第三章多维随机变量及其分布作业.
- 格式:doc
- 大小:111.50 KB
- 文档页数:2
第三章 多维随机变量及其分布一、选择题1.X,Y 相互独立,且都服从]1,0[上的均匀分布,则服从均匀分布的是( A ).A.(X,Y)B.XYC.X+YD.X -Y 2.设X,Y 独立同分布,11{1}{1},{1}{1},22P X P Y P X P Y =-==-=====则(C ).A.X =YB.0}{==Y X P C.21}{==Y X PD.1}{==Y XP3.设)(1x F 与)(2x F分别是随机变量X 与Y 的分布函数,为使)()(21x bF x aF -是某个随机变量的分布函数,则b a ,的值可取为( A ). A.52,53-==b a B.32,32==b a C.23,21=-=b aD.23,21-==b a4.设随机变量iX 的分布为12101~(1,2){0}1,111424i X i X X -⎛⎫ ⎪=== ⎪⎝⎭且P 则12{}P X X ==( A ).A.0B.41 C.21D.15.下列叙述中错误的是( D ).A.联合分布决定边缘分布B.边缘分布不能决定决定联合分布C.两个随机变量各自的联合分布不同,但边缘分布可能相同D.边缘分布之积即为联合分布6.设随机变量(X,Y) 的联合分布为: 则b a ,应满足( B ).A .1=+b a B. 13a b += C.32=+b aD.23,21-==b a7.接上题,若X ,Y 相互独立,则( A ). A.91,92==b a B.92,91==b a C.31,31==b aD.31,32=-=b a8.同时掷两颗质体均匀的骰子,分别以X,Y 表示第1颗和第2颗骰子出现的点数,则( A ). A.1{,},,1,2,636P X i Y j i j ==== B.361}{==Y X PC.21}{=≠Y XP D.21}{=≤Y X P9.设(X,Y)的联合概率密度函数为⎩⎨⎧≤≤≤≤=其他,y x y x y x f 010,10,6),(2,则下面错误的是( C ). A.1}0{=≥XP B.{0}0P X ≤= C.X,Y 不独立D.随机点(X,Y)落在{(,)|01,01}D x y x y =≤≤≤≤内的概率为110.接上题,设G 为一平面区域,则下列结论中错误的是( B ). A.{(,)}(,)GP X Y G f x y dxdy ∈=⎰⎰B.2{(,)}6GP X Y G xydxdy ∈=⎰⎰C.120{}6x P XY dx x ydy≥=⎰⎰ D.⎰⎰≥=≥yx dxdyy x f Y XP ),()}{(11.设(X,Y)的联合概率密度为(,)0,(,)(,)0,h x y x y D f x y ≠∈⎧=⎨⎩其他,若{(,)|2}G x y y x =≥为一平面区域,则下列叙述错误的是( C ).1 2 3 1 1/6 1/9 1/18 2 1/3abX YA.{,)(,)GP X Y G f x y dxdy ∈=⎰⎰B.⎰⎰-=≤-Gdxdyy x f X YP ),(1}02{C.⎰⎰=≥-Gdxdy y x h X YP ),(}02{ D.⎰⎰=≥DG dxdy y x h X YP ),(}2{12.设(X,Y)服从平面区域G 上的均匀分布,若D 也是平面上某个区域,并以GS 与DS 分别表示区域G 和D 的面积,则下列叙述中错误的是( A ). A.{(,)}D GS P X Y D S ∈=B.0}),{(=∉G Y X PC.GD G S S D Y X P -=∉1}),{( D.{(,)}1P X Y G ∈=13.设系统π是由两个相互独立的子系统1π与2π连接而成的;连接方式分别为:(1)串联;(2)并联;(3)备用(当系统1π损坏时,系统2π开始工作,令21,X X分别表示21ππ和的寿命,令321,,X X X 分别表示三种连接方式下总系统的寿命,则错误的是( ). A.211X X Y += B.},m ax{212X X Y = C.213XX Y+= D.},m in{211X X Y=14.设二维随机变量(X,Y)在矩形}10,20|),{(≤≤≤≤=y x y x G 上服从均匀分布.记.2,12,0;,1,0⎩⎨⎧>≤=⎩⎨⎧>≤=Y X YX V Y X Y X U则==}{V U P ( D ). A.0 B.41C.21D.4315.设(X,Y)服从二维正态分布),,,,(222121ρσσμμN ,则以下错误的是( B ). A.),(~211σμN XB ),(~221σμN XC.若0=ρ,则X,Y 独立D.若随机变量),(~),,(~222211σμσμN T N S 则(,)S T 不一定服从二维正态分布16.若),(~),,(~222211σμσμN Y N X ,且X,Y 相互独立,则( C ).A.))(,(~22121σσμμ+++N Y X B.),(~222121σσμμ---N Y XC.)4,2(~2222121σσμμ+--N Y XD.)2,2(~2222121σσμμ+--N Y X17.设X ,Y 相互独立,且都服从标准正态分布(0,1) N ,令,22Y XZ +=则Z 服从的分布是(C ).A .N (0,2)分布 B.单位圆上的均匀分布 C.参数为1的瑞利分布 D.N (0,1)分布 18.设随机变量4321,,,X X X X独立同分布,{0}0.6,i P X =={1}0.4i P X ==(1,2,3,4)i =,记1234X X D X X =,则==}0{DP (B ).A.0.1344B.0.7312C.0.8656D.0.3830 19.已知~(3,1)XN -,~(2,1)Y N ,且,X Y 相互独立,记27,Z X Y =-+~Z 则( A ).A.)5,0(NB.)12,0(NC.)54,0(ND.)2,1(-N 20.已知s i n (),0,,(,)~(,)40,C xy x y X Y f x y π⎧+≤≤⎪=⎨⎪⎩其他则C 的值为( D ). A.21B.22 C.12- D.12+21.设⎪⎩⎪⎨⎧≤≤≤≤+=其他,020,10,31),(~),(2y x xy x y x f Y X ,则}1{≥+Y X P =( A ) A.7265 B.727 C.721 D.727122.为使⎩⎨⎧≥=+-其他,00,,),()32(y x Ae y x f y x 为二维随机向量(X,Y)的联合密度,则A 必为( B ).A.0B.6C.10D.16 23.若两个随机变量X,Y 相互独立,则它们的连续函数)(X g 和)(Y h 所确定的随机变量( C ).A.不一定相互独立B.一定不独立C.也是相互独立D.绝大多数情况下相独立 24.在长为a 的线段上随机地选取两点,则被分成的三条短线能够组成三角形的概率为( A ).A.21B.31C.41D.5125.设X 服从0—1分布,6.0=p ,Y 服从2=λ的泊松分布,且X,Y 独立,则YX+( B ).A.服从泊松分布B.仍是离散型随机变量C.为二维随机向量D.取值为0的概率为0 26.设相互独立的随机变量X,Y 均服从]1,0[上的均匀分布,令,Y X Z +=则( B ).A.Z 也服从]1,0[上的均匀分布B.0}{==Y X PC.Z 服从]2,0[上的均匀分布D.)1,0(~N Z27.设X,Y 独立,且X 服从]2,0[上的均匀分布,Y 服从2=λ的指数分布,则=≤}{Y X P ( A ).A.)1(414--eB.414e- C.43414+-eD.2128.设⎪⎩⎪⎨⎧≤≤≤≤=其他,010,20,23),(~),(2y x xy y x f Y X ,则(X,Y)在以(0,0),(0,2),(2,1)为顶点的三角形内取值的概率为( C ). A. 0.4 B.0.5 C.0.6 D.0.8 29.随机变量X,Y 独立,且分别服从参数为1λ和2λ的指数分布,则=≥≥--},{1211λλY X P ( B ).A.1-eB.2-eC.11--eD.21--e30.设22[(5)8(5)(3)25(3)](,)~(,)x x y y X Y f x y A e-+++-+-=,则A 为( B ).A.3π B.π3C.π2 D.2π31.设某经理到达办公室的时间均匀分布在8点12点,他的秘书到达办公室的时间均匀分布在7点到9点.设二人到达的时间相互独立,则他们到达办公室的时间相差不超过5分钟的概率为( A ). A.481 B.21 C.121 D.24132.设12,,,nX X X 相独立且都服从),(2σμN ,则( B ).A.12nXX X === B.2121()~(,)n X X X N nnσμ+++C.)34,32(~3221+++σμN XD.),0(~222121σσ--N X X33.设(,)0,(,)(,)~(,)0,g x y x y GX Y f x y ≠∈⎧=⎨⎩其它,D 为一平面区域,记G,D 的面积为,,D GS S,则{(,)}P x y D ∈=( C ).A.GD S S B.GG D S S C.⎰⎰Ddxdyy x f ),(D.⎰⎰Ddxdy y x g ),(二、填空题1.),(Y X 是二维连续型随机变量,用),(Y X 的联合分布函数),(y x F 表示下列概率: (1);____________________),(=<≤≤c Y b X a p F(b,c)-F(a,c)(2);____________________),(=<<b Y a Xp F(a,b)(3);____________________)0(=≤<a Y p F(+∞,a)-F(+∞,0)(4).____________________),(=<≥b Y a Xp F(+∞,b)-F(a,b)2.随机变量),(Y X 的分布率如下表,则βα,应满足的条件是61=+βα.X Y1 231 1/6 1/9 1/1821/2α β 3.设平面区域D 由曲线xy 1=及直线2,1,0e x x y ===所围成,二维随机变量),(Y X 在区域D 上服从均匀分布,则),(Y X 的联合分布密度函数为 .4.设),,,,(~),(222121ρσσμμN Y X ,则Y X ,相互独立当且仅当=ρ0 . 5.设相互独立的随机变量X 、Y 具有同一分布律,且X 的分布律为P (X=0)=1/2,P (X=1)=1/2,则随机变量Z=max{X,Y}的分布律为 .6.设随机变量321,,X X X 相互独立且服从两点分布⎪⎪⎭⎫⎝⎛2.08.010,则∑==31i iX X 服从 二项 分布 X~b (3,0.2) .7.设X 和Y 是两个随机变量,且P{X ≥0,Y ≥0}=3/7,P{X ≥0}=P{Y ≥0}=4/7,则P{max (X ,Y )≥0}= 5/7 . 8.设某班车起点站上车人数X 服从参数为(0)λλ>的泊松分布,每位乘客在中途下车的概率为p(0<p<1),且中途下车与否相互独立.以Y 表示在中途下车的人数,则在发车时有n 个乘客的条件下,中途有m 人下车的概率为mn m mnp p C --)1(;二为随机变量(X ,Y )的概率分布为!)1(),(n ep p C m Y n XP nmn m m nλλ---===9.假设一设备开机后无故障工作的时间X 服从参数为1/5的指数分布,设备定时开机,出现故障时自动关机,而在无故障时工作2小时便关机,则该设备每次开机无故障工作的时间Y 的分布函数 .10.设两个随机变量X 与Y 独立同分布,且P (X=-1)=P (Y=-1)=1/2,P (X=1)=P (Y=1)=1/2,则P (X=Y )= 1/2 ;P (X+Y=0)= 1/2 ; P (XY=1)= 1/2 .。
第三章 多维随机变量及其分布1. 在一箱子中装有12只开关, 其中2只是次品, 在其中取两次, 每次任取一只, 考虑两种试验: (1)放回抽样, (2)不放回抽样. 我们定义随机变量X , Y 如下:⎩⎨⎧=若第一次取出的是次品若第一次取出的是正品10X ,⎩⎨⎧=若第二次取出的是次品若第二次取出的是正品10Y .试分别就(1), (2)两种情况, 写出X 和Y 的联合分布律.解: (1)(X , Y )所有可能取的值为(0, 0), (0, 1), (1, 0), (1, 1), 按古典概型, 显然有362512101210)0 ,0(=⋅===Y X P ,3651221210)1 ,0(=⋅===Y X P ,3651210122)0 ,1(=⋅===Y X P ,361122122)1 ,1(=⋅===Y X P ,列成表格便得X 和Y 的联合分布律(2)(X , Y )所有可能取的值为(0, 0), (0, 1), (1, 0), (1, 1), 按古典概型, 显然有66451191210)0 ,0(=⋅===Y X P ,66101121210)1 ,0(=⋅===Y X P ,66101110122)0 ,1(=⋅===Y X P ,661111122)1 ,1(=⋅===Y X P ,列成表格便得X 和Y 的联合分布律2. 盒子里装有3只黑球, 2只红球, 2只白球, 在其中任取4只球, 以X 表示取到黑球的只数, 以Y 表示取到白球的只数, 求X , Y 的联合分布律.解: (X , Y )的可能取值为(i , j ), i =0, 1, 2, 3, j =0, 1, 2, i +j ≥2, 联合分布律为P (X =0, Y =2)=351472222=C C C ,P (X =1, Y =1)=35647221213=C C C C , P (X =1, Y =2)=35647122213=C C C C , P (X =2, Y =0)=351472222=C C C ,P (X =2, Y =1)=351247121223=C C C C ,P (X =2, Y =2)=353472223=C C C ,P (X =3, Y =0)=352471233=C CC ,P (X =3, Y =1)=352471233=C CC ,列成表格便得X 和Y 的联合分布律3. 设随机变量(X , Y )概率密度为⎩⎨⎧<<<<--=其它042 ,20)6(),(y x y x k y x f . (1)确定常数k ; (2)求P (X <1, Y <3); (3)求P (X <1.5); (4)求P (X +Y ≤4). 解: (1)因为 k dydx y x k dy dx y x f 8)6(),(1242=--==⎰⎰⎰⎰+∞∞-+∞∞-,所以81=k .(2)83)6(81)3 ,1(3210⎰⎰=--=<<dy y x dx Y X P .(3)3227)6(81) ,5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P .(4)32)6(81}4{4020=--=≤+⎰⎰-dy y x dx Y X P x .4. 将一枚硬币掷3次, 以X 表示前2次中出现H 的次数, 以Y 表示3次中出现H 的次数, 求(X , Y )的联合分布律及边缘分布律.故(X , Y )的联合分布律为(X , Y )关于X 的边缘分布律为即)21 ,2(~b X .(X , Y )关于Y 的边缘分布律为即)21 ,3(~b Y .5. 设二维随机变量(X , Y )的概率密度为⎩⎨⎧≤≤≤≤-=其它00,10)2(8.4),(xy x x y y x f , 求边缘概率密度. 解: ⎰+∞∞-=dy y x f x f X ),()(⎪⎩⎪⎨⎧≤≤-=⎰其它010)2(8.40x dy x y x⎩⎨⎧≤≤-=其它010)2(4.22x x x ,⎰+∞∞-=dx y x f y f Y ),()(⎪⎩⎪⎨⎧≤≤-=⎰其它010)2(8.41y dx x y y⎩⎨⎧≤≤+-=其它010)43(4.22y y y y . 6. 设二维随机变量(X , Y )的概率密度为⎩⎨⎧<<=-其它00),(y x e y x f y , 求边缘概率密度.解:⎰+∞∞-=dy y x f x f X ),()(⎪⎩⎪⎨⎧≤>=⎰+∞-000x x dy e x y⎩⎨⎧≤>=-000x x e x . ⎰+∞∞-=dx y x f y f Y ),()(⎪⎩⎪⎨⎧≤>=⎰-000y y dx e y y⎩⎨⎧≤>=-000y y ye y . 7. 设二维随机变量(X , Y )的概率密度为⎩⎨⎧≤≤=其它01),(22y x y cx y x f . (1)试确定常数c ; (2)求边缘概率密度. 解: (1)因为l =⎰⎰⎰⎰⎰∞+∞-+-∞+∞-===c dy y c ydx cx dy dxdy y x f yy 21432),(1025210,所以421=c .(2)X 的边缘概率密度为⎪⎩⎪⎨⎧≤≤-=⎰其它011421)(~122x ydy x x f X x X⎪⎩⎪⎨⎧≤≤--=其它011)1(82142x x x .X 的边缘概率密度为⎪⎩⎪⎨⎧≤≤=⎰+-其它010421)(~2y ydx d y f Y y y Y⎪⎩⎪⎨⎧≤≤=其它0102725y y .8. 将某一医公司9月份和8月份收到的青霉素针剂的订货单数分别记为X 和Y , 据以往积累的资料知X 和Y 联合分布律为:(1)求边缘分布律;(2)求8月份的订单数为51时, 9月份订单数的条件人布律.解: 在表中运算得(2)因为j ijj j i i i p p y Y P y Y x X P y Y x X P ⋅=======)() ,()|(, 并且P (Y =51)=0.28=p ⋅j , 所以28628.006.0)51|51(====Y X P ,28728.007.0)51|52(====Y X P ,28528.005.0)51|53(====Y X P ,28528.005.0)51|54(====Y X P ,28528.005.0)51|55(====Y X P ,故当8月份的订单数为51时, 9月份订单数的条件分布律为9. 以X 记某一医院一天出生的婴儿的个数, Y 记男婴的个数, 记X 和Y 的联合分布律为)!(!)86.6()14.7() ,(14m n m e m Y n X P mn m -===--(m =0, 1, 2, ⋅⋅⋅, n ;n =0, 1, 2, ⋅⋅⋅ ).(1)求边缘分布律; (2)求条件分布律;(3)特别写出当X =20时, Y 的条件分布律. 解: (1)边缘分布律:∑∑=--=-=====nm mn m n m m n m e m Y n X P n X P 0140)!(!)86.6()14.7() ,()(∑=--⋅⋅⋅⋅=nm m n m m ne n C 014)86.6()14.7(!1 ∑=--⋅⋅=n m m n m mn C n e 014)86.6()14.7(! !14)86.614.7(!1414n e n e n n --⋅=+=(n =0, 1, 2, ⋅⋅⋅ ). ∑∑∞=--∞=-=====0140)!(!)86.6()14.7() ,()(n mn m n m n m e m Y n X P m Y P∑∞=---=014)!()86.6(!)14.7(n mn m m n m e m m m e e m e )14.7(!!)14.7(14.786.614--==(m =0, 1, 2, ⋅⋅⋅ ).(2)条件分布律:m mn m m e m n m e m Y P m Y n X P m Y n X P )14.7(!)!(!)86.6()14.7()() ,()|(14.714----======= )!()86.6(86.6m n e mn -⋅=--(n =m , m +1, ⋅⋅⋅ ).当m =0, 1, 2, ⋅⋅⋅ 时1414!14)!(!)86.6()14.7()() ,()|(----=======e n m n m e n X P m Y n X P n X m Y P nmn m m n m m n m n -⋅⋅-=)1486.6()1414.7()!(!! m m mn C -⋅⋅=20)49.0()51.0((m =0, 1, ⋅⋅⋅ , n ). (3)当X =20时, Y 的条件分布为m m mC X m Y P -⋅===2020)49.0()51.0()20|((m =0, 1, ⋅⋅⋅ , 20).10. 求§1例1中的条件分布律: P (Y =k |X =i )=?解: 由于)(),()|(i X P i X k Y P i X k Y P ======, 而411) ,(⋅===i i X k Y P (i =1, 2, 3, 4, k ≤i ),41)(==i X P ,所以ii X k Y P 1)|(===(i =1, 2, 3, 4, k ≤i ),即11. 在第7题中(1)求条件概率f X |Y (x |y ), 特别, 写出当21=Y 时X 的条件概率密度; (2)求条件概率密度f Y |X (y |x ), 特别, 分别写出当31=X , 21=X 时Y 的条件概率密度; (3)求条件概率P (Y ≥1/4|X =1/2), P (Y ≥3|X =1/2). 解: (1)当0<y ≤1时,⎪⎪⎩⎪⎪⎨⎧<<-==其他027421)(),()|(252|y x y y yx y f y x f y x f Y Y X ⎪⎩⎪⎨⎧<<-=-其他023232y x y y x ,特别, ⎪⎩⎪⎨⎧<<-==-其他02121)21(23)21|(232|x x y x f Y X ⎪⎩⎪⎨⎧<<-=其他02121232x x .(2)当-1<x ≤1时,⎪⎪⎩⎪⎪⎨⎧<<-==其他01)1(821421)(),()|(2422|y x x x y x x f y x f x y f X X Y ⎪⎩⎪⎨⎧<<-=其他01)1(222y x x y ,特别, ⎪⎩⎪⎨⎧<<-==其他0191))3/1(1(2)31|(4|y y x y f X Y⎪⎩⎪⎨⎧<<=其他01914081y y ,⎪⎩⎪⎨⎧<<-==其他0141))2/1(1(2)21|(4|y y x y f X Y⎪⎩⎪⎨⎧<<=其他01411532y y .(3))21|41()21|1()21|41(=<-=<==≥X Y P X Y P X Y P1153215324141141=-=⎰⎰ydy ydy ,)21|43()21|1()21|43(=<-=<==≥X Y P X Y P X Y P157153214341=-=⎰ydy .12. 设随机变量(X , Y )的概率密度为⎩⎨⎧<<<=其他010 ,||1),(x x y y x f , 求条件概率密度f Y |X (y |x ),f X |Y (x |y ). 解: f (x ,y )的边缘密度为⎪⎩⎪⎨⎧<<=⎰-其他0101)(x dy x f x x X ⎩⎨⎧<<=其他0102y x ,⎪⎩⎪⎨⎧<<-=⎰其他0111)(1||y dx x f y Y ⎩⎨⎧<<--=其他011||1y y ,所以当0<x <1时,⎪⎩⎪⎨⎧<==其他0||21)(),()|(|x y xx f y x f x y f X X Y , 当|y |<1时,⎪⎩⎪⎨⎧<-==其他0||||11)(),()|(|x y y x f y x f x y f Y Y X , 13. (1)问第1题中的随机变量X 和Y 是否相互独立?(2)问第12题中的随机变量X 和Y 是否相互独立?(需说明理由) 解: (1)有放回抽样时, 由于ij =p i ⋅⋅p ⋅j , 所以X 和Y 独立. 不放回抽样时, 由于ij =p i ⋅⋅p ⋅j , 所以X 和Y 不独立.(2)由于当|y |<x , 0<x <1时, f X (x )⋅f Y (y )=2x (1-|y |)≠f (x , y )=1, 故X 和Y 不独立.14. 设X 和Y 是两个相互独立的随机变量, X 在(0, 1)上服从均匀分布, Y 的概率密度为⎪⎩⎪⎨⎧≤>=-00021)(2y y e y f y Y .(1)求X 和Y 的联合概率密度;(2)设含有a 的二次方程为a 2+2Xa +Y =0, 试求a 有实根的概率.解: (1)按已知X 的概率密度为⎩⎨⎧<<=其他0101)(x x f X .由于X 和Y 相互独立, 故(X , Y )的概率密度为⎪⎩⎪⎨⎧><<=⋅=-其他0,1021)()(),(2y x e y f x f y x f y Y X .(2)要使a 有实根, 必须方程a 2+2Xa +Y =0的判别式∆=X 2-Y ≥0,⎰⎰⎰---==≥-10202102)1(21)0(22dx e dy e dx Y X P x x y⎰⎰⎰∞--∞-----=-=02121022222121[211dx e dx e dx e x x x πππ 1445.0)]0()1([21=Φ-Φ-=π.15. 第1题中的随机变量X 和Y 是否相互独立. 解: 放回抽样的情况P (X =0, Y =0)=P (X =0)⋅P (Y =0)3625=P (X =0, Y =1)=P (X =0)⋅P (Y =1)365=P (X =1, Y =0)=P (X =1)⋅P (Y =0)3651210122=⋅=P (X =1, Y =1)=P (X =1)⋅P (Y =1)361122122=⋅=.在放回抽样的情况下, X 和Y 是独立的. 不放回抽样的情况:P (X =0, Y =0)66451191210=⋅=,P (X =0)651210==,P (X =0)=P (X =0, Y =0)+P (Y =0, X =1) 6511101121191210=⋅+⋅=,P (X =0)⋅P (Y =0)36256565=⨯=,P (X =0, Y =0)≠P (X =0)P (Y =0), 所以X 和Y 不独立.14. 设X , Y 是两个相互独立的随机变量, X 在(0, 1)上服从均匀分布. Y 的概率密度为⎪⎩⎪⎨⎧≤>=00021)(2y y e y f y Y .(1)求X 和Y 的联合密度;(2)设含有a 的二次方程为a 2+2Xa +Y =0,试求有实根的概率. 解: (1)X 的概率密度为⎩⎨⎧∈=其它0)1 ,0(1)(x x f X ,Y 的概率密度为⎪⎩⎪⎨⎧≤>=-00021)(2y y e y f y Y ,可见且知X , Y 相互独立, 于是(X , Y )的联合密度为⎪⎩⎪⎨⎧><<==-其它0,1021)()(),(2y x e y f x f y x f y Y X .(2)由于a 有实根, 从而判别式∆=4X 2-4Y ≥0, 即Y ≤X 2. 记}0,10|),{(2x y x y x D <<<<=, ⎰⎰=≤Ddxdy y x f X Y P ),(}{2⎰⎰⎰⎰⎰----=-==10010102022222121x xx y y dx e de dx dy e dxdx e x ⎰-⋅-=00222121ππ)5.08413.0(21)]2()1([21--=Φ-Φ-=ππ 1445.08555.013413.05066312.21=-=⨯-=.15. 进行打靶, 设弹着眯A (X , Y )的坐标X 和Y 相互独立, 且都服从N (0, 1)分布, 规定点A 落在区域D 1={(x , y )|x 2+y 2≤1}得2分; 点A 落在D 2={(x , y )|1≤x 2+y 2≤4}得1分; 点A 落在D 3={(x , y )|x 2+y 2>4}得0分, 以Z 记打靶的得分, 写出X , Y 的联合概率密度, 并求Z 的分布律.解: (1)因为X ~N (0, 1), Y ~N (0, 1), X 与Y 独立, 故(X , Y )的联合概率密度为22221),(y x e y x f +-=π(-∞<x <+∞, -∞<y <+∞).(2)Z 的可能取值为0, 1, 2.⎰⎰>++-=∈==421222221)),(()0(x x y x dxdy e D Y X A P Z P π⎰⎰≤++--=422222211x x y x dxdy e π2202022211--=-=⎰⎰e rdr e d r ππθ,⎰⎰≤+≤+-=∈==4122222221)),(()1(x x y x dxdy e D Y X A P Z P π22120212221----==⎰⎰e e rdr e d r ππθ,⎰⎰≤++-=∈==121222221)),(()2(x x y x dxdy e D Y X A P Z P π21201021212---==⎰⎰e rdr e d r ππθ,故得Z 的分布律为16. 设X 和Y 是相互独立的随机变量, 其概率密度分别为⎩⎨⎧≤>=-000)(x x e x f x X λλ, ⎩⎨⎧≤>=-000)(y y e y f y Y μμ, 其中λ>0, μ>0是常数, 引入随机变量⎩⎨⎧>≤=Y X YX Z 当当01.(1)求条件概率密度f X |Y (x |y ); (2)求Z 的分布律和分布函数. 解: (1)由X 和Y 相互独立, 故⎩⎨⎧>>=⋅=+-其他00 ,0)()(),()(y x e y f x f y x f y x Y X μλλμ.当y >0时,⎩⎨⎧≤>===-000)()(),()|(|x x e y f y f y x f y x f x X Y Y X λλ. (2)由于⎩⎨⎧>≤=Y X YX Z 当当01,且 μλλλλμμλμλ+===≤⎰⎰⎰+∞+-+∞+∞+-0)(0)()(dx e dydx eY X P x xy x ,μλμμλλ+=+-=≤-=>1)(1)(Y X P Y X P ,故Z 的分布律为Z 的分布函数为⎪⎩⎪⎨⎧≥<≤+<=111000)(z z z z F Z μλμ. 17. 设X 和Y 是两个相互独立的随机变量, 其概率密度分别为⎩⎨⎧<≤=其他0101)(x x f X , ⎩⎨⎧>=-其他00)(y e y f y Y , 求随机变量Z =X +Y 的概率密度.解: 由于X 和Y 是相互独立的, 故⎩⎨⎧><≤=⋅=-其他00 ,10)()(),(y x e y f x f y x f y Y X , 于是Z =X +Y 的概率密度为⎰+∞∞--⋅=dx x z f x f z f Y X Z )()()(⎪⎪⎩⎪⎪⎨⎧>-≤≤-=⎰⎰其他01)()(10)()(100z dxx z f x f z dx x z f x f Y X x YX ⎪⎪⎩⎪⎪⎨⎧>≤≤=⎰⎰----其他011010)(0)(z dxe z dx e x z x x z ⎪⎩⎪⎨⎧>-≤≤-=--其他01)1(101z e e z e zz .18. 设某种商品一周的需要量是一个随机变量, 其概率密度为⎩⎨⎧≤>=-000)(t t te t f t , 设各周的需要量是相互独立的, 试求: (1)两周需要量的概率密度; (2)三周需要量的概率密度.解: (1)设第一周需要量为X , 它是随机变量; 设第二周需要量为Y , 它是随机变量且与X 同分布, 其分布密度为⎩⎨⎧≤>=-000)(t t te t f t . Z =X +Y 表示两周需要的商品量, 由X 和Y 的独立性可知:⎩⎨⎧>>=--其它00,0),(y x ye xe y x f y x .因为z ≥0, 所以当z <0时, f z (z )=0; 当z >0时, 由和的概率公式知 ⎰∞+∞--=dy y f y z f z f Y X Z )()()(z yzy z e z dy ye ey z ----=⋅-=⎰6)(30)(, 所以 ⎪⎩⎪⎨⎧≤>=-0006)(3z z e z z f z Z .(2)设Z 表示前两周需要量, 其概率密度为⎪⎩⎪⎨⎧≤>=-0006)(3z z e z z f z Z ,设ξ表示第三周需要量, 其概率密度为:⎩⎨⎧≤>=-000)(x x xe x f x ξ,Z 与ξ相互独立, η=Z +ξ表示前三周需要量, 则因为η≥0, 所以u <0, f η(u )=0. 当u >0时 ⎰∞+∞--=dy y f y u f u f )()()(ξηdy ye e y u y uy u ---⋅-=⎰0)(3)(61u e u -=1205, 所以η的概率密度为⎪⎩⎪⎨⎧≤>=-00120)(5u u e u u f u η.19. 设随机变量(X , Y )的概率密度为⎪⎩⎪⎨⎧>>+=+-其他00,0)(21),()(y x e y x y x f y x .(1)问X 和Y 是否相互独立? (2)求Z =X +Y 的概率密度. 解: (1)X 的边缘密度为⎪⎩⎪⎨⎧<>+=⎰∞++-000)(21)(0)(x x dy e y x x f y x X⎪⎩⎪⎨⎧<>+=-000)1(21x x e x x ,同理Y 的边缘密度为⎪⎩⎪⎨⎧<>+=-000)1(21)(y y e y y f y Y .因为当x >0, y >0时,)()()1)(1(41)(21),()()(y f x f e y x e y x y x f Y X y x y x =++≠+=+-+-,所以X 与Y 不独立. (2)Z 的概率密度为z z x Z e z dx e x z x dx x z x f z f --+∞∞-=-+=-=⎰⎰2021)(21),()((z >0).当z <0时, f Z (z )=0, 所以⎪⎩⎪⎨⎧<>=-0021)(2z z e z z f z Z .20. 设X , Y 是相互独立的随机变量, 它们都服从正态分布N (0, σ 2), 试验证随机变量22Y X z +=具有概率密度⎪⎩⎪⎨⎧>≥=-其他0,0)(2222σσσz e z z f z Z ,称Z 服从参数为σ(σ>0)的瑞利(Rayleigh 分布.解: 因为X , Y 相互独立且均服从正态分布N (0, σ 2), 它们的概率密度分别为22221)(σσπx e x f -=, 22221)(σσπy e y f -= , σ>0,故X 和Y 的联合密度为2222221)()(),(σπσy x e y f x f y x f +-=⋅=.22Y X z +=的分布函数为⎰⎰≤+=≤+=≤=222),()()((z)22z y x Z dxdy y x f z Y X P z Z P F⎰⎰-=zd e d 022202221ρρπσθσρπ2222202211σσρρρσz z ed e---==⎰(z >0),当z ≤0时, F Z (z )=0.于是随机变量22Y X z +=的概率密度为⎪⎩⎪⎨⎧>≥==-其他00 ,0)()(2222σσσz e z dz z dF z f z Z Z .21. 设随机变量(X , Y )的概率密度为⎩⎨⎧+∞<<<<=+-其他00 ,10),()(y x be y x f y x . (1)试确定义常数b ;(2)求边缘概率密度f X (x ), f Y (y );(3)求函数U =max(X , Y )的分布函数. 解: (1)由10)(1=⎰⎰+∞+-dy be dx y x , 即1)1(1010=-=⎰⎰+∞--e b dy e dx e b y x ,得1111-=-=-e e e b .(2)⎪⎩⎪⎨⎧<<-=⎰∞++-其他0101)(0)(x dy e e e x f y x X⎪⎩⎪⎨⎧<<-=-其他0101x e e e x ,⎩⎨⎧≤>==-∞+∞-⎰000),()(y y e dx y x f x f y X . 显然X 与Y 独立.(3)⎪⎩⎪⎨⎧≥<≤--<=-1110)1(100)(x x e e e x x F x X⎩⎨⎧≤>-=-0001)(y y e x F y Y , 故U =max(X , Y )的分布函数为F U (u )=P (U ≤u )=P (max(X , Y )≤u ) =P (X ≤u , Y ≤u )=P (X ≤u )P (Y ≤u )⎪⎩⎪⎨⎧≥-<≤--<==--1110)1(100)()(2u eu e e e u u F u F uu Y X .22. 设某种型号的电子管的寿命(以小时计)近似地服从N (160, 202)分布. 随机地选取4只求其中没有一只寿命小于180小时的概率.解: 设X 1, X 2, X 3, X 4为4只电子管的寿命, 它们相互独立, 同分布, 其概率密度为:22202)160(2021)(⨯--⋅=t T et f π,⎰∞-⨯-==<18022202)160(20121)180(}180{dt t F X f X π ⎰∞--=-======1220160221du e u ut π令 8413.0)2060180(=-Φ=.设N =min{X 1, X 2, X 3, X 4}, 则P {N >180}=P {X 1>180, X 2>180, X 3>180, X 4>180} =P {X >180}4={1-p [X <180]}4 =(0.1587)4=0.00063.23. 对某种电子装置的输出测量了5次, 得到观察值X 1,X 2, X 3, X 4, X 5, 设它们是相互独立的随机变量且都服从参数σ=2的瑞种分布.(1)求Z =max{X 1, X 2, X 3, X 4, X 5}的分布函数; (2)求P (Z >4).解: 由20题知, X i (i =1, 2, ⋅⋅⋅ , 5)的概率密度均为⎪⎩⎪⎨⎧≥=-其他004)(82x e x x f x X ,分布函数为821)(x X e x F --=(x >0).(1) Z =max{X 1, X 2, X 3, X 4, X 5}的分布函数为 585m ax )1()]([)(2z e z F z F --== (z ≥0), 当z <0时, F max (z )=0.所以Z 的分布函数为⎩⎨⎧<≥-=-000)1()(58m ax 2z z e z F z .(2)P (Z >4)=1-P (Z ≤4)=1-F Z (4)5167.0)1(1)1(1525842=--=--=--e e .24. 设随机变量X , Y 相互独立, 且服从同一分布, 试证明 P (a <min{X , Y }≤b )=[P (X >a )]2-[P (X >b )]2 . 解: 因为X 与Y 相互独立且同分布, 故P (a <min{X , Y }≤b )=P (min{X , Y }≤b )-P (min{X , Y }≤a ) =1-P (min{X , Y }>b )-[1-P (min{X , Y }>a )] =P (min{X , Y }>a )-P (min{X , Y }>b ) =P (X >a , Y >a )-P (X >b , Y >b ) =P (X >a )P (Y >a )-P (X >b )P (Y >b ) =[P (X >a )]2-[P (Y >b )]2 .25. 设X , Y 是相互独立随机变量, 其分布律分别为 P (X =k )=p (k ) (k =0, 1, 2, ⋅⋅⋅ ), P (Y =r )=q (r ) (r =0, 1, 2, ⋅⋅⋅ ). 证明随机变量Z =X +Y 的分布律为∑=-==ik k i q k p i Z P 0)()()( (i =0, 1, 2, ⋅⋅⋅ ),证明: 因为X 与Y 独立, 且X 与Y 的分布律分别为 P (X =k )=p (k ) (k =0, 1, 2, ⋅⋅⋅ ), P (Y =r )=q (r ) (r =0, 1, 2, ⋅⋅⋅ ), 故Z =X +Y 的分布律为∑==+===ik i Y X k X P i Z P 0) ,()( ∑=-===i k k i Y k X P 0) ,( ∑=-===i k k i Y P k X P 0)()( ∑=-=i k k i q k p 0)()( (i =0, 1, 2, ⋅⋅⋅ ).26. 设X , Y 是相互独立的随机变量, X ~π(λ1), Y ~π(λ2), 证明Z =X +Y ~π(λ1+λ2).证明: 因为X , Y 分别服从参数为λ1, λ2的泊松分布, 故X , Y 的分布律分别为 1!)(1λλ-==e k k X P k (λ1>0),2!)(2λλ-==e r r Y P r (λ2>0),由25题结论知, Z =X +Y 的分布律为 ∑=-====ik k i Y P k X P i Z P 0)()()(∑=----⋅=ik ki k e k i e k 02121)!(!λλλλ∑=-+-⋅-=i k k i k k i k i i e 021)()!(!!!21λλλλ i i e )(!21)(21λλλλ+=+-(i =0, 1, 2, ⋅⋅⋅ ), 即Z =X +Y 服从参数为λ1+λ2的泊松分布.27. 设X , Y 是相互独立的随机变量, X ~b (n 1, p ), Y ~b (n 2, p ), 证明Z =X +Y ~b (n 1+n 2, p ).证明: Z 的可能取值为0, 1, 2, ⋅⋅⋅ , 2n , 因为 {Z =i }={X +Y =i }={X =0, Y =0}⋃{X =1, Y =i -1}⋃ ⋅⋅⋅ ⋃{X =i , Y =0}, 由于上述并中各事件互不相容, 且X , Y 独立, 则∑=-====ik k i Y k X P i Z P 0) ,()(∑=-===ik k i Y P k X P 0)()(∑=+-----⋅-=ik k i n ki k i n k n k k n p p C p p C 02211)1()1( ∑=--+⋅-=ik ki n k n k n n i C C p p 02121)1( in i i n n p p C -+-=2)1(21(i =0, 1, 2, ⋅⋅⋅ , n 1+n 2), 所以 Z =X +Y ~b (n 1+n 2, p ),即Z =X +Y 服从参数为2n , p 的二项分布.提示:上述计算过程中用到了公式i n n ik k i n k n C C C21210+=-=⋅∑,这可由比较恒等式2121)1()1()1(n n n n x x x ++=++两边x i 的系数得到.28. 设随机变量(X , Y )的分布律为(1)求P {X =2|Y =2), P (Y =3|X =0); (2)求V =max{X , Y }的分布律; (3)求U =min{X , Y }的分布律; (4)求W =V +U 的分布律. 解: (1)由条件概率公式)2()2,2()2|2(======Y P Y X P Y X P08.005.005.005.003.001.005.0+++++=2.025.005.0==.同理 31)0|3(===X Y P .(2)变量V =max{X , Y }.显然V 是一随机变量, 其取值为V : 0, 1, 2, 3, 4, 5. P (V =0)=P (X =0, Y =0)=0,P (V =1)=P (X =1, Y =0)+P (X =1, Y =1)+P (X =0, Y =1) =0.01+0.02+0.01=0.04,P (V =2)=P (X =2, Y =0)+P (X =2, Y =1)+P (X =2, Y =2) +P (Y =2, X =0)+P (Y =2, X =1)=0.03+0.04+0.05+0.01+0.03=0.16, P (V =3)=P (X =3, Y =0)+P (X =3, Y =1) +P (X =3, Y =2)+P (X =3, Y =3)+P (Y =3, X =0)+P (Y =3, X =1)+P (Y =3, X =2), =0.05+0.05+0.05+0.06+0.01+0.02+0.04=0.28 P (V =4)=P (X =4, Y =0)+P (X =4, Y =1) +P (X =4, Y =2)+P (X =4, Y =3) =0.07+0.06+0.05+0.06=0.24, P (V =5)=P (X =5, Y =0)+ ⋅⋅⋅ +P (X =5, Y =3) =0.09+0.08+0.06+0.05=0.28. (3)显然U 的取值为0, 1, 2, 3.P (U =0)=P (X =0, Y =0)+ ⋅⋅⋅ +P (X =0, Y =3)+P (Y =0, X =1)+ ⋅⋅⋅ +P (Y =0, X =5)=0.28. 同理 P (U =1)=0.30, P (U =2)=0.25, P (U =3)=0.17. (4)W =V +U 的取值为0, 1, ⋅⋅⋅ , 8. P (W =0)=P (V =0, U =0)=0,P (W =1)=P (V =0, U =1)+P (V =1, U =0). 因为V =max{X , Y }=0又U =min{X , Y }=1 不可能上式中的P (V =0, U =1)=0,又 P (V =1, U =0)=P (X =1, Y =0)+P (X =0, Y =1)=0.2, 故 P (W =1)=P (V =0, U =1)+P (V =1, U =0)=0.2,P(W=2)=P(V+U=2)=P(V=2, U=0)+P(V=1,U=1) =P(X=2 Y=0)+P(X=0,Y=2)+P(X=1,Y=1)=0.03+0.01+0.02=0.06,P(W=3)=P(V+U=3)=P(V=3, U=0)+P(V=2,U=1) = P(X=3,Y=0)+P(X=0,Y=3)+P(X=2,Y=1)+P(X=1,Y=2)=0.05+0.01+0.04+0.03=0.13, P(W=4)=P(V=4, U=0)+P(V=3,U=1)+P(V=2,U=2) =P(X=4,Y=0)+ P(X=3,Y=1)+P(X=1,Y=3)+P(X=2,Y=2 =0.19,P(W=5)=P(V+U=5)=P(V=5, U=0)+P(V=5,U=1)+P(V=3,U=2=P(X=5 Y=0)+P(X=5,Y=1)+P(X=3,Y=2)+P(X=2,Y=3) =0.24,P(W=6)=P(V+U=6)=P(V=5, U=1)+P(V=4,U=2) +P(V=3,U=3)=P(X=5,Y=1)+P(X=4,Y=2)+P(X=3,Y=3)=0.19,P(W=7)=P(V+U=7)=P(V=5, U=2)+P(V=4,U=3) =P(V=5,U=2)+P(X=4,Y=3)=0.6+0.6=0.12, P(W=8)=P(V+U=8)=P(V=5, U=3)+P(X=5,Y=3)=0.05.。
概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。
第三章-多维随机变量及其分布--习题应用统计专业学位研究生入学统一考试专业课程考试的考试科目为《统计学》,包括统计学、概率论两部分内容,主要要求考生掌握数据收集和处理的基本方法、数据分析的基本原理和方法、基本的概率论知识以及运用统计方法分析数据和解释数据的基本能力。
一、考试性质统计学是全国应用统计硕士入学初试考试的专业基础课程。
二、考查目标全国硕士研究生入学统一考试应用统计硕士专业学位《统计学》考试是为高等院校和科研院所招收应用统计硕士生而设置的具有选拔性质的考试科目。
其目的是科学、公平、有效地测试考生是否具备攻读应用统计专业硕士所必须的基本素质、一般能力和培养潜能,以利用选拔具有发展潜力的优秀人才入学,为国家的经济建设培养具有良好职业道德、法制观念和国际视野、具有较强分析与解决实际问题能力的高层次、应用型、复合型的统计专业人才。
考试要求是测试考生掌握数据处收集、处理和分析的一些基本统计方法。
具体来说,要求考生:1.掌握数据收集和处理的基本分方法;2.掌握数据分析的金发原理和方法;3.掌握了基本的概率论知识;4.具有运用统计方法分析数据和解释数据的基本能力。
三、考查内容(一)统计学1.调查的组织和实施;2.概率抽样与非概率抽样;3.数据的预处理;4.用图表展示定性数据;5.用图表展示定量数据;6.用统计量描述数据的水平:平均数、中位数、分位数和众数;7.用统计量描述数据的差异:极差、标准差、样本方差;8.参数估计的基本原理;9.一个总体和两个总体参数的区间估计;10.样本量的确定;11.假设检验的基本原理;12.一个总体和两个总体参数的检验;13.方差分析的基本原理;14.单因子和双因子方差分析的实现和结果解释;15.变量间的关系;相关关系和函数关系的差别;16.一元线性回归的估计和检验;17.用残差检验模型的假定;18.多元线性回归模型;19.多元线性回归的拟合优度和显著性检验;20.多重共线性现象;21.时间序列的组成要素;22.时间序列的预测方法。
《概率论与数理统计》第三单元补充题一、填空题1.设随机变量21,X X 相互独立,分布律分别为2131611011pX -,3231102p X ,则==}{21X X P ,==}0{21X X P ,},max{21X X M =的分布律为,},min{21X X N =的分布律为2.设X 与Y 为两个随机变量,且73}0,0{=≥≥Y X P ,74}0{}0{=≥=≥Y P X P ,则=≥}0),{max(Y X P ,=<}0),{min(Y X P3.设21,X X 的联合分布律为且满足1}0{21==X X P , 则==}{21X X P ,===}1/0{21X X P4.已知,X Y 的分布律为6113101ab XY 且{0}X =与{1}X Y +=独立,则a =________,b =__________5.随机变量Y X ,服从同分布,X 的密度函数为⎪⎩⎪⎨⎧<<=其它02083)(2x xx f ,设}{a X A >= 与}{a Y B >=相互独立,且43)(=⋃B A P ,则a =___________ 6.随机变量Y X ,相互独立且服从N (0,1)分布,Z =X +Y 的概率密度为__________,Z =X -Y 的概率密度为__________7.用二维连续型随机变量),(Y X 的联合分布函数),(y x F 表示下述概率 (1)=<≤≤},{c Y b X a P(2)=<<},{b Y b X P(3)=≤≤}0{a Y P(4)=>≥},{b Y a X P二、选择题1.设随机变量X 与Y 相互独立,其分布律分别为212110PX ,212110P Y ,则以下结论正确的是( )Y X A =).( 1}{).(==Y X P B21}{).(==Y X P C ).(D 以上都不正确 2.随机变量X 、Y 独立,且0}1{}1{>====p Y P X P ,01}0{}0{>-====p Y P X P ,令⎩⎨⎧++=为奇数为偶数Y X Y X Z 01,要使X 与Z 独立,则P 值为( )32).(41).(21).(31).(D C B A3.二维随机变量(X ,Y )具有下述联合概率密度,X 与Y 是相互独立的,为( )⎪⎩⎪⎨⎧≤≤≤≤+=其它20,103),().(2y x xyx y x f A⎩⎨⎧<<<<=其它010,106),().(2y x y x y x f B⎪⎩⎪⎨⎧<<-<<=其它0,1023),().(xy x x x y x f C⎪⎩⎪⎨⎧><<=-其它,2021),().(y x ey x f D y4.设随机变量⎥⎥⎦⎤⎢⎢⎣⎡-412141101~i X (i =1,2),且满足1}0{21==X X P ,则)(}{21==X X P1).(41).(21).(0).(D C B A5.随机变量X ,Y 相互独立,)(x F X 和)(y F Y 分别是X ,Y 的分布函数,令),min(Y X Z =,则随机变量Z 的分布函数)(z F Z 为( ))}(),(min{).(z F z F A Y X )](1)][(1[1).(z F z F B Y X ---)()().(z F z F C Y X )()().(z F z F D Y X 或6.随机变量X ,Y 相互独立,且),(~211σμN X ,),(~222σμN Y ,则Y X Z +=仍具正态分布,且有( )),(~).(22211σσμ+N Z A ),(~).(2121σσμμ+N Z B ),(~).(222121σσμμ+N Z C ),(~).(222121σσμμ++N Z D三、问答题1.事件},{y Y x X ≤≤表示事件}{x X ≤与}{y Y ≤的积事件,为什么},{y Y x X P ≤≤不一定等于}{}{y Y P x X P ≤⋅≤?2.二维随机变量(X ,Y )的联合分布、边缘分布及条件分布之间存在什么样的关系?3.多维随机变量的边缘分布与一维随机变量的分布之间有什么联系与区别?4.两个随机变量相互独立的概念与两个事件相互独立是否相同?为什么?5.两个相互独立的服从正态分布的随机变量1X 与2X 之和仍是正态随机变量,那么它们的线性组合21bX aX ±呢? 四、计算题1.设二维随机变量(X ,Y )在矩形区域}10,20|),{(≤≤≤≤y x y x G 上服从均匀分布,记⎩⎨⎧>≤=YX YX U 10,⎩⎨⎧>≤=Y X Y X V 2120,求U 、V 的联合分布律2.设(X ,Y )的概率密度为 ⎪⎩⎪⎨⎧>>=+-其它0)0,0(),()43(y x Ce y x y x ϕ求(1)常数C ,(2))20,10(≤<≤<Y X P , (3)(X ,Y )的分布函数 ),(y x F3.设(X 、Y )的分布函数为)2)(arctan 2(arctan 1),(2πππ++=y x y x F ,),(+∞<<-∞y x求:(1)X ,Y 的边缘分布函数 (,)(y F x F Y X )(,)(y F x F Y X (2)X 、Y 的边缘分布密度函数 (,)(yf x f Y X )(,)(y f x f Y X4.袋中装有编号为-1,1,1,2的4个球,现从中无放回随机取球两次,每次取一个,以 21,X X 分别表示第一次和第二次取到的球的号码,求 (1)),(21X X 的联合分布律(2)关于 21,X X 和 的边缘分布律,并判别21,X X 和是否相互独立。
第三章 多维随机变量及其分布答案 一、填空题(每空3分)1.设二维随机变量(X,Y)的联合分布函数为22213,0,0(1)(1)(1)(,)0,A x y x y x y F x y ⎧+-≥≥⎪++++=⎨⎪⎩其他,则A=_____1____. 2.若二维随机变量(X,Y)的分布函数为F(x,y)则随机点落在矩形区域[x 1《<x<x 2,y 1<y<y 2]内的概率为___ ____ _(,)(,)(,)(,)22211112F x y F x y F x y F x y -+-.3.(X,Y)的联合分布率由下表给出,则α,β应满足的条件是13αβ+=;当=α 29 ,=β 19 时X 与Y 相互独立.4.设二维随机变量的密度函数2,01,02(,)30,xyx x y f x y ⎧+≤≤≤≤⎪=⎨⎪⎩其他,则(1)P X Y +≥=__6572____. 5.设随机变量X,Y 同分布,X 的密度函数为23,02(,)80,x x f x y ⎧≤≤⎪=⎨⎪⎩其他,设A=(X>b )与B =(Y>b )相互独立,且3()4P A B ⋃=,则6.在区间(0,1)内随机取两个数,则事件“两数之积大于14”的概率为__ 31ln 444- .7. 设X 和Y 为两个随机变量,且34(0,0),(0)(0)77P X Y P X P Y ≥≥=≥=≥=,则(max{,}0)P X Y ≥=_57. 8.随机变量(,)(0,0,1,1,0)X Y N ,则D(3X-2Y)= _ 13 .9.设()25,()36,0.4XY D X D Y ρ===,则()D X Y += 85 ,()D X Y -= 37 .10.设随机变量2(3),()()0,()4,()16,Z aX Y E X E Y D X D Y =+====0.5XY ρ=-,则min ()E Z = 108 . 二、单项选择题(每题4分)1.下列函数可以作为二维分布函数的是( B ).A .⎩⎨⎧>+=.,0,8.0,1),(其他y x y x FB .⎪⎩⎪⎨⎧>>⎰⎰=--.,0,0,0,),(00其他y x dsdt ey x F y x t s C . ⎰⎰=∞-∞---y x ts dsdt ey x F ),( D .⎪⎩⎪⎨⎧>>=--.,0,0,0,),(其他y x ey x F y x2.设平面区域D 由曲线1y x=及直线20,1,x y y e ===围成,二维随机变量在区域D 上服从均匀分布,则(X,Y)关于Y 的边缘密度函数在y=2处的值为(C ).A .12B .13C .14D .12-3.若(X,Y)服从二维均匀分布,则( B ).A .随机变量X,Y 都服从一维均匀分布B .随机变量X,Y 不一定服从一维均匀分布C .随机变量X,Y 一定都服从一维均匀分布D .随机变量X+Y 服从一维均匀分布 4.若D(X+Y)=D(X)+D(Y),则( A ).A .X 与Y 不相关B .(,)()()X Y F x y F x F y =⋅C .X 与Y 相互独立D .1XY ρ=-5.在[0,]π上均匀地任取两数X 和Y ,则{cos()0}P X Y +<=( D ).A .1B .12C . 23D .34三、计算题(第一题20分,第二题24分)1.已知2(),(),(1,2,3),a bP X k P Y k k X Y k k ===-==与相互独立.(1)确定a,b 的值; (2)求(X,Y)的联合分布列; (3)求X-Y 的概率分布.解:(1)由正则性()1kP X k ==∑有,612311a a a a ++=⇒= ()1kP Y k =-=∑有,3614949b b b b ++=⇒=(2)(X,Y)的联合分布律为(3) X-Y 的概率分布为2. 设随机变量(X,Y)的密度函数为(34),0,0(,)0,x y ke x y p x y -+⎧>>=⎨⎩其他(1)确定常数k ; (2)求(X,Y)的分布函数;(3)求(01,02)P X Y <≤<≤.解:(1)∵0(34)01x y ke dx dy ∞∞-+⎰=⎰∴400011433()()43||112y y x x e dx k e e dy k k e ∞-∞∞∞---=--⎰⋅==⎰∴k=12(2)143(34)(,)1212(1)(1)1200y x y xu v F x y e dudv ee ---+==⋅--⎰⎰ 43(1)(1)0,0yxeex y --=-->>∴34(1)(1),0,00,(,)x y ee x y F x y ⎧--⎪-->>⎨⎪⎩=其他(3)(01,02)(1,2)(0,0)(1,0)(0,2)P X Y F F F F <≤<≤=+--38(1)(1)ee --=--3.设随机变量X,Y 相互独立,且各自的密度函数为121,0()20,0x X e x p x x ⎧≥⎪=⎨⎪<⎩,131,0()30,0x Y e y p y y ⎧≥⎪=⎨⎪<⎩,求Z=X+Y 的密度函数 解:Z=X+Y 的密度函数()()()Z XY p z px p z x dx ∞-∞=-⎰∵()X p x 在x ≥0时有非零值,()Y p z x -在z-x ≥0即x ≤z 时有非零值 ∴()()X Y p x p z x -在0≤x ≤z 时有非零值336362000111()[]|236z zz x z x z x xzZ p z e e dx e e dx e e -------=⋅==-⎰⎰36(1)z z e e --=--当z<0时,()0Z p z =所以Z=X+Y 的密度函数为36(1),0()0,0z z Z e e z p z z --⎧⎪--≥=⎨⎪<⎩4.设随机变量X,Y 的联合密度函数为3412,0,0(,)0,x y e x y p x y --⎧>>=⎨⎩其他,分别求下列概率密度函数.(1) {,}M Max X Y =; (2) {,}N Min X Y =.解:(1)因为3430()(,)123x y x X p x p x y dy e dy e ∞∞----∞===⎰⎰3440()(,)124x y y Y p y p x y dx e dy e ∞∞----∞===⎰⎰所以(,)()()X Y p x y p x p y =即X 与Y 独立. 所以当z<0时,()0M F z =当z ≥0时,()()(,)()()M F z P M z P X z Y z P X z P Y z =≤=≤≤=≤≤34()()(1)(1)z z X Y F z F z e e --==--所以34430,0()3(1)4(1),0M z z z z z p z e e e e z ----<⎧=⎨-+-≥⎩3470,0347,0z z zz e e e z ---<⎧=⎨+-≥⎩ (2) 当z<0时,()0N F z =当z ≥0时,()()(,)1()()N F z P N z P X z Y z P X z P Y z =>=>>=->>7z e -=所以70,0()7,0M z z p z e z -<⎧=⎨≥⎩3470,0347,0zz zz e e e z ---<⎧=⎨+-≥⎩5.设随机变量X,Y 相互独立,其密度函数分别为2,01()0,X x x p x ≤≤⎧=⎨⎩其他,(5),5()0,y Y e y p y --⎧>=⎨⎩其他,求XY ρ.解:因为X,Y 相互独立,则Cov(X,Y)=E(XY)-E(X)E(Y)=0 所以0XY ρ=6.设随机变量(X,Y)的联合密度函数分别为3,01,0(,)0,x x y xp x y <<<<⎧=⎨⎩其他,求X和Y 的边际密度函数.解:20()(,)33,01xX p x p x y dy xdy x x ∞-∞===<<⎰⎰1223()(,)3(1),012Y yp y p x y dx xdx y x y ∞-∞===-<<⎰⎰ 四、证明题.1.已知二维随机变量(X,Y)的联合密度函数分布列如下表,试验证X 与Y 不相关,但X 与Y 不独立.证明:因为E(X)=-1×0.375+0×0.25+1×0.375=0 E(Y)=-1×0.375+0×0.25+1×0.375=0E(XY)=-1×0.25+0×0. 5+1×0.25=0所以E(XY)= E(X) E(Y) 即X 与Y 不相关.又因为P(X=1,Y=1)=0.125,P(X=1)=0.375,P(Y=1)=0.375 P(X=1,Y=1)≠P(X=1) P(Y=1) 所以X 与Y 不独立.2.设随机变量(X,Y)满足()()0,()()1,(,)E X E Y D X D Y Cov X Y ρ=====,证明22(max{,})1E X Y ≤证明:因为()()0,()()1,(,)E X E Y D X D Y Cov X Y ρ===== 所以2222()()()1,()()()1E X D X E X E Y D Y E Y =+==+= ()(,)()()E XY Cov X Y E X E Y ρ=+=2222221max(,)[||]2X Y X Y X Y =++-因所以2222222211(max(,))[()()(||)1(||)22E X Y E X E Y E X Y E X Y =++-=+-由柯西施瓦兹不等式有222()()()E XY E X E Y ≤所以22221(max(,))1(||)12E X Y E X Y =+-≤+又因为22222(||)(2)()()2()22E X Y E X Y XY E X E Y E XY ρ+=++=++=+ 22222(||)(2)()()2()22E X Y E X Y XY E X E Y E XY ρ-=+-=+-=-所以22(max(,))11E X Y =≤=+ 3.设二维随机变量),Y X (的联合概率密度为:1(1),1,1(,)40,xy x y p x y ⎧+<<⎪=⎨⎪⎩其他证明X 与Y 不独立,而2X 与2Y 相互独立.证明:因为1111()(,)(1),1142X p x p x y dy xy dy x ∞-∞-==+=-<<⎰⎰ 1111()(,)(1),1142Y p y p x y dx xy dx y ∞-∞-==+=-<<⎰⎰ 所以(,)()()X Y p x y p x p y ≠ 即X 与Y 不独立. 设22,U X V Y ==则22(,)(,)(F u v P X u Y v P X Y =≤≤=≤≤≤≤所以当0,0(,)0u v F u v <<=时,;当111111,1(,)(1)14u v F u v xy dxdy --≥≥=+=⎰⎰时,;当1111,01(,)(1)u v F u v xy dxdy -><<=+=⎰时,;当11101,1(,)(1)4u v F u v xy dxdy <<>=+=⎰时,当01,01(,)(1)u v F u v xy dxdy ≤<≤<=+=时,;所以1,0101,1(,)01,011,1,10,0,0u v u v F u v u v u v u v ⎧><<⎪<<>⎪=≤<≤<≥≥⎪⎪<<⎩所以0,(,)1,01p u v u v ⎧⎪=≤<≤<其他所以10()1U p u v ==≤<10()1V p v du u ==≤<故()()(,)U V p u p v p u v =所以U 与V 独立,即2X 与2Y 相互独立.。
第三章 多维随机变量及其分布 作业1.若对于所有y x ,有 ,则称随机变量X 和Y 是相互独立的.2.设随机变量X 和Y 是相互独立的,X 的密度函数∞<<-∞=-x e x f x ,21)(212π,Y 的密度函数⎩⎨⎧<≥=-0,00,)(2y y e y f y ,则),(Y X 的联合密度函数),(y x f = 。
3.已知随机变量)4,7(~,)4,9(~N Y N X ,且X 与Y 是相互独立,则Y X Z +=的概率密度函数)(z f Z = 。
4.设),(Y X 为二维随机变量,试用联合分布函数),(y x F 表示概率},{y Y x X P >>。
5.设随机变量X ,Y 是相互独立,其边缘密度函数与边缘分布函数分别为)(,)(y f x f Y X 与)(,)(y F x F Y X ,则},min{Y X N =的分布密度函数)(z f Z = 。
6.设)(),(21y f x f 是两个概率密度函数,则仅当函数),(y x R 满足条件 时,函数),()()(),(21y x R y f x f y x f +=才能成为概率密度函数.7.设相互独立的两个随机变量Y X ,具有同一分布律,且X 的分布律为21}1{}0{====X P X P ,则随机变量},max{Y X Z =的分布律为 . 8.设二维随机变量),(Y X 的密度函数为⎪⎩⎪⎨⎧≤≤≤≤=其它,020,10,21),(y x y x f ,则X 与Y 中至少有一个大于21的概率为 。
9.在区间(0,1)中随机地取两个数,则事件:“两数之积大于41”的概率为 。
10.设X 和Y 为两个随机变量,且73}0,0{=≥≥Y X P ,74}0{}0{=≥=≥Y P X P ,则}0},{max{≥Y X P = .11.设平面区域D 由曲线xy 1=及直线2,1,0e y y x ===所围成,二维随机变量),(Y X 在区域D 上服从均匀分布,则),(Y X 关于Y 的边缘概率密度在2=y 处的值为 。
第三章 多维随机变量及其分布 习题1§3.1 二维随机变量的概率分布一、填空题1. 设(Y X ,)的分布函数为 ⎩⎨⎧≥≥+--=----其它,,,),( 0003331y x y x F y x y x ,则 (Y X ,)的联合概率密度),(y x f = ;2设随机变量(Y X ,)的分布函数为 )3(2(y arctg C xarctg B A y x F ++=)),(, 则A = ,B = ,C = ,(0≠A );3. 用),(Y X 的联合分布函数),(y x F 表示概率),(c Y b X a P ≤≤<= ),(),(c a F c b F -;4.设),(Y X 在区域G 上服从均匀分布,G 为y x =及2y x =所围成的区域,),(Y X 的概率密度为5. 设 (Y X ,) 联合密度为⎪⎩⎪⎨⎧>>=--其它,),( ,00 ,0y x Aey x f yx ,则系数A = ; 6. 设二维随机变量(Y X ,)的联合概率密度为()4,01,01,0,xy x y f x y <<<<⎧=⎨⎩其它,则{}P X Y == ;7.设二维随机变量(,)X Y 的概率密度为()22,1,,0,.cx y x y f x y ⎧≤≤=⎨⎩其它,则c= 。
二、选择题1.考虑抛掷一枚硬币和一颗骰子,用X 表示抛掷硬币出现正面的次数,Y 表示抛掷骰子出现的点数,则(,)X Y 所有可能取的值为 ( )(A )12对; (B ) 6对; (C ) 8对; (D ) 4对. 2.设二维随机向量(X ,Y )的概率密度为1,01,01,(,)0,x y f x y ≤≤≤≤⎧=⎨⎩其它, 则概率(0.5,0.6)P X Y <<= ( )(A )0.5; (B ) 0.3; (C ) 0.875; (D ) 0.4.3. 设)()与(x F x F 21分别为随机变量1X 和2X 的分布函数, 为使)()(x bF x aF x F 21)(-=是某一随机变量X 的分布函数, 在下列给定的各组数值中应取( )32221313() ; (B) ; (C) ; (D) .55332222A a b a b a b a b ==-===-===-,,,,4. 设随机变量i X 的分布律为(1 2)i =,,满足====)(,1)0(2121X X P X X P 则(A)(A) 0; (B) 1/4; (C) 1/2; (D) 1.5. 如下四个二元函数中哪个可以作为连续型随机变量的联合概率密度函数( )(A )()cos ,,01,,22x x y f x y ππ⎧-≤≤≤≤⎪=⎨⎪⎩其它 (B )()1cos ,,0,,2220x x y f x y ππ⎧-≤≤≤≤⎪=⎨⎪⎩其它(C )()cos ,0,01,,0x x y f x y π≤≤≤≤⎧=⎨⎩其它(D )()1cos ,0,0,,20x x y f x y π⎧≤≤≤≤⎪=⎨⎪⎩其它6.则下列各式正确的是( )(A )X=Y ; (B )P{X=Y}=0 ; (C)P{X=Y}=1/2 ; (D)P{X=Y}=1.三、计算下列各题1. 已知随机变量Y X 和的联合密度为⎩⎨⎧≤≤≤≤=其它,,,),( 01010 4y x xy y x f , 求Y X 和的联合分布函数),(y x F 。
第三章 多维随机变量及其分布 作业
1.若对于所有y x ,有 ,则称随机变量X 和Y 是相互独立的.
2.设随机变量X 和Y 是相互独立的,X 的密度函数∞<<-∞=-x e x f x ,21
)(212
π,Y 的
密度函数⎩⎨⎧<≥=-0
,00,)(2y y e y f y ,则),(Y X 的联合密度函数),(y x f = .
3.已知随机变量)4,7(~,)4,9(~N Y N X ,且X 与Y 是相互独立,则Y X Z +=的概率密度函数)(z f Z = .
4.设),(Y X 为二维随机变量,试用联合分布函数),(y x F 表示概率},{y Y x X P >>.
5.设随机变量X ,Y 是相互独立,其边缘密度函数与边缘分布函数分别为)(,)(y f x f Y X 与)(,)(y F x F Y X ,则},min{Y X N =的分布密度函数)(z f Z = .
6.设)(),(21y f x f 是两个概率密度函数,则仅当函数),(y x R 满足条件 时,函数),()()(),(21y x R y f x f y x f +=才能成为概率密度函数.
7.设相互独立的两个随机变量Y X ,具有同一分布律,且X 的分布律为
2
1}1{}0{=
===X P X P ,则随机变量},max{Y X Z =的分布律为 . 8.设二维随机变量),(Y X 的密度函数为⎪⎩
⎪⎨⎧≤≤≤≤=其它,020,10,21),(y x y x f ,则X 与Y 中至少有一个大于2
1的概率为 . 9.在区间(0,1)中随机地取两个数,则事件:“两数之积大于
4
1”的概率为 . 10.设X 和Y 为两个随机变量,且73}0,0{=≥≥Y X P ,74}0{}0{=≥=≥Y P X P ,则}0},{max{≥Y X P = .
11.设平面区域D 由曲线x
y 1=及直线2,1,0e y y x ===所围成,二维随机变量),(Y X 在区域D 上服从均匀分布,则),(Y X 关于Y 的边缘概率密度在2=y 处的值为 .
参考答案
1.}{}{},{y Y P x X P y Y x X P ≤⋅≤=≤≤(由随机变量的独立性的定义可知)
2.⎪⎩
⎪⎨⎧≥∞<<-∞=--其它,00,,21),(22y x e y x f y x π(由连续型随机变量的独立性可知) 3.∞<<-∞--z e z ,41
16)16(2
π 4.),(),(),(1y x F x F y F ++∞-+∞-
5.))(1)(())(1)(()(z F z f z F z f z f X Y Y X N -+-=
6.⎰⎰+∞∞-+∞
∞-=-≥0),()()(),(21dxdy y x R y f x f y x R 且
7.4/3}1{,4/1}0{====Z P Z P 8.
8
7 9.4ln 4143- 10.75 11.41。