根据函数图象获取信息试题
- 格式:doc
- 大小:100.52 KB
- 文档页数:1
(专题精选)初中数学函数基础知识真题汇编附解析一、选择题1.如图,在矩形ABCD 中,2AB =,3BC =,动点P 沿折线BCD 从点B 开始运动到点D .设运动的路程为x ,ADP ∆的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A .B .C .D .【答案】D【解析】【分析】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+,由此即可判断.【详解】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+, 故选D .【点睛】本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论是扇形思考问题.2.如图,线段AB 6cm =,动点P 以2cm /s 的速度从A B A --在线段AB 上运动,到在线段AB上运动,到达点A达点A后,停止运动;动点Q以1cm/s的速度从B A后,停止运动.若动点P,Q同时出发,设点Q的运动时间是t(单位:s)时,两个动点之间的距离为S(单位:cm),则能表示s与t的函数关系的是( )A.B.C.D.【答案】D【解析】【分析】根据题意可以得到点P运动的快,点Q运动的慢,可以算出动点P和Q相遇时用的时间和点Q到达终点时的时间,从而可以解答本题.【详解】:设点Q的运动时间是t(单位:s)时,两个动点之间的距离为s(单位:cm),6=2t+t,解得:t=2,即t=2时,P、Q相遇,即S=0,.P到达B点的时间为:6÷2=3s,此时,点Q距离B点为:3,即S=3P点全程用时为12÷2=6s,Q点全程用时为6÷1=6s,即P、Q同时到达A点由上可得,刚开始P和Q两点间的距离在越来越小直到相遇时,它们之间的距离变为0,此时用的时间为2s;相遇后,在第3s时点P到达B点,从相遇到点P到达B点它们的距离在变大,1s后P点从B点返回,点P继续运动,两个动点之间的距离逐渐变小,同时达到A点.故选D.【点睛】本题考查动点问题的函数图象,解题的关键是明确各个时间段内它们对应的函数图象.3.甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发.他们离出发地的距离s/km和骑行时间t/h之间的函数关系如图所示.根据图象信息,以下说法错误的是()A.他们都骑了20 kmB.两人在各自出发后半小时内的速度相同C.甲和乙两人同时到达目的地D.相遇后,甲的速度大于乙的速度【答案】C【解析】【分析】首先注意横纵坐标的表示意义,再观察图象可得乙出发0.5小时后停留了0.5小时,然后又用1.5小时到达离出发地20千米的目的地;甲比乙早到0.5小时出发,用1.5小时到达离出发地20千米的目的地,然后根据此信息分别对4种说法进行判断.【详解】解:A.根据图形的纵坐标可得:他们都骑行了20km,故原说法正确;B.乙在出发0.5小时后,路程不增加,而时间在增加,故乙在途中停留了1-0.5=0.5h,故原说法正确;C.从图形的横坐标看,甲比乙早到了0.5小时,故原说法错误;D.相遇后,甲直线上升得快,故甲的速度大于乙的速度,故原说法正确;故答案为:C.【点睛】此题主要考查了学生从图象中读取信息的数形结合能力.同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.4.一水池放水,先用一台抽水机工作一段时间后停止,然后再调来一台同型号抽水机,两台抽水机同时工作直到抽干.设从开始工作的时间为t,剩下的水量为s.下面能反映s与t之间的关系的大致图象是()A.B.C.D.【答案】D【解析】【分析】根据s随t的增大而减小,即可判断选项A、B错误;根据先用一台抽水机工作一段时间后停止,再调来一台同型号抽水机,两台抽水机同时工作直到抽干得出s随t的增大减小得比开始的快,即可判断选项C 、D 的正误.【详解】解:∵s 随t 的增大而减小,∴选项A 、B 错误;∵先用一台抽水机工作一段时间后停止,再调来一台同型号抽水机,两台抽水机同时工作直到抽干得出s 随t 的增大减小得比开始的快,∴s 随t 的增大减小得比开始的快,∴选项C 错误;选项D 正确;故选:D .【点睛】本题主要考查对函数图象的理解和掌握,能根据实际问题所反映的内容来观察与理解图象是解答此题的关键5.函数2x y x =-中自变量x 的取值范围是( ) A .x≠2B .x≥2C .x≤2D .x >2【答案】A【解析】【分析】根据分式的意义,进行求解即可.【详解】解:根据分式的意义得2-x≠0,解得x≠2故选:A【点睛】本题考查了求自变量的取值范围,函数自变量的范围一般从几个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.6.随着“互联网+”时代的到来,一种新型的打车方式受到大众欢迎.打车总费用y(单位:元)与行驶里程x(单位:千米)的函数关系如图所示.如果小明某次打车行驶里程为22千米,则他的打车费用为( )A.33元B.36元C.40元D.42元【答案】C【解析】分析:待定系数法求出当x≥12时y关于x的函数解析式,再求出x=22时y的值即可.详解:当行驶里程x⩾12时,设y=kx+b,将(8,12)、(11,18)代入,得:812 1118k bk b+=⎧⎨+=⎩,解得:24kb=⎧⎨=-⎩,∴y=2x−4,当x=22时,y=2×22−4=40,∴当小明某次打车行驶里程为22千米,则他的打车费用为40元.故选C.点睛:本题考查一次函数图象和实际应用. 认真分析图象,并利用待定系数法求一次函数的解析式是解题的关键.7.若A(﹣3,y1)、B(0,y2)、C(2,y3)为二次函数y=(x+1)2+1的图象上的三点,则y1、y2、y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2【答案】B【解析】【分析】把三个点的坐标代入二次函数解析式分别计算出则y1、y2、y3的值,然后进行大小比较.【详解】解:∵A(﹣3,y1)、B(0,y2)、C(2,y3)为二次函数y=(x+1)2+1的图象上的三点,∴y1=(﹣3+1)2+1=5,y2=(0+1)2+1=2,y3=(2+1)2+1=10,∴y2<y1<y3.故选:B .【点睛】本题考查了比较函数值大小的问题,掌握二次函数的性质、代入法是解题的关键.8.如图,已知矩形OABC ,A (4,0),C (0,4),动点P 从点A 出发,沿A ﹣B ﹣C ﹣O 的路线匀速运动,设动点P 的运动路程为t ,△OAP 的面积为S ,则下列能大致反映S 与t 之间关系的图象是( )A .B .C .D .【答案】A【解析】【分析】分三段求解:①当P 在AB 上运动时;②当P 在BC 上时;③当P 在CO 上时;分别求出S 关于t 的函数关系式即可选出答案.【详解】解:∵A (4,0)、C (0,4),∴OA =AB =BC =OC =4,①当P 由点A 向点B 运动,即04t ≤≤,114222S OA AP t t ==创=g ; ②当P 由点A 向点B 运动,即48t <≤,1144822S OA AB ==创=g ; ③当P 由点A 向点B 运动,即812t <≤,()1141222422S OA CP t t ==创-=-+g ; 结合图象可知,符合题意的是A .故选:A .【点睛】本题主要考查了动点问题的函数图象,解题的关键是根据图形求出S 关于t 的函数关系式.9.为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E 为矩形ABCD 边AD 的中点,在矩形ABCD 的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P 从点B 出发,沿着B ﹣E ﹣D 的路线匀速行进,到达点D .设运动员P 的运动时间为t ,到监测点的距离为y .现有y 与t 的函数关系的图象大致如图2所示,则这一信息的来源是( )A .监测点AB .监测点BC .监测点CD .监测点D【答案】C【解析】 试题解析:A 、由监测点A 监测P 时,函数值y 随t 的增大先减少再增大.故选项A 错误;B 、由监测点B 监测P 时,函数值y 随t 的增大而增大,故选项B 错误;C 、由监测点C 监测P 时,函数值y 随t 的增大先减小再增大,然后再减小,选项C 正确;D 、由监测点D 监测P 时,函数值y 随t 的增大而减小,选项D 错误.故选C .10.在平面直角坐标系中有三个点的坐标:()()0,2,2,01(),3A B C ---,,从、、A B C 三个点中依次取两个点,求两点都落在抛物线2y x x 2=--上的概率是( )A .13B .16C .12D .23【答案】A【解析】【分析】先画树状图展示所有6种等可能的结果数,再找出两点都落在抛物线2y x x 2=--上的结果数,然后根据概率公式求解.【详解】解:在()()0,2,2,01(),3A B C ---,三点中,其中AB 两点在2y x x 2=--上, 根据题意画图如下:共有6种等可能的结果数,其中两点都落在抛物线2y x x 2=--上的结果数为2, 所以两点都落在抛物线2y x x 2=--上的概率是2163=; 故选:A .【点睛】本题考查了列表法或树状图法和函数图像上点的特征.通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.也考查了二次函数图象上点的坐标特征.11.若y x =有意义,则x 的取值范围是( ) A .1x 2≤且x 0≠ B .1x 2≠ C .1x 2≤ D .x 0≠ 【答案】A【解析】【分析】根据二次根式有意义的条件和分式有意义的条件即可求出答案.【详解】 由题意可知:{12x 0x 0-≥≠, 解得:1x 2≤且x 0≠, 故选A .【点睛】本题考查了分式有意义的条件、二次根式有意义的条件,熟练掌握分式的分母不为0、二次根式的被开方数为非负数是解题的关键.12.小明从家骑车上学,先匀速上坡到达A 地后再匀速下坡到达学校,所用的时间与路程如图所示,如果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是( )A .9分钟B .12分钟C .8分钟D .10分钟【答案】B【解析】【分析】 先根据图形,得到上坡、下坡的时间和距离,然后分别求出上、下坡的速度,最后计算返回家的时间【详解】根据图形得,从家到学校:上坡距离为1km ,用时5min ,下坡距离为2km ,用时为4min 故上坡速度115V =(km/min),下坡速度22142V ==(km/min) 从学校返回家的过程中,原来的上下坡刚好颠倒过来,即上坡2km ,下坡1km故上坡时间12t 15==10(min),下坡时间21t 12==2(min) ∴总用时为:10+2=12(min)故选:B【点睛】 本题考查从函数图象获取信息,解题关键是将函数图像中的数据与生活实际一一对应13.如图,点M 为▱ABCD 的边AB 上一动点,过点M 作直线l 垂直于AB ,且直线l 与▱ABCD 的另一边交于点N .当点M 从A→B 匀速运动时,设点M 的运动时间为t ,△AMN 的面积为S ,能大致反映S 与t 函数关系的图象是( )A .B .C .D .【答案】C【解析】分析:本题需要分两种情况来进行计算得出函数解析式,即当点N 和点D 重合之前以及点M 和点B 重合之前,根据题意得出函数解析式.详解:假设当∠A=45°时,AD=22,AB=4,则MN=t ,当0≤t≤2时,AM=MN=t ,则S=212t ,为二次函数;当2≤t≤4时,S=t ,为一次函数,故选C . 点睛:本题主要考查的就是函数图像的实际应用问题,属于中等难度题型.解答这个问题的关键就是得出函数关系式.14.如图,两块完全重合的正方形纸片,如果上面的一块绕正方形的中心O 逆时针0°~90°的旋转,那么旋转时露出的△ABC 的面积(S )随着旋转角度(n )的变化而变化,下面表示S 与n 关系的图象大致是( )A .B .C .D .【答案】B【解析】【分析】注意分析y 随x 的变化而变化的趋势,而不一定要通过求解析式来解决.【详解】旋转时露出的△ABC的面积(S)随着旋转角度(n)的变化由小到大再变小.故选B.【点睛】考查动点问题的函数图象问题,关键要仔细观察.15.如图所示的图象(折线ABCDE)描述了一辆汽车在某一笔直的公路上的行驶过程中,汽车离出发地的距离s(千米)与行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;③汽车出发后6小时至9小时之间行驶的速度比汽车出发后4小时至6小时之间行驶的速度大;④汽车出发后6小时至9小时之间行驶的速度在逐渐减小.其中正确的说法共有()A.1个B.2个C.3个D.4个【答案】B【解析】【分析】根据函数图象上的特殊点以及函数图象自身的实际意义进行判断即可.【详解】解:①由图象可知,汽车走到距离出发点140千米的地方后又返回出发点,所以汽车共行驶了280千米,故①错;②从3时开始到4时结束,时间在增多,而路程没有变化,说明此时在停留,停留了4-3=1(小时),故②对;③汽车4小时至6小时之间的速度为:(140-90)÷(6-4)=25(千米/小时),汽车6小时至9小时之间的速度为:140÷(9-6)≈46.7(千米/小时),所以汽车出发后6小时至9小时之间行驶的速度比汽车出发后4小时至6小时之间行驶的速度大,故③对;④汽车自出发后6小时至9小时,图象是直线,说明是在匀速前进,故④错;故选:B.【点睛】本题考查函数图象,由函数图象的实际意义,理解函数图象所反映的运动过程是解答本题的关键.16.如图所示:边长分别为1和2的两个正方形,其一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内除去小正方形部分的面积为S(阴影部分),那么S与t的大致图象应为()A.B.C.D.【答案】A【解析】【分析】【详解】解:根据题意,设小正方形运动速度为v,由于v分为三个阶段,①小正方形向右未完成穿入大正方形,S vt vt vt=⨯-⨯=-≤.2214(1)②小正方形穿入大正方形但未穿出大正方形,S=⨯-⨯=,22113③小正方形穿出大正方形,=⨯-⨯-=+≤,S vt vt vt22(11)3(1)∴符合变化趋势的是A和C,但C中面积减小太多不符合实际情况,∴只有A中的符合实际情况.故选A.17.“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还.”如果用纵轴y表示父亲和学子在行进中离家的距离,横t表示离家的时间,下面与上述诗意大致相吻合的图象是()A.B.C.D.【答案】B【解析】【分析】首先正确理解小诗的含义,然后再根据时间与离家的距离关系找出函数图象.【详解】解:同辞家门赴车站,父亲和孩子的函数图象在一开始的时候应该一样,别时叮咛语千万,时间在加长,路程不变,学子满载信心去,学子离家越来越远,老父怀抱希望还,父亲回家离家越来越近,故选:B.【点睛】此题主要考查了函数图象,首先应理解函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.18.如图,描述了林老师某日傍晚的一段生活过程:他晚饭后,从家里散步走到超市,在超市停留了一会儿,马上又去书店,看了一会儿书,然后快步走回家,图象中的平面直角坐标系中x表示时间,y表示林老师离家的距离,请你认真研读这个图象,根据图象提供的信息,以下说法错误的是( )A.林老师家距超市1.5千米B.林老师在书店停留了30分钟C.林老师从家里到超市的平均速度与从超市到书店的平均速度是相等的D.林老师从书店到家的平均速度是10千米/时【答案】D【解析】分析:根据图象中的数据信息进行分析判断即可.详解:A选项中,由图象可知:“林老师家距离超市1.5km”,所以A中说法正确;B选项中,由图象可知:林老师在书店停留的时间为;80-50=30(分钟),所以B中说法正确;C选项中,由图象可知:林老师从家里到超市的平均速度为:1500÷30=50(米/分钟),林老师从超市到书店的平均速度为:(2000-1500)÷(50-40)=50(米/分钟),所以C中说法正确;D选项中,由图象可知:林老师从书店到家的平均速度为:2000÷(100-80)=100(米/分钟)=6(千米/时),所以D中说法错误.故选D.点睛:读懂题意,“弄清函数图象中每个转折点的坐标的实际意义”是解答本题的关键.19.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有()A.1 个B.2 个C.3 个D.4个【答案】C【解析】【分析】【详解】解:①由纵坐标看出,起跑后1小时内,甲在乙的前面,故①正确;②由横纵坐标看出,第一小时两人都跑了10千米,故②正确;③由横纵坐标看出,乙比甲先到达终点,故③错误;④由纵坐标看出,甲乙二人都跑了20千米,故④正确;故选C.20.某天小明骑自行车上学,途中因自行车发生故障,修车耽误一段时间后继续骑行,按时赶到了学校.如图描述了他上学情景,下列说法中错误的是()A.用了5分钟来修车B.自行车发生故障时离家距离为1000米C.学校离家的距离为2000米D.到达学校时骑行时间为20分钟【答案】D【解析】【分析】观察图象,明确每一段小明行驶的路程,时间,作出判断即可.【详解】由图可知,修车时间为15-10=5分钟,可知A正确;自行车发生故障时离家距离为1000米,可知B正确;学校离家的距离为2000米,可知C正确;到达学校时骑行时间为20-5=15分钟,可知D错误,故选D.【点睛】本题考查了函数图象,读懂图象,能从图象中读取有用信息的数形、分析其中的“关键点”、分析各图象的变化趋势是解题的关键.。
中考数学专题复习《从图象中获取信息》测试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________1.骆驼被称为“沙漠之舟” 它的体温随时间的变化而发生较大的变化.如图反映了骆驼的体温随时间的变化情况下列说法错误的是()A.骆驼体温从最低上升到最高需要12小时B.骆驼体温一天内有两次达到39℃C.从0时到16时骆驼的体温逐渐上升D.第一天8时与第二天8时骆驼的体温相同2.甲乙丙丁四个同学跑步的路程(s)和所用时间(t)如图所示其中平均速度相同的两个同学是()A.甲和丁B.甲和乙C.丙和丁D.乙和丙3.如图是反映某工程队所挖河渠长度y(米)与挖掘时间x(时)之间关系的部分图像.下列说法正确的是()A.该工程队每小时挖河渠25米B.该河渠总长为50米3C.该工程队挖了30米之后加快了挖掘速度D.开挖到30米时用了2小时4.如图是汽车行驶速度(千米/时)和时间(分)的图下列说法中正确的个数为()(1)汽车行驶时间为40分钟(2)AB表示汽车勾速行驶(3)在第30分钟时汽车的速度是80千米/时(4)第40分钟时汽车停下来.A.1个B.2个C.3个D.4个5.已知点M(6,a−3)N(−2,a)P(2,a)在同一个函数图象上则这个函数图象可能是()A.B.C.D.6.如图是两个圆柱形连通容器(连通处体积忽略不计).乙容器的底面面积是甲容器的底面面积的2倍甲乙容器高度相同若向无水的甲容器匀速注水则甲容器的水面高度ℎ(cm)与注水时间t(min)之间的函数图象表示正确的是()A.B.C.D.7.已知蓄电池的电压为定值使用蓄电池时电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系它的图象如图所示.下列说法正确的是()A.函数解析式为I=13RB.蓄电池的电压是18VC.当R=6Ω时I=4A D.当I≤10A时8.如图在长方形ABCD中AB=3BC=4对角线AC=5动点P从点C出发沿C−A−D−C运动.设点P的运动路程为x(cm)△BCP的面积为y(cm2).若y与x的对应关系如图所示则图中a−b=()A.−1B.1C.3D.49.甲乙丙三种固体物质在等量溶剂中完全溶解的质量分别记为y甲y乙y丙它们随温度x的变化如图所示某次实验中需要y乙>y甲>y丙则溶液温度x的范围应控制在()A.x<t1B.t1<x<t2C.t2<x<t3D.x>t310.如图y1,y2分别表示某一品牌燃油汽车和电动汽车所需费用y(单位:元)与行驶路程S(单位:千米)的关系已知燃油汽车每千米所需的费用比燃气汽车每千米所需的费用的2倍少0.1元设电动汽车每千米所需的费用为x元则可列方程为()A.252x−0.1=10xB.25x=102x−0.1C.25x=102x+0.1D.252x+0.1=10x11.甲乙两人分别从A B两地同时出发相向而行匀速前往B地A地两人相遇时停留了4min又各自按原来速度前往目的地甲乙两人之间的距离y(m)与甲所用时间x(min)之间的函数关系如图所示给出下列结论:①A B之间的距离为1200m ②24min 时甲乙两人中有一人到达目的地③b=800④a=32其中正确的结论个数为()A.1个B.2个C.3个D.4个12.甲乙两工程队分别同时铺设两条600米长的管道所铺设管道长度y(米)与铺设时间x(天)之间的关系如图所示则下列说法错误的是()A.甲队每天铺设管道100米B.从第三天开始乙队每天铺设管道50米C.甲队比乙队提前3天完成任务D.当x=2或6时甲乙两队所铺设管道长度相差100米.13.如图在平面直角坐标系中将▱ABCD放置在第一象限且AB∥x轴.二四象限角平分线所在直线从原点出发沿x轴正方向平移在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2所示则▱ABCD的面积为()A.10B.√50C.5D.√2514.已知小唯的家体育场和图书馆在同一条直线上一日他从家出发先跑步到达体育场在体育场锻炼一段时间后骑车前往图书馆在图书馆看了一会书后再次骑车回家(速度与来图书馆时相同).如图为小唯离家的距离y(km)与离家的时间x(min)之间的函数图象.根据图象有以下4个结论:①体育场在小唯家和图书馆之间②体育场距离图书馆6km③小唯骑车的速度是0.2km/min④a的值为117.5.其中正确的结论有()A.1个B.2个C.3个D.4个15.明明和亮亮都在同一直道A B两地间做匀速往返走锻炼.明明的速度小于亮亮的速度(忽略掉头等时间).明明从A地出发同时亮亮从B地出发.图中的折线段表示从开始到第二次相遇止两人之间的距离y(米)与行走时间x(分)的函数关系的图象则下列结论错误..的是()A.a=2100B.b=56103C.c=20D.d=140316.为了探究浮力的大小与哪些因素有关 方老师带同学们进行了测浮力的实验 如图1 先将一个长方体铁块放在玻璃烧杯上方 再向下缓缓移动 移动过程中记录弹簧测力计的示数与铁块下降的高度之间的关系如图2所示 下列说法不正确的是( )A .铁块入水之前 烧杯内水的高度为10cmB .由AB 段是线段可知 铁块是匀速向下移动的C .铁块的高度为4cmD .当铁块下降的高度为8cm 时 该铁块所受到的浮力为3.25N17.如图1 在等腰Rt △ABC 中 ∠ACB =90°,CD ⊥AB 于点D .动点P 从点A 出发 沿着A →D →C 的路径以每秒1个单位长度的速度运动到点C 停止 过点P 作PE ⊥AC 于点E 作PF ⊥BC 于F .在此过程中四边形CEPF 的面积y 与运动时间x 的函数关系图象如图2所示 则AB 的长是( )A .4B .2√6C .2√2D .318.一次函数y =kx +b 和y =mx +n 的图象如图所示三位同学根据图象得到了下面的结论:甲:关于x y 的二元一次方程组{y =kx +b y =mx +n的解是{x =−3y =2 乙:关于x 的一元一次方程kx +b =mx +n 的解是x =−2丙:关于x 的一元一次方程mx +n =0的解是x =−5.三人中判断正确的是()A.甲乙B.甲丙C.乙丙D.甲乙丙19.如图(1)从矩形纸片AMEF中剪去矩形BCDM后动点P从点B出发沿BC CD DE EF以1cm/s的速度匀速运动到点F停止设点P运动的时间为xs△ABP的面积为ycm2如果y关于x的函数图象如图5(2)所示则图形ABCDEF的面积是()cm2.A.32B.34C.48D.3620.如图(a)A B是℃O上两定点∠AOB=90°圆上一动点P从点B出发沿逆时针方向匀速运动到点A运动时间是x(s)线段AP的长度是y(cm).图(b)是y随x变化的关系图象其中图象与x轴交点的横坐标记为m则m的值是()A.8B.6C.4√2D.143参考答案1.解:A 一天中4时到16时骆驼的体温的变化范围是35℃到40℃共需要12小时说法正确该选项不符合题意B 12时与20时骆驼的温度是39℃说法正确该选项不符合题意C 0时到4时骆驼体温是下降的原说法错误该选项符合题意D 骆驼第一天8时与第二天8时骆驼的体温相同说法正确该选项不符合题意故选:C.2.解:由图可知甲的速度为:3÷10=0.3km/min乙的速度为:2÷10=0.2km/min丙的速度为:4÷20=0.2km/min丁的速度为其中平均速度相同的两个同学是乙和丙故选:D.3.解:根据图像:米故A选项不符合题意A 应为该工程队平均每小时挖河渠253B 不知工程完成与否不能确定河渠总长度故B选项不符合题意C 应为该工程队挖了30米之后放慢了挖掘速度故B选项不符合题意D 开挖到30米时用了2小时故D选项符合题意.故选D.4.解:由图可得在x=40时速度为0 故(1)(4)正确AB段y的值相等故速度不变故(2)正确x=30时y=80即在第30分钟时汽车的速度是80千米/时故(3)正确故选:D.5.解:由点N(−2,a)P(2,a)在同一个函数图象上可知图象关于y轴对称故选项B C 不符合题意由M(6,a−3)P(2,a)可知在y轴的右侧y随x的减小而减小故选项D 不符合题意选项A符合题意故选:A.6.解:∵两个圆柱形容器的中间连通∴甲容器的水面高度会有保持不变的情况又∵乙容器的底面面积是甲容器的底面面积的2倍∴维持不变的时间是之前时间的2倍故选:B.(U≠0)7.解:设I=UR∵图象过(4,9)∴U=4×9=36∴函数解析式为I=36故A选项错误不符合题意R∴蓄电池的电压是36V故B选项错误不符合题意当时I=366=6(A)故C选项错误不符合题意当I=10A时R=3.6Ω由图象知I随R的增大而减小℃当I≤10A时R≥3.6Ω故D正确故选:D.8.解:当点P在AD上运动时∴a=6由图知点P沿C−A−D−C运动到D时路程为AC+AD=5+4=9∴2b+3=9∴b=3∴a−b=6−3=3.故选:C.9.解:由图象可得:某次实验中需要y乙>y甲>y丙℃t2<x<t3故选C10.解:由题意得:燃油汽车每千米所需的费用为(2x−0.1)元由函数图象可知燃油汽车所需费用为25元时与燃气汽车所需费用为10元时所行驶的路程相等则可列方程为252x−0.1=10x故选:A.11.解:由图象可得A B之间的距离为1200m故①正确根据图像可知在24min时甲乙两人中有一人到达目的地故②正确甲乙的速度之和为:1200÷12=100(m/min)则b(24−12−4)×100=800故③正确℃乙的速度为:1200÷(24−4)=60(m/min)甲的速度为:1200÷12−60=100−60=40(m/min)℃a=1200÷40+4=30+4=34≠32故④错误综上正确的结论个数为3个故选:C.12.解:由图像知甲队6天铺设了600米则甲队每天铺设管道的长度为600÷6=100(米)故选项A正确由图像知乙从第二天后到第六天4天共铺设了200米则每天铺设管道的长度为(500−300)÷(6−2)=50(米)故选项B正确℃乙从第三天开始铺设的速度为每天50米℃乙完成剩下管道铺设的时间为:(600−300)÷50=6(天)完成整个管道铺设的时间为2+6=8(天)℃甲比乙提前完成的时间为8−6=2(天)故选项C错误当x=2时甲乙两队所铺设管道长度相差(100−50)×2=100(米)当x=6时甲乙两队所铺设管道长度相差600−500=100(米)故选项D正确故选:C.13.解:由图2可得直线经过A时移动的距离为3经过D时移动的距离为7经过B时移动的距离为8℃AB=8−3=5当直线经过点D时交AB于点E过D作DF⊥AB垂足为点F如图所示:由图2可得DE=√8=2√2℃直线为二四象限的角平分线℃直线与AB的夹角为45°℃∠DFE=90°℃∠DEF=45°=∠FDE℃DF=EF℃在Rt△DFE中DF2+EF2=DE2℃DF2+DF2=(2√2)2解得:DF=2℃S▱ABCD=AB×DF=5×2=10故选:A.14.解:①℃小唯先从家到体育场然后到图书馆℃由图象可得小唯家在体育场和图书馆之间故①错误②℃2.5−(−3.5)=6km℃体育场距离图书馆6km故②正确℃6÷(80−50)=0.2km/min℃小唯骑车的速度是0.2km/min故③正确由图象得小唯家距离体育场2.5km℃2.5÷0.2=12.5min℃30−12.5=17.5min℃在图书馆看了一会书后再次骑车回家时速度与来图书馆时相同℃a=100+17.5=117.5min故④正确.综上所述其中正确的结论有3个.故选:C.15.解:∵第一次相遇两人共走了2800米第二次相遇两人共走了3×2800米且二者速度不变∴c=60÷3=20(分)所以C正确当x=35时出现拐点显然此时亮亮到达A地路程为2800米亮亮的速度为2800÷35=80(米/分)两人的速度和为2800÷20=140(米/分)明明的速度为140−80=60(米/分)℃a=(80+60)×(35−20)=2100所以A正确第三个拐点处应为明明到达B地此时所用时间为2800÷60=1403(分)所以D正确此时b=2800−80×(1403−35)=56003所以B错误故选:B.16.解:℃烧杯高度为16cm铁块从烧杯口到下表面接触水时移动了6cm ℃烧杯内水的高度为10cm故A正确不符合题意℃AB段是线段℃拉力与移动的距离成一次函数关系℃铁块是匀速向下移动的 故B 正确 不符合题意℃烧杯有出水口℃水平面在铁块下移过程中保持不变.℃铁块的高度为AB 段铁块移动的距离为10−6=4cm 故C 正确 不符合题意 ℃当铁块下降高度为8cm 时 铁块的一半刚好浸入水中℃拉力的大小为4+2.52=3.25N℃铁块的重力为4N℃铁块所受到的浮力为4−3.25=0.75N 故D 错误 符合题意.故选:D .17.解:℃动点P 从点A 出发 沿着A →D →C 的路径运动℃第一个拐点的位置在点D 处 此时点P 运动到点D℃图2中拐点的纵坐标3℃四边形CEPF 的面积为3℃PE ⊥AC PF ⊥BC℃∠CED =∠CFD =∠AED =90°℃∠ACB =90°℃ 四边形CEPF 是矩形℃△ABC 是等腰直角三角形 CD ⊥AB℃∠ACD =∠BCD ∠A =45° AB =2AP℃DE =DF ∠ADE =45°℃四边形CEPF 是正方形 AE =PE℃△AED 是等腰直角三角形℃四边形CEPF 的面积为3℃PE =√3℃AP =√3×√2=√6℃AB =2AP =2√6故选:B .18.解:℃一次函数y =kx +b 和y =mx +n 的图象相交于(−3,2)℃关于x y 的二元一次方程组{y =kx +b y =mx +n的解是{x =−3y =2 故甲正确关于x的一元一次方程kx+b=mx+n的解是x=−3故乙错误∵y=mx+n的图象与x轴的交点为(−5,0)∴关于x的一元一次方程mx+n=0的解是x=−5故丙正确.故选:B.19.解:根据函数图象可以知道从0到4 y随x的增大而增大因而BC=4cm P在CD段时底边AB不变高不变因而面积不变由图象可知CD=3cm同理:ED=2cmEF=17−9=8(cm)则AF=BC+DE=4+2=6(cm)则图形ABCDEF的面积是:矩形AMEF的面积−矩形BMDC的面积=8×6−4×3=36(cm2).图形ABCDEF的面积是36cm2.故选:D.20.解:如图当点P运动到PA过圆心O即PA为直径时AP最长由图(b)得AP最长时为6 此时x=2∵∠AOB=90°∴∠POB=90°∴此时点P路程为90度的弧∵点P从点B运动到点A的弧度为270度∴运动时间为2×3=6故选:B.。
2023年陕西省西安市长安区中考一模数学试卷学校:___________姓名:___________班级:___________考号:___________二、填空题13.如图,在ABC 中,5AB AC ==,BD 是它的一条中线,过点D 作直线EF ,交边AB 于点E ,交BC 的延长线于点F ,当DF DB =时,则AE 的长度为______.三、解答题(1)随后进来的E 车停车恰好与A 车相邻的概率是______;(2)求B 车和E 车都与A 车相邻的概率(用树状图或列表的方法解答).21.学校数学兴趣小组开展课外实践活动,如图是兴趣小组测量某建筑物高度的示意图,已知兴趣小组在建筑物前平台的坡道两端点A 、B 处,分别测得建筑物的仰角45DAC ∠=︒,60DBE ∠=︒,坡道25AB =米,坡道AB 的坡度7:24i =.求建筑物DC 的高度.22.经政府部门和村委会同意,老王在自家门前建了一个简易温泉水供给站.某日老王刚刚给自家的存储罐注满温泉水,拉温泉水的车队就来到了他们家门前.当拉水的车辆(每辆车的型号都相同)依次停好后,他打开出水阀为拉水车注入温泉水,经过2.5分钟第一辆拉水车装满温泉水并离开(每辆拉水车之间的间隙时间不计),当他给第二辆拉水车注满温泉水时,入水阀门自动打开为存储罐匀速注入温泉水,并在给第八辆车注满水时,存储罐恰好加满且入水戈门自动关闭.已知存储罐内温泉水量y (吨)与时间x (分钟)之间的部分函数图像如图所示:请根据图像回答下面的问题:(1)图中的=a ______,b =______,m =______.(2)求他给第6辆拉水车注满温泉水时,存储罐内剩余的温泉水量.23.我们知道,十四届全国人大一次会议于2023年3月13日上午闭幕,在今年的人代会上有很多新提法、新思路、新设想,为我国的发展做出了新规划.某大学马克思主义学院为了了解学生关注两会的情况,随机抽取50名学生进行测试,并对成绩(百分制)进行整理,信息如下:a .成绩频数分布表:(1)如图1,在ABC 中,90BAC ∠=︒,AO 是它的一条中线,则COA ∠与B ∠的数量关系式是:COA ∠=______B ∠;(2)如图2,在ABC 中,60A ∠=︒,6BC =,CG AB ⊥于点G ,BH AC ⊥于点H ,O 为BC 边上一点,且OG OB =,连接GH ,求GH 的长;问题解决(3)如图3,某次施工中,工人师傅需要画一个20°的角,但他手里只有一把带刻度的直角尺,工程监理给出了下面简易的作图方法:①画线段15cm OB =,再过它的中点C 作m OB ⊥;②利用刻度尺在m 上寻找点A 使得15cm OA =,再过点A 作l OB ∥;③利用刻度尺过点O 作射线,将射线与AC 和l 的交点分别记为点F 、E ,调节刻度尺使FE =□cm 时(“□”内的数字被汗渍侵蚀无法看清),则20EOB ∠=︒.你认为监理给的方法可行吗?如果可行,请写出“□”内的数字,并说明理由;如果不可行,请给出可行的方案.参考答案:【分析】根据邻补角的定义得出365∠=︒,再利用三角形的外角的性质即可得出答案.【详解】解:如图,∵2115∠=︒,∴3180218011565∠=︒-∠=︒-︒=︒,根据题意,490∠=︒,∴1346590155∠=∠+∠=︒+︒=︒.故选:A .【点睛】本题考查三角形外角的性质和邻补角的定义.掌握三角形外角的性质是解题的关键.5.C【分析】根据点()3,P n 是两直线的交点,将点P 的坐标代入两直线的解析式得出n 和k 的值,再解方程组即可得出答案.【详解】解:∵直线4y x =-+与直线5y kx =-相交于点()3,P n ,∴341n =-+=,∴()3,1P ,∴135k =⨯-,∴2k =,∴524y x y x =-+⎧⎨=-⎩,解得:32x y =⎧⎨=⎩.故选:C .【点睛】本题考查两直线的交点坐标,直线上点的坐标特征,解二元一次方程组.掌握交点坐标适合每条直线的解析式是解题的关键.6.B【分析】由菱形的性质可得,,AC BD OA OC OB OD ⊥==,再结合3BE =、5DE =可得)。
与二次函数有关的中考图像信息题1、如图( 1)是某公共汽车线路收支差额y(票价总收人减去运营成本)与乘客量x 的函数图象.目前这条线路亏损,为了扭亏,有关部门举行提高票价的听证会.乘客代表认为:公交公司应节约能源,改善管理,降低运营成本,以此举实现扭亏.公交公司认为:运营成本难以下降,公司己尽力,提高票价才能扭亏.根据这两种意见,可以把图( 1)分别改画成图( 2)和图( 3).( 1)说明图( 1)中点 A 和点 B 的实际意义:( 2)你认为图( 2)和图( 3)两个图象中,反映乘客意见的是,反映公交公司意见的是.(3)如果公交公司采用适当提高票价又减少成本的办法实现扭亏为赢,请你在图(4)中画出符合这种办法的y 与 x 的大致函数关系图象。
下列问题:( 1)乙队开挖到30 米时,用了 _____小时.开挖 6 小时时,甲队比乙队多挖了______米;( 2)请你求出:①甲队在0≤ x≤ 6 的时段内, y 与 x 之间的函数关系式;②乙队在2≤ x≤ 6 的时段内, y 与 x 之间的函数关系式;③开挖几小时后,甲队所挖掘河渠的长度开始超过乙队?( 3)如果甲队施工速度不变,乙队在开挖 6 小时后,施工速度增加到12 米 /时,结果两队同时完成了任务.问甲队从开挖到完工所挖河渠的长度为多少米?y(米 )60甲50乙30O26x(时 ) 4、某工厂用一种自动控制加工机制作一批工件,该机器运行过程分为加油过程和2、某种内燃动力机车在青藏铁路实验运行前,测得该种机车机械效率η和海拔高加工过程:加工过程中,当油箱中油量为10 升时,机器自动停止加工进入加油过度 h( 0≤ h≤ 6.5,单位 km )的函数关系式如图所示。
程,将油箱加满后继续加工,如此往复.已知机器需运行185 分钟才能将这批工件( 1)请你根据图象写出机车的机械效率η和海拔高度h( km)的函数关系:加工完.下图是油箱中油量y(升 )与机器运行时间x(分 )之间的函数图象.根据图象( 2)求在海拔3km 的高度运行时,该机车的机械效率为多少?回答下列问题:(1)求在第一个加工过程中,油箱中油量y(升 )与机器运行时间x(分) 之间的函数关系式 (不必写出自变量x 的取值范围 ) ;(2)机器运行多少分钟时,第一个加工过程停止?(3)加工完这批工件,机器耗油多少升?3、有两段长度相等的河渠挖掘任务,分别交给甲、乙两个工程队同时进行挖掘.下图是反映所挖河渠长度y(米)与挖掘时间x(时)之间关系的部分图象.请解答5、某环保器材公司销售一种市场需求较大的新型产品,已知每件产品的进价为40元 ,经销过程中测出销售量 y(万件 )与销售单价 x(元) 存在如图所示的一次函数关系,每年销售该种产品的总开支 z( 万元 )( 不含进价 ) 与年销量 y( 万件 ) 存在函数关系z=10y+42.5.(1) 求 y关于 x的函数关系式 ;7、百舸竞渡,激情飞扬。
图像信息题题设或结论中包含图像信息的问题称为图像信息题.函数图像本身就是“数”与“形”的统一体. 解图像信息题需通过识图、读图、析图等挖掘图像所蕴含的信息,并对得到的信息进行分析、合成、整理、加工,还原问题情境,提示问题本质.视野窗图象是表示两个变量之间关系的一种重要方式,形象而直观.函数图象隐含着丰富的有待翻译的信息,由图象到信息,是思维方式的拓展.例1 甲乙两个工程队完成某项工程.首先是甲单独做了10天,然后乙队加入合作,完成剩下的全部工程.设工程总量为单位1,工程进度满足如图所示的函数关系,那么实际完成这项工程所用的时间比由甲单独完成这项工程所需时间少_____天.试一试 本例是“工程问题”以图像信息化方式构建,先求出甲、乙两个工程队的工作效率.天数1例2 某人驾车从A 地上高速公路前往B 地,中途在服务区休息了一段时间.出发时油箱中存油40升,到B 地后发现油箱中还剩油4升,则从出发后到B 地油箱中所剩油y (升)与时间t (小时)之间函数的大致图象是( )试一试 少算多想,从函数的意义入手.视野窗数学能力也是一种信息处理能力,数学活动是对信息之间的探索,具体表现在:(1)抓住中心主题的能力:(2)从各种角度考查理解信息的能力;(3)舍弃无关的信息而集中于信息的有用方面的能力;(4)探索信息之间的联系的能力.例3 甲、乙两组工人同时加工某种零件,乙组在工作中有一次停产,更换设备后,乙A B C D组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)之间的函数图象如图所示.(1)求甲组加工零件的数量y与时间x之间的函数关系式.(2)求乙组加工零件总量a的值.(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?试一试对于(3),X在不同的范围内,乙组加工零件的数量y与时间x对应不同的函数关系式,解题的关键是全面讨论并建立方程.“S-T”图象问题以对象离开(或接近)某地的距离(S)为因变量,以对象的运动时间(t)为自变量,以时间、距离分别为横轴和纵轴建立平面直角坐标系,通过图象呈现对象运动规律,是近年来广泛出现的别样的行程问题.解这类问题的关键是从图象中获取信息,运用一次函数性质或转化为方程问题求解.例4 星期天,小强骑自行车到郊外与同学一起游玩.从家出发2小时到达目的地,游玩3小时后按原路以原速返回,小强离家4小时40分钟后,妈妈驾车沿相同路线迎接小强,如图是他们离家的路程y(千米)与时间x(时)的图象.已知小强骑车的速度为15千米/时,妈妈驾车的速度为60千米/时.(1)小强家与游玩地的距离是多少?(2)妈妈出发多长时间与小强相遇?∵ 小强骑车的速度为15千米/时,妈妈驾车的速度为60千米/时.∴ 设15OA y x =,115BD y x b =-+,260CD y x b =+,则15105BD y x =-+,60280CD y x =-,视野窗例4图象背景中隐含着几何元素间的关系,图形性质,故例4亦可图上作业,运用几何模型解决.例5 一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发.设慢车行驶的时间为x (h ),两车之间的距离为y (km ),图中的折线表示y 与x 之间的函数关系.根据图象进行以下探究:信息读取:(1)甲,乙两地之间的距离为 km ;(2)请解释图中点B 的实际意义;图像理解:(3)求慢车和快车的速度;(4)求线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围; 问题解决:(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇,求第二列快车比第一列快车晚出发多少小时? 视野窗例5是以两个运动对象之间距离为因变量,以其中一个对象的运动时间为自变量.这为其生成不同的问题链拓展了空间.对函数图像蕴含信息的感知分析、转换(自然语言与图象语言之间)和加工,是借助图象思考的内核.试一试 函数图象包含了两种不同层次的信息:有慢车行驶900km 用了12h 等可直接感知的浅层结构的信息;也可以在0-4小时之间以及稍后的一段时间内,快车和慢车的速度之和为定值、C 点表示快车在某一时刻已到达终点等需要经过分析或运算才能获得的深层结构的信息.练一练1. 甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.图中l 甲、l 乙分别表示甲、乙两人前往目的地所行驶的路程S (千米)随时间t (分)变化的函数图象,则每分钟乙比甲多行驶 千米.2. 一个装有进水管和出水管的容器,从某一时刻起只打开进水管进水,经过一段时间,再打开出水管放水,至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y (单位:升)与时间x (单位:分钟)之间的函数关系如图所示,关停进水管后,经过 分钟,容器中的水恰好放完.124. 2012年“国际攀岩比赛”在重庆举行.小丽从家出发开车前去观看,途中发现忘了带门票,于是打电话让妈妈马上从家里送来,同时小丽也往回开,遇到妈妈后聊了一会儿,接着继续 开车前往比赛现场.设小丽从家出发后所用时间为t ,小丽与比赛现场的距离为S .下面能反映S 与t 的函数关系的大致图象是( )5. 在今年我市初中学业水平考试体育学科的女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程S (米)与所用时间t (秒)之间的函数图象分别为线段OA 和折线OBCD ,下列说法正确的是( )A .小莹的速度随时间的增大而增大B .小梅的平均速度比小莹的平均速度大C .在起跑后180秒时,两人相遇D .在起跑后50秒时,小梅在小莹的前面6. 某市储运部紧急调拨一批物质,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资s (吨)与时间t (小时)之 间的函数关系如图,这批物资从开始调进到全部调出所需要的时间是( )A .4小时B .4.4小时C .4.8小时D .5小时7. 某加工厂为赶制一批零件,通过提高加工费标准的方式调动工人积极性.工人每天加工零件获得的加工费y (元)与加工个数x (个)之间函数图象为折线OA-AB-BC,如图所示.(1)求工人一天加工零件不超过20个时每个零件的加工费;(2)求40≤x≤60时y 与x 函数关系式;(3)小王两天一共加工了60个,共得到220元.在这两天中,小王第一天加工不足20A B C D个,求小王第一天加工零件的个数.8. 周末,小明骑自行车从家里出发到野外郊游.从家里出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.(1)求小明骑车的速度和在甲地游玩的时间;(2)小明从家出发多少小时后被妈妈追上?此时离家多远?(3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路程.9. 甲、乙两人从少年宫出发,沿相同的路线分别以不同的速度匀速跑向体育馆,甲先跑一段路程后,乙开始出发,当乙超出甲150米时,乙停在此地等候甲,两人相遇后乙又继续以原来的速度跑向体育馆.如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象.(1)在跑步的全过程中,甲共跑了米,甲的速度为米/秒;(2)乙跑步的速度是多少?乙在途中等候甲用了多长时间?(3)甲出发多长时间第一次与乙相遇?此时乙跑了多少米?10. 某公交公司的公共汽车和出租车每天从乌鲁木齐出发往返于乌鲁木齐市和石河子市两地,出租车比公共汽车多往返一趟,如图表示出租车距乌鲁木齐市的路程y(单位:千米)与所用时间x(单位:小时)的函数图象.已知公共汽车比出租车晚1小时出发,到达石河子市后休息2小时,然后按原路原速返回,结果比出租车最后一次返回乌鲁木齐早1小时.(1)请在图中画出公共汽车距乌鲁木齐市的路程y(千米)与所用时间x(小时)的函数图象;(2)求两车在途中相遇的次数(直接写出答案);(3)求两车最后一次相遇时,距乌鲁木齐市的路程.。
初中数学函数基础知识经典测试题含答案(1)一、选择题1.小明从家骑车上学,先匀速上坡到达A 地后再匀速下坡到达学校,所用的时间与路程如图所示,如果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是( )A .9分钟B .12分钟C .8分钟D .10分钟【答案】B【解析】【分析】 先根据图形,得到上坡、下坡的时间和距离,然后分别求出上、下坡的速度,最后计算返回家的时间【详解】根据图形得,从家到学校:上坡距离为1km ,用时5min ,下坡距离为2km ,用时为4min 故上坡速度115V =(km/min),下坡速度22142V ==(km/min) 从学校返回家的过程中,原来的上下坡刚好颠倒过来,即上坡2km ,下坡1km 故上坡时间12t 15==10(min),下坡时间21t 12==2(min) ∴总用时为:10+2=12(min)故选:B【点睛】 本题考查从函数图象获取信息,解题关键是将函数图像中的数据与生活实际一一对应2.李明骑车上学,一开始以某一速度行进,途中车子发生故障,只好停下修车,车修好后,因怕耽误时间,于是加快了车速.如用s 表示李明离家的距离,t 为时间.在下面给出的表示s 与t 的关系图中,符合上述情况的是( )A.B.C.D.【答案】C【解析】【分析】先弄清题意,再分析路程和时间的关系.【详解】∵停下修车时,路程没变化,观察图象,A、B、D的路程始终都在变化,故错误;C、修车是的路程没变化,故C正确;故选:C.【点睛】考核知识点:函数的图象.理解题意看懂图是关键.3.下列各曲线中表示y是x的函数的是()A.B.C.D.【答案】D【解析】根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.4.如图,边长为 2 的正方形ABCD,点P从点A出发以每秒 1 个单位长度的速度沿A D C--的路径向点 C 运动,同时点 Q 从点 B 出发以每秒 2 个单位长度的速度沿∆的面B C D A---的路径向点 A运动,当点 Q 到达终点时,点P停止运动,设PQC积为S,运动时间为t秒,则能大致反映S与t的函数关系的图象是()A .B .C .D .【答案】C【解析】【分析】 分三种情况求出解析式,即可求解.【详解】当0≤t≤1时,即当点Q 在BC 上运动,点P 在AD 上运动时,()2222212S t t =⨯⨯-=-, ∴该图象y 随x 的增大而减小,当1<t≤2时,即当点Q 在CD 上运动时,点P 在AD 上运动时,()()21222322S t t t t =--=-+-, ∴该图象开口向下, 当2<t≤3,即当点Q 在AD 上运动时,点P 在DC 上运动时,()()21424682S t t t t =--=-+- ∴该图象开口向下,故选:C .【点睛】本题考查了动点问题的函数图象,求出分段函数解析式是本题的关键.5.若A(﹣3,y 1)、B(0,y 2)、C(2,y 3)为二次函数y =(x+1)2+1的图象上的三点,则y 1、y 2、y 3的大小关系是( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 1<y 3<y 2【答案】B【解析】【分析】把三个点的坐标代入二次函数解析式分别计算出则y 1、y 2、y 3的值,然后进行大小比较.【详解】解:∵A (﹣3,y 1)、B (0,y 2)、C (2,y 3)为二次函数y =(x+1)2+1的图象上的三点,∴y 1=(﹣3+1)2+1=5,y 2=(0+1)2+1=2,y 3=(2+1)2+1=10,∴y 2<y 1<y 3.故选:B.【点睛】本题考查了比较函数值大小的问题,掌握二次函数的性质、代入法是解题的关键.6.小丽早上步行去车站然后坐车去学校,下列能近似的刻画她离学校的距离随时间变化的大致图象是()A.B.C.D.【答案】D【解析】【分析】根据上学,可得离学校的距离越来越小,根据开始步行,可得距离变化慢,后来坐车,可得距离变化快.【详解】解:A、距离越来越大,选项错误;B、距离越来越小,但前后变化快慢一样,选项错误;C、距离越来越大,选项错误;D、距离越来越小,且距离先变化慢,后变化快,选项正确;故选:D.【点睛】本题考查了函数图象,观察距离随时间的变化是解题关键.7.弹簧挂上物体后会伸长,现测得一弹簧的长度y(厘米)与所挂物体的质量x(千克)之间有如下关系:物体质量x/千克 0 1 2 3 4 5 …弹簧长度y/厘米10 10.5 11 11.5 12 12.5 …下列说法不正确的是()A.x与y都是变量,其中x是自变量,y是因变量B .弹簧不挂重物时的长度为0厘米C .在弹性范围内,所挂物体质量为7千克时,弹簧长度为13.5厘米D .在弹性范围内,所挂物体质量每增加1千克弹簧长度增加0.5厘米【答案】B【解析】试题分析:根据图表数据可得,弹簧的长度随所挂重物的质量的变化而变化,并且质量每增加1千克,弹簧的长度增加0.5cm ,然后对各选项分析判断后利用排除法.解:A 、x 与y 都是变量,且x 是自变量,y 是因变量,正确,不符合题意;B 、弹簧不挂重物时的长度为10cm ,错误,符合题意;C 、在弹性范围内,所挂物体质量为7千克时,弹簧长度为10+0.5×7=13.5,正确,不符合题意;D 、在弹性范围内,所挂物体质量每增加1千克弹簧长度增加0.5厘米,正确,不符合题意.故选B .点评:本题考查了函数关系的确认,常量与变量的确定,读懂图表数据,并从表格数据得出正确结论是解题的关键,是基础题,难度不大.8.在平面直角坐标系中有三个点的坐标:()()0,2,2,01(),3A B C ---,,从、、A B C 三个点中依次取两个点,求两点都落在抛物线2y x x 2=--上的概率是( )A .13B .16C .12D .23【答案】A【解析】【分析】先画树状图展示所有6种等可能的结果数,再找出两点都落在抛物线2y x x 2=--上的结果数,然后根据概率公式求解.【详解】解:在()()0,2,2,01(),3A B C ---,三点中,其中AB 两点在2y x x 2=--上, 根据题意画图如下:共有6种等可能的结果数,其中两点都落在抛物线2y x x 2=--上的结果数为2, 所以两点都落在抛物线2y x x 2=--上的概率是2163=; 故选:A .【点睛】本题考查了列表法或树状图法和函数图像上点的特征.通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了二次函数图象上点的坐标特征.9.如图,矩形ABCD中,P为CD中点,点Q为AB上的动点(不与,A B重合).过Q作QM PA⊥于M,QN PB⊥于N.设AQ的长度为x,QM与QN的长度和为y.则能表示y与x之间的函数关系的图象大致是()A.B.C.D.【答案】D【解析】【分析】根据三角形面积得出S△PAB=12PE•AB;S△PAB=S△PQB+S△PAQ=12QN•PB+12PA•MQ,进而得出y=PE ABPB,即可得出答案.【详解】解:连接PQ,作PE⊥AB垂足为E,∵过Q作QM⊥PA于M,QN⊥PB于N,∴S△PAB=12 PE•AB;S△PAB=S△PQB+S△PAQ=12QN•PB+12PA•MQ,∵矩形ABCD中,P为CD中点,∴PA=PB,∵QM与QN的长度和为y,∴S△PAB=S△PQB+S△PAQ=12QN•PB+12PA•MQ=12PB(QM+QN)=12PB•y,∴S△PAB=12PE•AB=12PB•y,∴y=PE AB PB⋅,∵PE=AD,∴PE,AB,PB都为定值,∴y的值为定值,符合要求的图形为D,故选:D.【点睛】此题考查了矩形的性质,三角形的面积,动点函数的图象,根据已知得出y=PE ABPB⋅,再利用PE=AD,PB,AB,PB都为定值是解题关键.10.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()A.B.C.D.【答案】D【解析】解:如右图,连接OP ,由于OP 是Rt △AOB 斜边上的中线,所以OP=12AB ,不管木杆如何滑动,它的长度不变,也就是OP 是一个定值,点P 就在以O 为圆心的圆弧上,那么中点P 下落的路线是一段弧线.故选D .11.如图,矩形ABCD 的周长是28cm ,且AB 比BC 长2cm .若点P 从点A 出发,以1/cm s 的速度沿A D C →→方向匀速运动,同时点Q 从点A 出发,以2/cm s 的速度沿A B C →→方向匀速运动,当一个点到达点C 时,另一个点也随之停止运动.若设运动时间为()t s ,APQ V 的面积为()2cm S ,则()2cm S 与()t s 之间的函数图象大致是( )A .B .C .D .【答案】A【解析】【分析】先根据条件求出AB 、AD 的长,当0≤t≤4时,Q 在边AB 上,P 在边AD 上,如图1,计算S 与t 的关系式,分析图像可排除选项B 、C ;当4<t≤6时,Q 在边BC 上,P 在边AD 上,如图2,计算S 与t 的关系式,分析图像即可排除选项D ,从而得结论.【详解】解:由题意得2228AB BC +=,2AB BC =+,可解得8AB =,6BC =,即6AD =,①当0≤t≤4时,Q 在边AB 上,P 在边AD 上,如图1,S △APQ =211222AP AQ t t t ==g g , 图像是开口向上的抛物线,故选项B 、C 不正确;②当4<t≤6时,Q 在边BC 上,P 在边AD 上,如图2,S △APQ =118422AP AB t t =⨯=g , 图像是一条线段,故选项D 不正确;故选:A .【点睛】本题考查了动点问题的函数图象,根据动点P 和Q 的位置的不同确定三角形面积的不同,解决本题的关键是利用分类讨论的思想求出S 与t 的函数关系式.12.甲、乙两同学骑自行车从A 地沿同一条路到B 地,已知乙比甲先出发,他们离出发地的距离S (km )和骑行时间t (h )之间的函数关系如图所示,给出下列说法:①他们都骑行了20km ;②乙在途中停留了0.5h ;③甲、乙两人同时到达目的地;④相遇后,甲的速度小于乙的速度.根据图象信息,以上说法正确的有( )A .1个B .2个C .3个D .4个【答案】B【解析】 试题分析:根据图象上特殊点的坐标和实际意义即可作出判断.由图可获取的信息是:他们都骑行了20km ;乙在途中停留了0.5h ;相遇后,甲的速度>乙的速度,所以甲比乙早0.5小时到达目的地,所以(1)(2)正确.故选B .考点:本题考查的是学生从图象中读取信息的数形结合能力点评:同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.13.如图所示:边长分别为1和2的两个正方形,其一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内除去小正方形部分的面积为S(阴影部分),那么S与t的大致图象应为()A.B.C.D.【答案】A【解析】【分析】【详解】解:根据题意,设小正方形运动速度为v,由于v分为三个阶段,①小正方形向右未完成穿入大正方形,=⨯-⨯=-≤.S vt vt vt2214(1)②小正方形穿入大正方形但未穿出大正方形,22113S=⨯-⨯=,③小正方形穿出大正方形,=⨯-⨯-=+≤,22(11)3(1)S vt vt vt∴符合变化趋势的是A和C,但C中面积减小太多不符合实际情况,∴只有A中的符合实际情况.故选A.14.2019年,中国少年岑小林在第六届上海国际交互绳大赛上,破“30秒内单脚单摇轮换跳次数最多”吉尼斯世界纪录!实践证明1分钟跳绳的最佳状态是前20秒频率匀速增加,最后10秒冲刺,中间频率保持不变,则跳绳频率(次/秒)与时间(秒)之间的关系可以用下列哪幅图来近似地刻画()A.B.C.D.【答案】C【解析】【分析】根据前20秒频率匀速增加,最后10秒冲刺,中间频率保持不变判断图象即可.【详解】:秒频率保持不变,排除选项A和D,再根据最后10秒冲解:根据题意可知,中间2050刺,频率是增加的,排除选项B,因此,选项C正确.故选:C.【点睛】本题考查的知识点是一次函数的实际应用,理解题意是解此题的关键.15.均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()A.B.C.D.【答案】D【解析】试题分析:注水量一定,函数图象的走势是稍陡,平,陡;那么速度就相应的变化,跟所给容器的粗细有关.则相应的排列顺序就为D .故选D .考点:函数的图象.16.当实数x 的取值使得2x -有意义时,函数41y x =+中y 的取值范围是( ) A .7y ≥-B .9y ≥C .9y <-D .7y <-【答案】B【解析】【分析】根据二次根式有意义易得x 的取值范围,代入所给函数可得y 的取值范围.【详解】解:由题意得20x -≥,解得2x ≥, 419x ∴+≥,即9y ≥.故选:B .【点睛】本题考查了函数值的取值的求法;根据二次根式被开方数为非负数得到x 的取值是解决本题的关键.17.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h 与时间t 之间的关系的图象是( )A .B .C .D .【答案】C【解析】【分析】首先看图可知,蓄水池的下部分比上部分的体积小,故h 与t 的关系变为先快后慢.【详解】根据题意和图形的形状,可知水的最大深度h 与时间t 之间的关系分为两段,先快后慢。
第09讲函数图像的信息获取和判断的秒杀方法(原卷)题型一:函数图像的判断判断函数的图像并不需要把每段函数的解析式完整的求出来!秒杀方法:1.判断一次函数关系:只要判断出结果的未知数的次数,并不需要把解析数求出来,当次数是1时即为一次函数,然后通过k判断结果;2.判断二次函数关系:一般在求面积的时候,会有两个含未知数的式子相乘,即结果为二次函数关系,然后通过该二次项系数的正负判断函数的开口方向即可;3.判断反比例函数关系:只要判断出结果的未知数是不是在分母里即可。
【例1】如图,在矩形ABCD中,AB=2cm,BC=43cm,E是AD的中点,连接BE,CE.点P从点B出发,以3cm/s的速度沿BC方向运动到点C停止,同时点Q 从点B出发,以1cm/s的速度沿BE-EC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()【答案】D【解析】由题意得:BE=4cm,bc=4cm,则Q从B到E需要4s,从E到C需要4s,共8s;P从B到C需要4s。
①当Q在线段BE上运动时,如图,作QF⊥BC,B=,Q=B=,则y=⋅Q⋅Q,即可得函数为二次函数,且二次项系数>0,开口向上,排除AC;②4s时,P到达终点,不再运动;点Q依然在运动,所以面积公式里只有一个变量,则对应函数为一次函数,因此选D。
1.(2013·湖南衡阳·中考真题)如图所示,半径为的圆和边长为的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过的时间为,圆与正方形重叠部分阴影部分的面积为S,则S与的函数关系式的大致图象为()A.B.C.D.2.(2022·青海西宁·统考中考真题)如图,△ABC中,BC=6,BC边上的高为3,点D,E,F分别在边BC,AB,AC上,且EF∥BC.设点E到BC的距离为x,△DEF的面积为y,则y关于x的函数图象大致是()A.B.C.D.3.(2022·山东菏泽·统考中考真题)如图,等腰与矩形DEFG在同一水平线上,,现将等腰沿箭头所指方向水平平移,平移距离x是自点C到达DE之时开始计算,至AB离开GF为止.等腰与矩形DEFG的重合部分面积记为y,则能大致反映y与x的函数关系的图象为()A.B.C.D.4.(2022·辽宁锦州·中考真题)如图,四边形是边长为的正方形,点E,点F分别为边,中点,点O为正方形的中心,连接,点P从点E出发沿运动,同时点Q从点B出发沿运动,两点运动速度均为,当点P运动到点F时,两点同时停止运动,设运动时间为,连接,的面积为,下列图像能正确反映出S与t的函数关系的是()A.B.C.D.5.(2022·广西河池·t表示注水时间,y表示水面的高度,下列图象适合表示y与t的对应关系的是()A.B.C.D.1.(2013·湖南衡阳·中考真题)如图所示,半径为的圆和边长为的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过的时间为,圆与正方形重叠部分阴影部分的面积为S ,则S 与的函数关系式的大致图象为()A .B .C .D .【答案】B【分析】观察图形,在运动过程中,S 随的变化情况,得到开始随时间的增大而增大,当圆在正方形内时改变,而重合面积等于圆的面积不变,再运动,随的增大而减小,根据以上结论判断即可.【详解】解:∵半径为的圆沿水平线从左向右匀速穿过正方形,开始至完全进入正方形S 随时间的增大而增大,∴选项A 、D 错误;∵当圆在正方形内时,改变,重合面积等于圆的面积,S 不变,再运动,S 随的增大而减小,∴选项C 错误,选项B 正确;故选:B .【点睛】本题主要考查动图形问题的函数图象,熟练掌握函数图象形状变化与两图形重合部分形状、大小变化的关系,是解决此题的关键.2.(2022·青海西宁·统考中考真题)如图,△ABC 中,BC =6,BC 边上的高为3,点D ,E ,F 分别在边BC ,AB ,AC 上,且EF ∥BC .设点E 到BC 的距离为x ,△DEF 的面积为y ,则y 关于x 的函数图象大致是()A.B.C.D.【答案】A【分析】过点A向BC作AH⊥BC于点H,所以根据相似三角形的性质可求出EF,进而求出函数关系式,由此即可求出答案.【详解】解:过点A向BC作AH⊥BC于点H,根据相似比可知:,即,解得:EF=2(3-x),则△DEF的面积y=×2(3-x)x=-x2+3x=-(x-)2+,故y关于x的函数图象是一个开口向下、顶点坐标为(,)的抛物线.故选:A.【点睛】本题考查了二次函数图象,主要利用了相似三角形的性质,求出S与x的函数关系式是解题的关键.3.(2022·山东菏泽·统考中考真题)如图,等腰与矩形DEFG在同一水平线上,,现将等腰沿箭头所指方向水平平移,平移距离x是自点C到达DE之时开始计算,至AB离开GF为止.等腰与矩形DEFG的重合部分面积记为y,则能大致反映y与x的函数关系的图象为()A.B.C.D.【答案】B【分析】根据平移过程,可分三种情况,当时,当时,当时,利用直角三角形的性质及面积公式分别写出各种情况下y与x的函数关系式,再结合函数图象即可求解.【详解】过点C作CM⊥AB于N,,在等腰中,,,①当时,如图,,,,∴,y随x的增大而增大;②当时,如图,,∴当时,y是一个定值为1;③当时,如图,,,,当x=3,y=1,当3<x<4,y随x的增大而减小,当x=4,y=0,结合ABCD选项的图象,故选:B.【点睛】本题考查了动点函数问题,涉及二次函数的图象及性质,能够准确理解题意并分情况讨论是解题的关键.4.(2022·辽宁锦州·中考真题)如图,四边形是边长为的正方形,点E,点F分别为边,中点,点O为正方形的中心,连接,点P从点E出发沿运动,同时点Q从点B出发沿运动,两点运动速度均为,当点P运动到点F时,两点同时停止运动,设运动时间为,连接,的面积为,下列图像能正确反映出S与t的函数关系的是()A.B.C.D.【答案】D【分析】分0≤t≤1和1<t≤2两种情形,确定解析式,判断即可.【详解】当0≤t≤1时,∵正方形ABCD的边长为2,点O为正方形的中心,∴直线EO垂直BC,∴点P到直线BC的距离为2-t,BQ=t,∴S=;当1<t≤2时,∵正方形ABCD的边长为2,点F分别为边,中点,点O为正方形的中心,∴直线OF∥BC,∴点P到直线BC的距离为1,BQ=t,∴S=;故选D.【点睛】本题考查了正方形的性质,二次函数的解析式,一次函数解析式,正确确定面积,从而确定解析式是解题的关键.5.(2022·广西河池·统考中考真题)东东用仪器匀速向如图容器中注水,直到注满为止.用t表示注水时间,y表示水面的高度,下列图象适合表示y与t的对应关系的是()A.B.C.D.【答案】C【分析】根据题目中的图形可知,刚开始水面上升比较慢,紧接着水面上升较快,最后阶段水面上升最快,从而可以解答本题.【详解】因为对边的圆柱底面半径较大,所以刚开始水面上升比较慢,中间部分的圆柱底面半径较小,故水面上升较快,上部的圆柱的底面半径最小,所以水面上升最快,故适合表示y与t的对应关系的是选项C.故选:C.【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答. 题型二:根据已知图像获取相关信息把图像和运动情况结合起来,了解每一个转折点,每条线的具体含义。
类型4 根据函数图象获取信息
11.如图1,在矩形ABC D中,动点P从点B出发,沿BC-CD-DA运动至点A停止.设点P运动的路程为x,△ABP 的面积为y,如果y关于x的函数图象如图2所示,则y的最大值是(D)
A.55B.30 C.16 D.15 12.(2016·安庆一模)如图,有四个平面图形分别是三角形、平行四边形、直角梯形、圆,垂直于x轴的直线l:x =t(0≤t≤a)从原点O向右平行移动,l在移动过程中扫过平面图形的面积为y(图中阴影部分),若y关于t函数的图象大致如图,那么平面图形的形状不可能是(C)
13.已知:如图1,点G是BC的中点,点H在AF上,动点P以每秒2 cm的速度沿图1的边线运动,运动路线为G -C-D-E-F-H,相应的△ABP的面积y(cm2)关于运动时间t(s)的函数如图2,若AB=6,则下列四个结论中正确的个数有( C )
①图1中BC长是8 cm
②图2中M点表示第4秒时y的值是24 cm2
③图1中EF长是2 cm
④图2中N点表示第11秒时y的值是32.
A.1个
B.2个
C.3个
D.4个。