华:锐角三角函数间的关系
1、从定义可以看出sin A与cos B有什么关系?sin B与cos A呢?满足这种关系的A
∠与B
∠又是什么关系呢?
2、利用定义及勾股定理你还能发现sin A与cos A的关系吗?
3、再试试看tan A与sin A和cos A存在特殊关系吗?经过教师引导学生探索之后总结出如下几种关系:
(1)若90
A B
∠+∠=那么sin A=cos B或sin B=cos A
(2)22
sin cos1
A A
+=(3)
sin
cos
A A
A =
4、在正弦中它的值随锐角的增大而增大还是随锐角的增大而减少?为什么?余弦呢?正切呢?
通过一番讨论后得出:
(1)锐角的正弦值随角度的增加(或减小)而增加(或减小);
(2)锐角的余弦值随角度的增加(或减小)而减小(或增加);
(3)锐角的正切值随角度的增加(或减小)而增加(或减小)。
作业:《课时练》89页——“节末综合训练”1—10小题必做,11、12小题选作
板书设计
锐角三角函数(复习课)
1、锐角三角函数意义
2、特殊角的三角函数值
3、解直角三角形。