20172018学年贵州省黔南州高一(上)期末数学试卷
- 格式:doc
- 大小:284.00 KB
- 文档页数:13
2017-2018学年上学期期末考试 高中一年级 数学 参考答案一、选择题二、填空题13. 1314. {}6,5,2- 15.55-16. {}1,0,1-三、解答题17.解:{}1A aa=-,,{}2,B b =,.................................2分 (Ⅰ)若2a =,则{}12A =,,A B=∴11b a =-=.若12a -=,则3a =,{}23A =,,∴3b =.综上,b的值为1或3.......................................5分 (Ⅱ)∵{|24}C x x =<<,,A C C A C=∴⊆,.................................7分 ∴24,214a a <<⎧⎨<-<⎩∴34a <<. ∴a的取值范围是(3,4).......................................10分 18.解:(I)直线BC的斜率32141BC k +==+.∴BC边上的高线斜率1-=k,........................... ......3分∴BC边上的高线方程为:()23y x-=-+即:10x y++=,......................... ..............6分(II) )2,1(),3,4(--CB由)2,1(),3,4(--CB得直线BC的方程为:10x y--=........................... ......9分A∴到直线BC的距离d==1152ABC S ∆∴=⨯=........................................12分19.解:根据上表销售单价每增加1元日均销售量就减少40桶,设在进价基础上增加x 元后,日均销售利润为y 元,而在此情况下的日均销售量就为()48040152040x x--=-,.......................3分 由于x >,且520x ->,即0x <<,.......................................6分于是,可得()520y x =-240522,x xx =-+-<<.......................9分 易知,当6.5x =时,y有最大值,所以,只需将销售单价定为11.5元,就可获得最大的利润.......................12分 20.证明(Ⅰ)CDEFABCD 平面平面⊥,CDCDEF ABCD =平面平面 ,在正方形CDEF中,ED DC ⊥∴ABCDED 平面⊥,ED BC∴⊥.................................2分取DC的中点G连接BG,12DG DC =,在四边形ABCD中,//,AB DC 12AB DC =,ABGD四边形∴为平行四边形,所以,点B在以DC为直径的圆上,所以DB BC⊥,............................4分 又ED BD D=,所以BBC 平面⊥,......................................6分 (Ⅱ)如图,取DC的中点G,连接AG,在DC上取点P使13DP DC =,连接NP13D ND P D ED C ==,//PN EC ∴,//PN BCE∴面,................8分连接MP,23DM DP G DC DA DG ∴==为中点,,//MP AG ∴.又//,,AB CG AB CG ABCG=∴为平行四边形,//AG BC∴,//MP BC∴,//MP BCE∴面,.................................10分 又MP NP P=,MNP BCE ∴平面//平面. MNPMN 平面⊂ ,所以MN//平面B........................................12分21.解:(Ⅰ)当3m =时, f(x)为R 上的奇函数。
2017—2018学年度第一学期期末考试数学试卷考试形式:考 试题号 一 二 三 总分 得分一、选择题:本大题共10个小题,每小题4分,共40分,请将正确答案的选项字母填入答题卡。
题号 12345678910答案1、下列关系式中正确的是( );A 、0={0}B 、0⊆{0}C 、0∈{0}D 、0∈φ 2、{菱形}∩{矩形}应是( );A 、{正方形}B 、{矩形}C 、{平行四边形}D 、{菱形} 3、与点(-2,-3)关于y 轴对称的点的坐标是( ); A 、(-2,3) B 、(2,-3) C 、(2,3) D 、(-2,-3)4、设全集V={0,1,2,3,4,5,6},集合A={2,3,4,5,6}则A C V =( );A 、{0,2,3,4,5,6}B 、{2,3,4,5,6}C 、{0,1}D 、φ 5、集合{x|2<x ≤4}表示的下列区间( ); A 、(2,4) B 、[2,4) C 、[2,4] D 、(2,4] 6、函数f(x)=42-x 的定义域是( ); A 、(-∞,4) B 、(4,+∞) C 、(-∞,4)∪(4,+∞) D 、(-∞,+∞) 7、将log 16x=2化成指数式可表示为( );A 、162=xB 、216=xC 、162=xD 、1624= 8、将52a 化成根式可表示为( ); A 、 52a B 、52a C 、521a D 、5a9、下列函数中是奇函数的是( );A 、2+=x yB 、2x y =C 、32+=x yD 、xy 2= 10、不等式11x -≤的解集为( )A 、[0,2]B 、(0,2)C 、(,0)-∞D 、(2,)+∞二、填空题:本大题共5个小题,每小题4分,共20分。
1、5:,3:>>x q x p ,则p 是q 条件;2、每瓶饮料的单价为3.5元,用解析法表示应付款y 和购买饮料瓶数x 之间的函数关系式可以表示为3、()()22231053(2)(2)10--⨯-⨯-+-⨯ = 4、已知f(x)=3x -2,则f(1)= ; 5、设25x ->1则x 。
学必求其心得,业必贵于专精贵阳市普通高中 2017—2018 学年度第一学期期末质量监测试卷高一数学一、选择题:本大题共 10 个小题,每小题 4 分,共 40 分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设集合,集合,则 ( )A。
B.C。
D。
【答案】A【解析】,选 A。
2。
()A。
B.C.D。
【答案】A【解析】,选 A。
3. 甲、乙两人在一次赛跑中,路程 与时间 的函数关系如图所示,则下列说法正确的是( )A。
甲比乙先出发 B。
乙比甲跑的路程多 C。
甲、乙两人的速度相同 D。
甲先到达终点-1-学必求其心得,业必贵于专精【答案】D【解析】由路程和时间的函数图像可以得到甲和乙同时出发,甲的速度大于乙的速度,甲先于乙到达.选 D.4。
若 ,则的值为( )A。
B。
C.D。
【答案】D【解析】,故选 D。
5。
若幂函数 的图象经过点 ,则 的值是( )A。
B.C.D.【答案】C【解析】设 ,则 ,故 , ,从而,故选 C.6. 函数的零点个数为( )A.B.C。
D.【答案】B【解析】当 时,令,故 ,符合;当 时,令 ,故 ,符合,所以 的零点有 2 个,选 B.7。
在下列给出的函数中,以 为周期且在区间 内是减函数的是( )A.B。
C.D。
【答案】B-2-学必求其心得,业必贵于专精8。
设 , , ,则( )A.B。
C。
D。
【答案】C【解析】因为,故,又 ,故 ,而,故,故 的大小关系为 ,选 C。
点睛:注意利用函数的单调性来比较大小。
9。
在 中, 为 边上一点,且 ,若,则( )A. ,B. ,C. ,D。
,【答案】D【解析】由题设有,整理有,从而有,故 ,选 D。
点睛:在向量的线性运算中,注意利用加减法把未知的向量向已知的向量转化。
10。
把函数的图象上所有点的横坐标伸长到原来的 倍(纵坐标不变),然后向左平移 个单位长度,再向下平移 个单位长度,得到的图象是( )-3-学必求其心得,业必贵于专精A.B.C.D.【答案】A【解析】把的图象上所有点的横坐标伸长到原来的 倍(纵坐标不变),得到的图像对应的解析式为,然后向左平移 个单位长度后得到的图像对应的解析式为,再向下平移 个单位长度后,得到的图像对应的解析式,其最小正周期为 ,故排除 C、D,又该函数的图像过 ,故选 A。
2017-2018学年高一(上)期末数学试卷(文科)一.选择题(每小题5分,共12题,共60分)1.(5分)设集合A={x|﹣1≤x≤2},B={x|0≤x≤4},则A∩B=()A.[0,2]B.[1,2]C.[0,4]D.[1,4]2.(5分)设l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥m D.若l∥α,m∥α,则l∥m3.(5分)平行线3x+4y﹣9=0和6x+8y+2=0的距离是()A.B.2 C.D.4.(5分)设f(x)=,则f(f(2))的值为()A.0 B.1 C.2 D.35.(5分)△ABC是边长为1的正三角形,那么△ABC的斜二测平面直观图△A′B′C′的面积为()A.B.C.D.6.(5分)设f(x)为奇函数,且在(﹣∞,0)内是减函数,f(﹣2)=0,则xf(x)<0的解集为()A.(﹣1,0)∪(2,+∞) B.(﹣∞,﹣2)∪(0,2)C.(﹣∞,﹣2)∪(2,+∞) D.(﹣2,0)∪(0,27.(5分)过点(1,2)且与原点距离最大的直线方程是()A.x+2y﹣5=0 B.2x+y﹣4=0 C.x+3y﹣7=0 D.3x+y﹣5=08.(5分)已知三棱锥的三视图如图所示,其中侧视图为直角三角形,俯视图为等腰直角三角形,则此三棱锥的体积等于()A.B.C.D.9.(5分)设点A(2,﹣3),B(﹣3,﹣2),直线l过点P(1,1)且与线段AB 相交,则l的斜率k的取值范围()A.k≥或k≤﹣4 B.≤k≤4 C.﹣4≤k≤D.k≥4或k≤﹣10.(5分)已知长方体ABCD﹣A1B1C1D1中,AB=BC=4,CC1=2,则直线BC1和平面DBB1D1所成角的正弦值为()A.B.C.D.11.(5分)a=log0.76,b=60.7,c=0.70.6,则a,b,c的大小关系为()A.a>b>c B.c>a>b C.b>a>c D.b>c>a12.(5分)函数y=log(x2﹣ax+3)在[1,2]上恒为正数,则a的取值范围是()A.2<a<2B.2<a<C.3<a<D.3<a<2二.填空题(每小题5分,共4题,共20分)13.(5分)直线x﹣2y+5=0与圆x2+y2=8相交于A、B两点,则|AB|=.14.(5分)若一系列函数的解析式相同,值域相同,但其定义域不同,则称这一系列函数为“同族函数”,试问解析式为y=x2,值域为{1,2}的“同族函数”共有个.15.(5分)已知圆柱的侧面展开图是边长为4和6的矩形,则该圆柱的表面积为.16.(5分)直线2x+ay﹣2=0与直线ax+(a+4)y﹣4=0平行,则a的值为.三.解答题(本大题共6个小题,共70分,解答题应写出文字说明.证明过程或演算步骤.)17.(10分)已知全集U=R,,B={x|log3x≤2}.(Ⅰ)求A∩B;(Ⅱ)求∁U(A∪B).18.(12分)△ABC的两顶点A(3,7),B(﹣2,5),若AC的中点在y轴上,BC的中点在x轴上(1)求点C的坐标;(2)求AC边上的中线BD的长及直线BD的斜率.19.(12分)如图,四棱锥P﹣ABCD的底面ABCD是菱形,∠BCD=60°,PA⊥面ABCD,E是AB的中点,F是PC的中点.(Ⅰ)求证:面PDE⊥面PAB;(Ⅱ)求证:BF∥面PDE.20.(12分)如图,棱长为1的正方体ABCD﹣A1B1C1D1中,(1)求证:AC⊥平面B1D1DB;(2)求三棱锥B﹣CD1B1的体积.21.(12分)已知函数f(x)=log4(4x+1)+kx(k∈R).(1)若k=0,求不等式f(x)>的解集;(2)若f(x)为偶函数,求k的值.22.(12分)已知方程x2+y2﹣2x﹣4y+m=0.(1)若此方程表示圆,求m的取值范围;(2)若(1)中的圆与直线x+2y﹣4=0相交于M、N两点,且OM⊥ON(O为坐标原点),求m;(3)在(2)的条件下,求以MN为直径的圆的方程.参考答案与试题解析一.选择题(每小题5分,共12题,共60分)1.(5分)设集合A={x|﹣1≤x≤2},B={x|0≤x≤4},则A∩B=()A.[0,2]B.[1,2]C.[0,4]D.[1,4]【分析】结合数轴直接求解.【解答】解:由数轴可得A∩B=[0,2],故选择A.【点评】本题考查集合的运算,基础题.注意数形结合2.(5分)设l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥m D.若l∥α,m∥α,则l∥m【分析】根据题意,依次分析选项:A,根据线面垂直的判定定理判断.C:根据线面平行的判定定理判断.D:由线线的位置关系判断.B:由线面垂直的性质定理判断;综合可得答案.【解答】解:A,根据线面垂直的判定定理,要垂直平面内两条相交直线才行,不正确;C:l∥α,m⊂α,则l∥m或两线异面,故不正确.D:平行于同一平面的两直线可能平行,异面,相交,不正确.B:由线面垂直的性质可知:平行线中的一条垂直于这个平面则另一条也垂直这个平面.故正确.故选B【点评】本题主要考查了立体几何中线面之间的位置关系及其中的公理和判定定理,也蕴含了对定理公理综合运用能力的考查,属中档题3.(5分)平行线3x+4y﹣9=0和6x+8y+2=0的距离是()A.B.2 C.D.【分析】先将两平行直线的方程的系数统一,再代入平行线间的距离公式计算即可.【解答】解:两平行直线的距离d===2.故选B【点评】本题考查两平行直线之间的距离.4.(5分)设f(x)=,则f(f(2))的值为()A.0 B.1 C.2 D.3【分析】考查对分段函数的理解程度,f(2)=log3(22﹣1)=1,所以f(f(2))=f(1)=2e1﹣1=2.【解答】解:f(f(2))=f(log3(22﹣1))=f(1)=2e1﹣1=2,故选C.【点评】此题是分段函数当中经常考查的求分段函数值的小题型,主要考查学生对“分段函数在定义域的不同区间上对应关系不同”这个本质含义的理解.5.(5分)△ABC是边长为1的正三角形,那么△ABC的斜二测平面直观图△A′B′C′的面积为()A.B.C.D.【分析】由原图和直观图面积之间的关系=,求出原三角形的面积,再求直观图△A′B′C′的面积即可.【解答】解:正三角形ABC的边长为1,故面积为,而原图和直观图面积之间的关系=,故直观图△A′B′C′的面积为×=故选D.【点评】本题考查斜二测画法中原图和直观图面积之间的关系,属基本运算的考查.6.(5分)设f(x)为奇函数,且在(﹣∞,0)内是减函数,f(﹣2)=0,则xf(x)<0的解集为()A.(﹣1,0)∪(2,+∞) B.(﹣∞,﹣2)∪(0,2)C.(﹣∞,﹣2)∪(2,+∞) D.(﹣2,0)∪(0,2【分析】根据函数的奇偶性求出f(2)=0,x f(x)<0分成两类,分别利用函数的单调性进行求解.【解答】解:∵f(x)为奇函数,且在(﹣∞,0)内是减函数,f(﹣2)=0,∴f(﹣2)=﹣f(2)=0,在(0,+∞)内是减函数∴x f(x)<0则或根据在(﹣∞,0)内是减函数,在(0,+∞)内是减函数解得:x∈(﹣∞,﹣2)∪(2,+∞)故选C【点评】本题主要考查了函数的奇偶性的性质,以及函数单调性的应用等有关知识,属于基础题.7.(5分)过点(1,2)且与原点距离最大的直线方程是()A.x+2y﹣5=0 B.2x+y﹣4=0 C.x+3y﹣7=0 D.3x+y﹣5=0【分析】先根据垂直关系求出所求直线的斜率,由点斜式求直线方程,并化为一般式.【解答】解:设A(1,2),则OA的斜率等于2,故所求直线的斜率等于﹣,由点斜式求得所求直线的方程为y﹣2=﹣(x﹣1),化简可得x+2y﹣5=0,故选A.【点评】本题考查用点斜式求直线方程的方法,求出所求直线的斜率,是解题的关键.8.(5分)已知三棱锥的三视图如图所示,其中侧视图为直角三角形,俯视图为等腰直角三角形,则此三棱锥的体积等于()A.B.C.D.【分析】三棱锥是底面是等腰直角三角形,腰长是1,.一条侧棱与底面垂直,且这条侧棱的长度是,根据三棱锥的体积公式写出体积的表示式,得到结果.【解答】解:∵由三视图知,三棱锥是底面是等腰直角三角形,底边上的高是1,一条侧棱与底面垂直,且这条侧棱的长度是,∴三棱锥的体积是××1×2=,故选B【点评】本题考查由三视图求几何体的体积,考查由三视图还原直观图,只要主视图和侧视图是三角形,那么这个几何体一定是一个椎体,由俯视图得到底面是几边形,确定是几棱锥.9.(5分)设点A(2,﹣3),B(﹣3,﹣2),直线l过点P(1,1)且与线段AB 相交,则l的斜率k的取值范围()A.k≥或k≤﹣4 B.≤k≤4 C.﹣4≤k≤D.k≥4或k≤﹣【分析】画出图形,由题意得所求直线l的斜率k满足k≥k PB或k≤k PA,用直线的斜率公式求出k PB和k PA的值,求出直线l的斜率k的取值范围.【解答】解:如图所示:由题意得,所求直线l的斜率k满足k≥k PB或k≤k PA,即k≥=,或k≤=﹣4,∴k≥,或k≤﹣4,即直线的斜率的取值范围是k≥或k≤﹣4.故选A.【点评】本题考查直线的斜率公式的应用,体现了数形结合的数学思想,解题的关键是利用了数形结合的思想,解题过程较为直观,本题类似的题目比较多.可以移动一个点的坐标,变式出其他的题目.10.(5分)已知长方体ABCD﹣A1B1C1D1中,AB=BC=4,CC1=2,则直线BC1和平面DBB1D1所成角的正弦值为()A.B.C.D.【分析】要求线面角,先寻找斜线在平面上的射影,因此,要寻找平面的垂线,利用已知条件可得.【解答】解:由题意,连接A1C1,交B1D1于点O∵长方体ABCD﹣A1B1C1D1中,AB=BC=4∴C1O⊥B1D1∴C1O⊥平面DBB1D1中,在Rt△BOC∴直线BC1和平面DBB1D1所成角的正弦值为故选C.【点评】本题的考点是直线与平面所成的角,主要考查线面角,关键是寻找线面角,通常寻找斜线在平面上的射影.11.(5分)a=log0.76,b=60.7,c=0.70.6,则a,b,c的大小关系为()A.a>b>c B.c>a>b C.b>a>c D.b>c>a【分析】利用指数式和对数式的性质,分别比较三个数与0或1的大小得答案.【解答】解:∵a=log0.76<0,b=60.7>1,0<c=0.70.6<0.70=1,∴b>c>a.故选:D.【点评】本题考查对数值的大小比较,考查了指数函数与对数函数的单调性,是基础题.12.(5分)函数y=log(x2﹣ax+3)在[1,2]上恒为正数,则a的取值范围是()A.2<a<2B.2<a<C.3<a<D.3<a<2【分析】根据对数函数的单调性,将问题转化为0<x2﹣ax+3<1在[1,2]上恒成立即可.【解答】解:由于底数是,若y=f(x)=(x2﹣ax+3)在[1,2]上恒为正数,则0<x2﹣ax+3<1在[1,2]上恒成立,即x+<a<x+,x∈[1,2],a<x+时,令f(x)=x+,x∈[1,2],f′(x)=,令f′(x)>0,解得:x>,令f′(x)<0,解得:x<,∴f(x)在[1,)递减,在(,2]递增,∴f(x)min=f()=2,a>x+时,令g(x)=x+,x∈[1,2],g′(x)=,令g′(x)>0,解得:x>,令g′(x)<0,解得:x<,∴f(x)在[1,)递减,在[,2]递增,∴g(x)max=3,∴3<a<2,故选:D.【点评】本题考查了对数函数的单调性、二次函数的性质,考查复合函数的考查,是一道基础题.二.填空题(每小题5分,共4题,共20分)13.(5分)直线x﹣2y+5=0与圆x2+y2=8相交于A、B两点,则|AB|=2.【分析】可以直接求出A、B然后求值;也可以用圆心到直线的距离来求解.【解答】解:圆心为(0,0),半径为2,圆心到直线x﹣2y+5=0的距离为d=,故,得|AB|=2.故答案为:2.【点评】本题考查直线与圆的位置关系,考查学生的理解能力,是基础题.14.(5分)若一系列函数的解析式相同,值域相同,但其定义域不同,则称这一系列函数为“同族函数”,试问解析式为y=x2,值域为{1,2}的“同族函数”共有9个.【分析】1的原象是正负1;2的原象是正负.值域为{1,2},由此来判断解析式为y=x2,值域为{1,2}的“同族函数”的个数.【解答】解:1的原象是正负1;2的原象是正负.值域为{1,2},所以y=x2的同族函数只有9个,定义域分别为{1,},{﹣,﹣1},{,﹣1},{﹣,1},{﹣,﹣1,1},{,﹣1,1},{﹣,,﹣1},{﹣,,1},{﹣,,1,﹣1},共9个故答案为:9.【点评】本题考查函数的构成个数,解题时要认真审题,仔细求解.15.(5分)已知圆柱的侧面展开图是边长为4和6的矩形,则该圆柱的表面积为24+或24+.【分析】已知圆柱的侧面展开图是边长为4和6的矩形,分两种情况:①6=2πr,②4=2πr,然后再分别求解.【解答】解:∵圆柱的侧面展开图是边长为4和6的矩形,①若6=2πr,则r=,∴圆柱的表面积为:4×6+2×π×()2=24+;②若4=2πr,r=,∴圆柱的表面积为:4×6+2×π×()2=24+.故答案为:24+或24+.【点评】此题主要考查圆柱的性质及其应用,易错点是容易丢解.解题时要认真审题,注意分类讨论的思想的合理运用,此题是一道中档题.16.(5分)直线2x+ay﹣2=0与直线ax+(a+4)y﹣4=0平行,则a的值为﹣2.【分析】根据直线平行的条件,建立方程即可.【解答】解:若a=0,则两个直线方程为x=1和y=1.此时两直线不平行.若a≠0,若两直线平行,则=≠,解得a=4或a=﹣2,当a=4时,两直线方程为x+2y﹣1=0和x+2y﹣1=0,不满足两直线平行.当a=﹣2时,两直线方程为x﹣y﹣1=0和x﹣y+2=0,满足两直线平行.∴a=﹣2.故答案为:﹣2.【点评】本题主要考查直线的方程以及直线平行的等价条件,注意对a要进行讨论.三.解答题(本大题共6个小题,共70分,解答题应写出文字说明.证明过程或演算步骤.)17.(10分)已知全集U=R,,B={x|log3x≤2}.(Ⅰ)求A∩B;(Ⅱ)求∁U(A∪B).【分析】(1)求解指数不等式和对数不等式化简集合A,B,然后直接利用交集概念求解;(2)直接利用补集运算求解.【解答】解:(Ⅰ)={x|﹣1<x<2},B={x|log3x≤2}={x|0<x≤9,所以A∩B={x|0<x<2};(Ⅱ)A∪B={x|﹣1<x≤9},C U(A∪B)={x|x≤﹣1或x>9.【点评】本题考查了角、并、补集的混合运算,考查了指数不等式和对数不等式的解法,是基础题.18.(12分)△ABC的两顶点A(3,7),B(﹣2,5),若AC的中点在y轴上,BC的中点在x轴上(1)求点C的坐标;(2)求AC边上的中线BD的长及直线BD的斜率.【分析】(1)由条件利用线段的中点公式求得点C的坐标.(2)求得线段AC的中点D的坐标,再利用两点间的距离公式、斜率公式求得AC边上的中线BD的长及直线BD的斜率.【解答】解:(1)由于△ABC的两顶点A(3,7),B(﹣2,5),AC的中点在y 轴上,BC的中点在x轴上则点C的横坐标为﹣3,点C的纵坐标为﹣5,故点C的坐标为(﹣3,﹣5).(2)由于AC的中点为D(0,1),故AC边上的中线BD的长为=2,直线BD的斜率为=﹣2.【点评】本题主要考查线段的中点公式、两点间的距离公式、斜率公式的应用,属于基础题.19.(12分)如图,四棱锥P﹣ABCD的底面ABCD是菱形,∠BCD=60°,PA⊥面ABCD,E是AB的中点,F是PC的中点.(Ⅰ)求证:面PDE⊥面PAB;(Ⅱ)求证:BF∥面PDE.【分析】(I)证明DE⊥AB,DE⊥AP,利用线面垂直的判定定理,可得DE⊥面PAB,从而可证面PDE⊥面PAB;(Ⅱ)证明FG与BE平行且相等,可得BF∥GE,利用线面平行的判定可得BF∥面.【解答】证明:(Ⅰ)∵底面ABCD是菱形,∠BCD=60°∴△ABD为正三角形E是AB的中点,DE⊥AB﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)∵PA⊥面ABCD,DE⊂面ABCD∴DE⊥AP﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)∵AB∩AP=A∴DE⊥面PAB∵DE⊂面PDE∴面PDE⊥面PAB﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(Ⅱ)取PD的中点G,连结FG,GE,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)∵F,G是中点,∴FG∥CD且∴FG与BE平行且相等,∴BF∥GE﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)∵GE⊂面PDE∴BF∥面PDE.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)【点评】本题考查线面垂直,面面垂直,考查线面平行,正确运用判定定理是关键.20.(12分)如图,棱长为1的正方体ABCD﹣A1B1C1D1中,(1)求证:AC⊥平面B1D1DB;(2)求三棱锥B﹣CD1B1的体积.(1)由DD1⊥平面ABCD可得DD1⊥AC,又AC⊥BD,故而AC⊥平面B1D1DB;【分析】(2)设AC,BD交于点O,以△B1BD1为棱锥的底面,则棱锥的高为OC,代入体积公式计算.【解答】解:(1)证明:∵DD1⊥平面ABCD,AC⊂平面ABCD,∴DD1⊥AC,∵正方形ABCD中,∴AC⊥BD,又DD1⊂平面B1D1DB,BD⊂B1D1DB,DD1∩BD=D,∴AC⊥平面B1D1DB.(2)∵B 1D1=,BB1=1,∴S=.∵设AB,CD交点为O,则OC==.∵AC⊥平面B1D1DB,∴三棱锥B﹣CD1B1的体积V===.【点评】本题考查了正方体的结构特征,线面垂直的判定,棱锥的体积计算,属于基础题.21.(12分)已知函数f(x)=log4(4x+1)+kx(k∈R).(1)若k=0,求不等式f(x)>的解集;(2)若f(x)为偶函数,求k的值.【分析】(1)根据对数的单调性解对数不等式;(2)根据偶函数的性质求常数k.【解答】解:(1),∵,∴x>0,即不等式的解集为(0,+∞).…(6分)(2)由于f(x)为偶函数,∴f(﹣x)=f(x)即,∴对任意实数x都成立,所以…(12分)【点评】本题主要考查对数的性质:单调性、奇偶性,解题时注意真数要大于零.22.(12分)已知方程x2+y2﹣2x﹣4y+m=0.(1)若此方程表示圆,求m的取值范围;(2)若(1)中的圆与直线x+2y﹣4=0相交于M、N两点,且OM⊥ON(O为坐标原点),求m;(3)在(2)的条件下,求以MN为直径的圆的方程.【分析】(1)圆的方程化为标准方程,利用半径大于0,可得m的取值范围;(2)直线方程与圆方程联立,利用韦达定理及OM⊥ON,建立方程,可求m的值;(3)写出以MN为直径的圆的方程,代入条件可得结论.【解答】解:(1)(x﹣1)2+(y﹣2)2=5﹣m,∴方程表示圆时,m<5;(2)设M(x1,y1),N(x2,y2),则x1=4﹣2y1,x2=4﹣2y2,得x1x2=16﹣8(y1+y2)+4y1y2,∵OM⊥ON,∴x1x2+y1y2=0,∴16﹣8(y1+y2)+5y1y2=0①,由,得5y2﹣16y+m+8=0,∴,.代入①得.(3)以MN为直径的圆的方程为(x﹣x1)(x﹣x2)+(y﹣y1)(y﹣y2)=0,即x2+y2﹣(x1+x2)x﹣(y1+y2)y=0,∴所求圆的方程为.【点评】本题考查圆的方程,考查直线与圆的位置关系,考查学生的计算能力,属于中档题.。
2017—2018学年上学期期末考试 模拟卷(1)高一数学(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第I 卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第II 卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:必修一、必修二。
第I 卷一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U =R ,集合{21}|xA y y ==+,ln 0{|}B x x =<,则()U A B =ðA .∅B .11{|}2x x <≤ C .{|}1x x < D .1|}0{x x <<2.设一球的球心为空间直角坐标系的原点O ,球面上有两个点,A B ,其坐标分别为(1,2,2),(2,)2,1-,则AB =A .18B .12C .32D .23 3.若直线1l :210x ay --=过点)1,1(,则直线1l 与2l :02=+y x A .平行 B .相交但不垂直 C .垂直D .相交于点)1,2(-4.设13.230.713,(),log 34a b c ===,则,,a b c 的大小关系为A .c a b <<B .c b a <<C .b a c <<D .a b c <<5.已知圆22()4x a y -+=截直线4y x =-所得的弦的长度为22,则a 等于A .2B .6C .2或6D .22 6.设βα,是两个不同的平面,l 是一条直线,则以下命题正确的是A .若α⊥l ,βα⊥,则β⊂lB .若α//l ,βα//,则β⊂lC .若α⊥l ,βα//,则β⊥lD .若α//l ,βα⊥,则β⊥l7.已知函数3log (2),1()e 1,1x x a x f x x ++≥⎧=⎨-<⎩,若[(ln 2)]2f f a =,则()f a 等于A .12 B .43C .2D .4 8.一个机器零件的三视图如图所示,其中俯视图是一个半圆内切于边长为2的正方形,则该机器零件的体积为A .8π3+ B .8π23+C .8π83+D .8π163+9.已知函数2()f x x x a =++在区间(0,1)上有零点,则实数a 的取值范围为A .1(,]4-∞B .1(,)4-∞ C .(2,0)- D .[2,0]-10.函数()ln ||f x x x =的大致图象是A B C D 11.在矩形ABCD 中,2AC =,现将ABC △沿对角线AC 折起,使点B 到达点B '的位置,得到三棱锥B ACD '-,则三棱锥B ACD '-的外接球的表面积为 A .π B .2πC .4πD .大小与点B '的位置有关12.如图,1111D C B A ABCD -为正方体,下面结论:①BD ∥平面11D CB ;②BD AC ⊥1;③⊥1AC 平面11D CB ;④直线11B D 与BC 所成的角为45°.其中正确结论的个数是A .1B .2C .3D .4第II 卷二、填空题(本题共4小题,每小题5分,共20分) 13.若函数()y f x =的定义域为[0,2],则函数(2)()1f xg x x =-的定义域是 . 14.若点P 在圆221:(4)(2)9C x y -+-=上,点Q 在圆222:(2)(1)4C x y +++=上,则PQ 的最小值是 .15.已知函数()M f x 的定义域为实数集R ,满足1,()0,M x Mf x x M∈⎧=⎨∉⎩(M 是R 的非空真子集),若在R 上有两个非空真子集,A B ,且A B =∅,则()1()()()1A B A B f x F x f x f x +=++U 的值域为 .16.已知在三棱柱111ABC A B C -中,各棱长相等,侧棱垂直于底面,且点D 是侧面11BB C C 的中心,则AD 与平面11BB C C 所成角的大小是 .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知集合{|121}A x a x a =+≤≤-,{|3B x x =≤或5}x >. (1)若4a =,求AB ;(2)若A B ⊆,求a 的取值范围. 18.(本小题满分12分)如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,底面ABCD 是菱形,60BAD ∠=,2,6AB PD ==,O 为AC 与BD 的交点,E 为棱PB 上一点.(1)证明:平面EAC ⊥平面PBD ;(2)若PD ∥平面EAC ,求三棱锥P EAD -的体积.19.(本小题满分12分)某服装厂生产一种服装,每件服装的成本为40元,出厂单价为60元,该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低0.02元,根据市场调查,销售商一次订购量不会超过500件.(1)设一次订购量为x 件,服装的实际出厂单价为P 元,写出函数()P f x =的表达式;(2)当销售商一次订购多少件服装时,该服装厂获得的利润最大?并求出最大值. 20.(本小题满分12分)已知以点(1,2)A -为圆心的圆与直线1:270l x y ++=相切,过点(2,0)B -的动直线l 与圆A 相交于,M N 两点,Q 是MN 的中点. (1)求圆A 的方程;(2)当219MN =时,求直线l 的方程. 21.(本小题满分12分)已知平面五边形ADCEF 是轴对称图形(如图1),BC 为对称轴,AD ⊥CD ,AD =AB =1,3CD BC ==,将此五边形沿BC 折叠,使平面AB CD ⊥平面BCEF ,得到如图2所示的空间图形,对此空间图形解答下列问题.(1)证明:AF ∥平面DEC ;(2)求二面角E AD B --的余弦值. 22.(本小题满分12分)已知函数()f x 的定义域为R ,若对于任意的实数,x y ,都有()()()f x y f x f y +=+,且0x >时,有()0f x >.(1)判断并证明函数()f x 的奇偶性; (2)判断并证明函数()f x 的单调性;(3)设(1)1f =,若2()21f x m am <-+对所有[1,1]x ∈-,[1,1]a ∈-恒成立,求实数m 的取值范围.。
2017-2018学年贵州省黔南州高一(上)期末数学试卷一、选择题(本大题共12小题,共60.0分)1.已知集合P={x|-1<x<1},Q={x|0<x<3},那么P∪Q=()A. B. C. D.2.函数f(x)=x2-2x+2在区间(0,4]的值域为()A. B. C. D.3.(log29)•(log34)=()A. B. C. 2 D. 44.下列向量组中,可以把向量表示出来的是()A. B.C. D.5.函数f(x)=的定义域为()A. B. ∪ C. D. ∪6.为了得到函数y=sin(2x-)的图象,只需把函数y=sin2x的图象上所有的点()A. 向左平行移动个单位长度B. 向右平行移动个单位长度C. 向左平行移动个单位长度D. 向右平行移动个单位长度7.已知函数f(x)满足f(1-x)=f(1+x),当x∈(-∞,1]时,函数f(x)单调递减,设a=f(-),b=f(-1),c=f(2),则a、b、c的大小关系为()A. B. C. D.8.若O为△ABC所在平面内任一点,且满足(-)•(+-2)=0,则△ABC的形状为()A. 等腰三角形B. 直角三角形C. 正三角形D. 等腰直角三角形9.设向量=(cos x,-sin x),=(-cos(-x),cos x),且=t,t≠0,则sin2x值()A. 1B.C.D. 010.函数y=A sin(ωx+φ)在一个周期内的图象如图,此函数的解析式为()A.B.C.D.11.已知在△ABC中,D是AB边上的一点,=λ(+),||=2,||=1,若=,=,则用,表示为()A. B. C. D.12.设函数f(x)的定义域为D,若函数f(x)满足条件:存在[a,b]⊆D,使f(x)在[a,b]上的值域是[,],则称f(x)为“倍缩函数”,若函数f(x)=log2(2x+t)为“倍缩函数”,则实数t的取值范围是()A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.设一扇形的弧长为4cm,面积为4cm2,则这个扇形的圆心角的弧度数是______.14.若tanα=-,则sin2α+2sinαcosα的值为______.15.已知函数f(x)是定义在R上的偶函数,若对于x≥0,都有f(x+2)=-,且当x∈[0,2)时,f(x)=log2(x+1),则f(-2017)+f(2019)=______.16.已知函数,若函数F(x)=f(x)-3的所有零点依次记为x1,x2,x3,…,x n,且x1<x2<x3<…<x n,则x1+2x2+2x3+…+2x n-1+x n=________.三、解答题(本大题共6小题,共70.0分)17.已知集合A={x|x2-6x+5<0},C={x|3a-2<x<4a-3},若C⊆A,求a的取值范围.18.已知cosα=,cos(α-β)=,且0<β<α<,(1)求tan2α的值;(2)求β.19.已知,,,(x∈R,a∈R,a是常数),且(其中O为坐标原点).(1)求函数y=f(x)的单调区间;(2)若∈,时,f(x)的最大值为4,求a的值.20.若点M是△ABC所在平面内一点,且满足:=+.(1)求△ABM与△ABC的面积之比;(2)若N为AB中点,AM与CN交于点O,设=+,求,的值.21.某地方政府为鼓励全民创业,拟对本地产值在50万元到500万元的新增小微企业进行奖励,奖励方案遵循以下原则:奖金y(单位:万元)随年产值x(单位:万元)的增加而增加,且奖金不低于7万元,同时奖金不超过年产值的15%.(1)若某企业产值100万元,核定可得9万元奖金,试分析函数y=lg x+kx+5(k为常数)是否为符合政府要求的奖励函数模型,并说明原因(已知lg2≈0.3,lg5≈0.7);(2)若采用函数f(x)=作为奖励函数模型,试确定最小的正整数a的值.22.已知指数函数y=g(x)满足:g(3)=8,定义域为R的函数f(x)=是奇函数.(1)确定y=g(x),y=f(x)的解析式;(2)若h(x)=f(x)+a在(-1,1)上有零点,求a的取值范围;(3)若对任意的t∈(-4,4),不等式f(6t-3)+f(t2-k)<0恒成立,求实数k的取值范围.答案和解析1.【答案】D【解析】解:集合P={x|-1<x<1},Q={x|0<x<3},那么P∪Q={x|-1<x<3}=(-1,3).故选:D.根据并集的定义写出P∪Q即可.本题考查了并集的运算问题,是基础题.2.【答案】B【解析】解:函数f(x)=x2-2x+2的图象是开口朝上,且以直线x=1为对称轴的抛物线,故函数f(x)=x2-2x+2在区间(0,1]为减函数,在[1,4]上为增函数,故当x=1时,函数f(x)取最小值1;当x=4时,函数f(x)取最大值10;故函数f(x)=x2-2x+2在区间(0,4]的值域为[1,10],故选:B.根据函数图象,分析函数在区间(0,4]的单调性,进而求出在区间(0,4]的最值,可得在区间(0,4]的值域.本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.3.【答案】D【解析】解:(log29)•(log34)===4.故选:D.直接利用换底公式求解即可.本题考查对数的换底公式的应用,考查计算能力.4.【答案】B【解析】【分析】本题主要考查了向量的坐标运算,根据列出方程解方程是关键,属于基础题.根据向量的坐标运算及,计算判断即可.【解答】解:根据,选项A:(3,2)=λ(0,0)+μ(1,2),则3=μ,2=2μ,无解,故选项A不能;选项B:(3,2)=λ(-1,2)+μ(5,-2),则3=-λ+5μ,2=2λ-2μ,解得,λ=2,μ=1,故选项B能;选项C:(3,2)=λ(3,5)+μ(6,10),则3=3λ+6μ,2=5λ+10μ,无解,故选项C不能;选项D:(3,2)=λ(2,-3)+μ(-2,3),则3=2λ-2μ,2=-3λ+3μ,无解,故选项D不能.故选B.5.【答案】D【解析】解:函数f(x)=有意义,可得,即为,则1<x≤10,且x≠2,故选:D.函数f(x)=有意义,可得,解不等式即可得到所求定义域.本题考查函数的定义域的求法,注意偶次根式被开方数非负,对数的真数大于0和分式的分母不为0,考查运算能力,属于中档题.6.【答案】D【解析】解:把函数y=sin2x的图象向右平移个单位长度,可得函数y=sin2(x-)=sin(2x-)的图象,故选:D.由条件根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.7.【答案】A【解析】解:由f(1-x)=f(1+x),得函数关于x=1对称,则c=f(2)=f(1+1)=f(1-1)=f(0),∵当x∈(-∞,1]时,函数f(x)单调递减,且-1<-<0,∴f(-1)>f(-)>f(0),即c<a<b,故选:A根据函数的对称性进行转化,结合函数单调性的性质进行比较即可.本题主要考查函数值的大小比较,利用函数的单调性和对称性进行转化是解决本题的关键.8.【答案】A【解析】【分析】本题考查了平面向量的线性表示与数量积运算问题,是综合性题目.根据平面向量的线性表示与数量积运算,结合题意可得出△ABC是等腰三角形.【解答】解:因为(-)•(+-2)=0,即•(+)=0;又因为-=,所以(-)•(+)=0,即||=||,所以△ABC是等腰三角形.故选A.9.【答案】C【解析】解:∵=t,t≠0,∴sinx•-cosxcosx=0,化为:tanx=±1.则sin2x====±1.故选:C.由=t,t≠0,利用向量共线定理可得:tanx=±1.再利用sin2x==即可得出.本题考查了向量共线定理、同角三角函数基本关系式、倍角公式,考查推理能力与计算能力,属于中档题.10.【答案】A【解析】解:由已知可得函数y=Asin(ωx+ϕ)的图象经过(-,2)点和(-,2)则A=2,T=π即ω=2则函数的解析式可化为y=2sin(2x+ϕ),将(-,2)代入得-+ϕ=+2kπ,k∈Z,即φ=+2kπ,k∈Z,当k=0时,φ=此时故选:A.根据已知中函数y=Asin(ωx+ϕ)在一个周期内的图象经过(-,2)和(-,2),我们易分析出函数的最大值、最小值、周期,然后可以求出A,ω,φ值后,即可得到函数y=Asin(ωx+ϕ)的解析式.本题考查的知识点是由函数y=Asin(ωx+ϕ)的部分图象确定其解析式,其中A=|最大值-最小值|,|ω|=,φ=L•ω(L是函数图象在一个周期内的第一点的向左平移量).11.【答案】A【解析】解:∵=λ(+),∴为∠ACB角平分线方向,根据角平分线定理可知:=,∴=.∴===.故选:A.由=λ(+),可知为∠ACB角平分线方向,根据角平分线定理可知:可知:=,于是=.,代入化简即可得出.|本题考查了向量的平行四边形法则、三角形角平分线的性质定理、向量的线性运算,考查了推理能力与计算能力,属于中档题.12.【答案】A【解析】解:∵函数f(x)=f(x)=log2(2x+t)为“倍缩函数”,且满足存在[a,b]⊆D,使f(x)在[a,b]上的值域是[,],∴f(x)在[a,b]上是增函数;∴,即,∴a,b是方程2x-+t=0的两个根,设m==,则m>0,此时方程为m2-m+t=0即方程有两个不等的实根,且两根都大于0;∴,解得:0<t<,∴满足条件t的范围是(0,),故选:A.根据“倍缩函数”的定义,构造出方程组,利用方程组的解都大于0,求出t的取值范围.本题主要考查函数的值域问题,利用对数函数和指数函数的性质,是解决本题的关键.13.【答案】2【解析】解:因为扇形的弧长l为4,面积S为4,所以扇形的半径r为:r=4,r=2,则扇形的圆心角α的弧度数为=2.故答案为:2.利用扇形的面积求出扇形的半径,然后求出扇形的圆心角即可.本题考查扇形面积、扇形的弧长公式的应用,考查计算能力,属于基础题.14.【答案】【解析】解:∵tanα=-,∴sin2α+2sinαcosα===.故答案为:.把要求值的式子化弦为切求解.本题考查三角函数的化简求值,考查同角三角函数基本关系式的应用,是基础题.15.【答案】0【解析】解:对于x≥0,都有f(x+2)=-,∴f(x+4)=-=-=f(x),即当x≥0时,函数f(x)是周期为4的周期函数,∵当x∈[0,2)时,f(x)=log2(x+1),∴f(-2017)=f(2017)=f(504×4+1)=f(1)=log22=1,f(2019)=f(504×4+3)=f(3)=f(2+1)=-=-1,则f(-2017)+f(2019)=-1+1=0,故答案为:0.根据条件关系得到当x≥0时,函数是周期为4的周期函数,利用函数的周期性和奇偶性进行转化求解即可.本题主要考查函数值的计算,根据条件求出是的周期性,以及利用函数的周期性和奇偶性进行转化是解决本题的关键.16.【答案】445π【解析】解:令2x+=+kπ得x=+,k∈Z,即f(x)的对称轴方程为x=+,k∈Z.∵f(x)的最小正周期为T=π,,∴f(x)在(0,)上有30条对称轴,∴x1+x2=2×,x2+x3=2×,x3+x4=2×,…,x n-1+x n=2×,将以上各式相加得:x1+2x2+2x3+…+2x n-1+x n=2×(+++…+)=2××30=445π.故答案为:445π.求出f(x)的对称轴,根据f(x)的对称性得出任意两相邻两零点的和,从而得出答案.本题考查了正弦函数的图象与性质,函数对称性的应用,属于中档题.17.【答案】解:∵集合A={x|x2-6x+5<0}={x|1<x<5},C={x|3a-2<x<4a-3},C⊆A,∴当C=∅时,3a-2≥4a-3,解得a≤1;当C≠∅时,a>1,∴ .解得1<a≤2.综上所述:a的取值范围是(-∞,2].【解析】先求出集合A={x|1<x<5},由C={x|3a-2<x<4a-3},C⊆A,当C=∅时,3a-2≥4a-3;当C≠∅时,a >1,且.由此能求出a的取值范围.本题考查实数的取值范围的求法,考查子集、不等式性质等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.18.【答案】解:(1)由0<β<α<,cosα=,可得sinα=,∴tan=,则tan2α==-;(2)由cosα=,cos(α-β)=,且0<β<α<,得sin(α-β)==,可得,cosβ=cos[α-(α-β)]=cosαcos(α-β)+sinαsin(α-β)=∴.【解析】(1)由已知求得sinα,进一步得到tanα,再由二倍角的正切求解;(2)由已知求得sin(α-β),利用cosβ=cos[α-(α-β)],展开两角差的余弦得答案.本题考查两角和与差的余弦,关键是“拆角配角”思想的应用,是中档题.19.【答案】解:(1)∵已知,,,(x∈R,a∈R,a是常数),且(其中O为坐标原点),∴f(x)=1+cos2x+sin2x+a=2sin(2x+)+a+1,令2kπ-≤2x-≤2kπ+,求得kπ-≤x≤kπ+,可得函数f(x)的增区间为[kπ-,kπ+],k∈Z.(2)当∈,时,2x-∈[-,],故当2x-=时,f(x)取得最大值为a+3=4,∴a=1.【解析】(1)由题意利用两个向量的数量积公式,三角恒等变换,化简函数的解析式,再利用正弦函数的单调性,求得函数y=f(x)的单调区间.(2)由题意利用正弦函数的定义域和值域,求得当时,f(x)的最大值,再根据它的最大值为4,求得a的值.本题主要考查两个向量的数量积公式,三角恒等变换,正弦函数的单调性、定义域和值域,属于中档题.20.【答案】解(1)由,可知M、B、C三点共线,如图令==,∴△△,即面积之比为1:4 ;(2)由, 得+,,由O、M、A三点共线及O、N、C三点共线得:++,解得,所以x、y的值分别为:,.【解析】(1)由,可知M、B、C三点共线.可得,即可求答案;(2)由,,利用共线向量定理可得答案.本题考查向量共线定理和共面向量定理、三角形的面积之比,考查了推理能力和计算能力,属于基础题.21.【答案】解:(1)对于函数模型y=lg x+kx+5 (k为常数),x=100时,y=9,代入解得k=,所以y=lg x++5.当x∈[50,500]时,y=lg x++5是增函数,但x=50时,f(50)=lg50+6>7.5,即奖金不超过年产值的15%不成立,故该函数模型不符合要求;(2)对于函数模型f(x)==15-a为正整数,函数在[50,500]递增;f(x)min=f(50)≥7,解得a≤344;要使f(x)≤0.15x对x∈[50,500]恒成立,即a≥-0.15x2+13.8x对x∈[50,500]恒成立,所以a≥315.综上所述,315≤a≤344,所以满足条件的最小的正整数a的值为315.【解析】(1)根据公司要选择的函数模型所要满足的条件,逐一分析,即可得出结论;(2)根据奖金y(单位:万元)随年产值x(单位:万元)的增加而增加,且奖金不低于7万元,同时奖金不超过年产值的15%,确定a的范围,即可确定最小的正整数a的值.本题主要考查函数模型的选择,其实质是考查函数的基本性质,同时,确定函数关系实质就是将文字语言转化为数学符号语言--数学化,再用数学方法定量计算得出所要求的结果,关键是理解题意,将变量的实际意义符号化.22.【答案】(本小题12分)(1)设g(x)=a x(a>0且a≠1),∵g(3)=8,∴a3=8,解得a=2.∴g(x)=2x.…(1分)∴ ,∵函数f(x)是定义域为R的奇函数,∴f(0)=0,∴=0,∴n=1,∴ 又f(-1)=f(1),∴=,解得m=2∴ .…(3分)(2)由(1)知,易知f(x)在R上为减函数,…(4分)又h(x)=f(x)+a在(-1,1)上有零点,从而h(-1)h(1)<0,即<,…(6分)∴(a+)(a-)<0,∴-<a<,∴a的取值范围为(-,);…(8分)(3)由(1)知,又f(x)是奇函数,∴f(6t-3)+f(t2-k)<0,∴f(6t-3)<-f(t2-k)=f(k-t2),∵f(x)在R上为减函数,由上式得6t-3>k-t2,…(10分)即对一切t∈(-4,4),有t2+6t-3>k恒成立,令m(t)=t2+6t-3,t∈(-4,4),易知m(t)>-12,…(11分)∴k<-12,即实数k的取值范围是(-∞,-12).…(12分)【解析】(1)设g(x)=a x(a>0且a≠1),由g(3)=8可确定y=g(x)的解析式,故y=,依题意,f(0)=0可求得n,从而可得y=f(x)的解析式;(2)若h(x)=f(x)+a在(-1,1)上有零点,利用零点存在定理,由h(-1)h(1)<0,可求a的取值范围;(3)由(2)知奇函数f(x)在R上为减函数,对任意的t∈(-4,4),不等式f(6t-3)+f(t2-k)<0恒成立⇔6t-3>k-t2,分离参数k,利用二次函数的单调性可求实数k的取值范围.本题考查函数恒成立问题,考查函数奇偶性与单调性的应用,考查零点存在定理及二次函数的性质,考查函数方程思想、转化思想与运算求解能力,属于综合题.。
绝密★启用前贵州省黔南州2018-2019学年高一上学期期末数学试题试卷副标题注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、单选题1.已知集合A ={x |1<x ≤4},B ={1,2,3,4,5},则A ∩B =( ) A .{1,2,3,4} B .{1,2,3}C .{}2,3D .{2,3,4}2.sin (256-π)=( ) A .12-B .12C .D .23.已知角α的终边上有一点(7,24)P -,则sin α=() A .725B .725-C .2425D .2425-4.幂函数f (x )的图象经过点A (4,2),B (8,m ),则m =( ) A .4B .C .2D5.已知扇形AOB 的弧长为32π,半径为3,则该扇形的圆心角为( ) A .4π B .6π C .2π D .34π 6.若函数f (2x )=x -3,则f (4)=( ) A .1-B .1C .5-D .57.要得到函数1cos 26y x π⎛⎫=+ ⎪⎝⎭的图象,只需将函数1cos 2y x =的图象( )A .向左平移π个单位长度 B .向右平移π个单位长度C .向左平移12π个单位长度 D .向右平移12π个单位长度8.方程log 2x +3x -2=0的根所在的区间为( ) A .10,2⎛⎫ ⎪⎝⎭B .1,12⎛⎫⎪⎝⎭C .()1,2D .()2,39.已知函数f (x )=sin x +2x 3-1.若f (m )=6,则f (-m )=( ) A .6-B .8-C .6D .810.已知函数()()2log 13f x x x m =+++的零点在区间(]0,1上,则m 的取值范围为( ) A .()4,0-B .()(),40,-∞-⋃+∞C .][(),40,-∞-⋃+∞ D .[4,0-)11.已知函数f (x )=-cos (4x -6π),则( ) A .()f x 的最小正周期为π B .()f x 的图象关于直线6x π=对称C .()f x 的单调递增区间为()5,224224k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ D .()f x 的图象关于点,06π⎛⎫⎪⎝⎭对称 12.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭,4πx =-是函数的一个零点,且4x π=是其图象的一条对称轴.若,96ππ⎛⎫⎪⎝⎭是()f x 的一个单调区间,则ω的最大值为( ) A .18 B .17C .15D .13第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题13.函数()()4log 5f x x =-________.14.计算:)lg 21lg 5++=______.15.函数()2sin sin 3f x x x =+-的最小值为________.16.已知函数f (x )=lg (x 2+2ax -5a )在[2,+∞)上是增函数,则a 的取值范围为______三、解答题17.已知02α<<,且4sin 5α=. (1)求tan α的值;(2)求()()()23sin cos sin cos 2cos sin 3cos 2πααπααπααπαπ⎛⎫--- ⎪⎝⎭⎛⎫+-++ ⎪⎝⎭的值.18.已知集合A ={x |y =lg (x +3)+ln (2-x )},B ={x |12≤2x <8},C ={x |2a -1<x ≤a +5}. (1)求A ∩B ;(2)若B ∩C =B ,求a 的取值范围. 19.已知函数()2f x x ax b =++,且()03f =,()12f =,(1)求()3f 的值;(2)求()f x 在1,22⎡⎤⎢⎥⎣⎦上的最大值和最小值.20.已知函数()4cos 23f x x π⎛⎫=-⎪⎝⎭. (1)求()f x 的单调递增区间; (2)画出()f x 在[0,]π上的图象. 21.已知函数()2233xx f x -+=.(1)求()f x 的单调区间; (2)求()f x 的值域.22.已知函数()sin()0,04,||2f x A x b A πωϕωϕ⎛⎫=++><<<⎪⎝⎭图象的一个最高点和最低点的坐标分别为5,212π⎛+ ⎝和11,212π⎛-+ ⎝. (1)求()f x 的解析式;(2)若存在0,2x π⎡⎤∈⎢⎥⎣⎦()2f x m ≤-…,求m 的取值范围.参考答案1.D 【解析】 【分析】根据交集的定义写出结果. 【详解】集合A ={x |1<x ≤4},B ={1,2,3,4,5}, 则A ∩B ={2,3,4}. 故选D . 【点睛】本题考查了交集的定义与应用问题,是基础题. 2.A 【解析】 【分析】直接利用诱导公式计算得到答案. 【详解】251sin sin 4sin 6662πππ⎛⎫⎛⎫⎛⎫-π=--=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故选:A 【点睛】本题考查了诱导公式化简,意在考查学生对于诱导公式的应用. 3.C 【解析】 【分析】直接利用任意角的三角函数定义求解即可. 【详解】因为角α的终边上有一点(7,24)P -,所以24sin 25α==. 故选C. 【点睛】本题主要考查了任意角的三角函数的定义,属于基础题. 4.B 【解析】 【分析】设出幂函数的解析式,把点A 的坐标代入解析式求出幂指数,然后直接求解f (8)的值. 【详解】因为函数f (x )为幂函数,设f (x )=x α. 由函数f (x )的图象经过点A (4,2), 所以4α=2,得α12=所以f (x )=故f (8)==m =, 故选B . 【点睛】本题考查了幂函数的定义,考查了函数值的求法,是基础题. 5.C 【解析】 【分析】直接利用弧长公式计算得到答案. 【详解】332l r παα===,则2πα=. 故选:C . 【点睛】本题考查了弧长公式,属于简单题. 6.A 【解析】 【分析】由函数f (2x )=x ﹣3,利用f (4)=f (22),能求出结果. 【详解】解:∵函数f (2x )=x ﹣3, ∴f (4)=f (22)=2﹣3=﹣1. 故选A . 【点睛】本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题. 7.A 【解析】 【分析】 化简得到11cos cos 2623y x x ππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,根据平移法则得到答案.【详解】11cos cos 2623y x x ππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,要得到1cos 26y x π⎛⎫=+ ⎪⎝⎭的图象,只需将函数1cos 2y x =的图象向左平移3π个单位长度.故选:A . 【点睛】本题考查了三角函数平移,意在考查学生对于函数平移的理解. 8.B 【解析】 【分析】构建函数,判断函数在定义域上为单调增函数,再用零点存在定理判断即可. 【详解】解:构建函数f (x )=log 2x +3x ﹣2,函数在R 上连续单调增函数,∵f (1)=3﹣2>0,f (12)=﹣132+-2<0, ∴f (x )=log 2x +3x ﹣2的零点所在区间为(12,1),∴方程log 2x +3x ﹣2=0的根所在的区间为(12,1),故选B .【点睛】本题考查方程与函数之间的联系,考查零点存在定理的运用,属于基础题. 9.B 【解析】 【分析】根据题意,由函数的解析式可得f (m )与f (﹣m )的解析式,相加可得f (m )+f (﹣m )=﹣2,结合f (m )的值,即可得答案. 【详解】解:根据题意,函数f (x )=sin x +2x 3﹣1,则f (m )=sin m +2m 3﹣1,f (﹣m )=sin (﹣m )+2(﹣m )3﹣1=﹣(sin m +2m 3)﹣1, 则有f (m )+f (﹣m )=﹣2, 又由f (m )=6,则f (﹣m )=﹣8; 故选B . 【点睛】本题考查函数奇偶性的性质以及应用,关键是分析f (m )与f (﹣m )的关系. 10.D 【解析】 【分析】根据函数()f x 在区间(0,1]上存在零点,根据零点的存在定理,列出不等式组()()0010f f ⎧<⎪⎨≥⎪⎩,即可求解,得到答案。
2017-2018学年贵州省黔南州高一(上)期末数学试卷一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)已知集合P={x|﹣1<x<1},Q={x|0<x<3},那么P∪Q=()A.(﹣1,2)B.(0,1) C.(﹣1,0)D.(﹣1,3)2.(5分)函数f(x)=x2﹣2x+2在区间(0,4]的值域为()A.(2,10] B.[1,10] C.(1,10] D.[2,10]3.(5分)(log29)•(log34)=()A.B.C.2 D.44.(5分)在下列向量组中,可以把向量=(3,2)表示出来的是()A.=(0,0),=(1,2)B.=(﹣1,2),=(5,﹣2)C.=(3,5),=(6,10)D.=(2,﹣3),=(﹣2,3)5.(5分)函数f(x)=的定义域为()A.[1,10] B.[1,2)∪(2,10]C.(1,10] D.(1,2)∪(2,10]6.(5分)为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin2x的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度 D.向右平行移动个单位长度7.(5分)已知函数f(x)满足f(1﹣x)=f(1+x),当x∈(﹣∞,1]时,函数f(x)单调递减,设a=f(﹣),b=f(﹣1),c=f(2),则a、b、c的大小关系为()A.c<a<b B.a<b<c C.a<c<b D.c<b<a8.(5分)若O为△ABC所在平面内任一点,且满足(﹣)•(+﹣2)=0,则△ABC的形状为()A.等腰三角形B.直角三角形C.正三角形D.等腰直角三角形9.(5分)设向量=(cosx,﹣sinx),=(﹣cos(﹣x),cosx),且=t,t ≠0,则sin2x值()A.1 B.﹣1 C.±1 D.010.(5分)函数y=Asin(ωx+φ)在一个周期内的图象如图,此函数的解析式为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(﹣)D.y=2sin(2x﹣)11.(5分)已知在△ABC中,D是AB边上的一点,=λ(+),||=2,||=1,若=,=,则用,表示为()A.+ B.+ C.+ D.﹣12.(5分)设函数f(x)的定义域为D,若函数f(x)满足条件:存在[a,b]⊆D,使f(x)在[a,b]上的值域是[,],则称f(x)为“倍缩函数”,若函数f(x)=log2(2x+t)为“倍缩函数”,则实数t的取值范围是()A.(0,)B.(﹣∞,) C.(0,]D.(﹣∞,]二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)设一扇形的弧长为4cm,面积为4cm2,则这个扇形的圆心角的弧度数是.14.(5分)若tanα=﹣,则sin2α+2sinαcosα的值为.15.(5分)已知函数f(x)是定义在R上的偶函数,若对于x≥0,都有f(x+2)=﹣,且当x∈[0,2)时,f(x)=log2(x+1),则f(﹣2017)+f(2019)=.16.(5分)已知函数(),若函数F(x)=f(x)﹣3的所有零点依次记为x1,x2,x3,…,x n,且x1<x2<x3<…<x n,则x1+2x2+2x3+…+2x n﹣1+x n=.三、简答题(共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知集合A={x|x2﹣6x+5<0},C={x|3a﹣2<x<4a﹣3},若C⊆A,求a的取值范围.18.(12分)已知cosα=,cos(α﹣β)=,且0<β<α<,(1)求tan2α的值;(2)求β.19.(12分)已知(x∈R,a∈R,a是常数),且(其中O为坐标原点).(1)求函数y=f(x)的单调区间;(2)若时,f(x)的最大值为4,求a的值.20.(12分)若点M是△ABC所在平面内一点,且满足:=+.(1)求△ABM与△ABC的面积之比.(2)若N为AB中点,AM与CN交于点O,设=x+y,求x,y的值.21.(12分)某地方政府为鼓励全民创业,拟对本地产值在50万元到500万元的新增小微企业进行奖励,奖励方案遵循以下原则:奖金y(单位:万元)随年产值x(单位:万元)的增加而增加,且奖金不低于7万元,同时奖金不超过年产值的15%.(1)若某企业产值100万元,核定可得9万元奖金,试分析函数y=lgx+kx+5(k 为常数)是否为符合政府要求的奖励函数模型,并说明原因(已知lg2≈0.3,lg5≈0.7);(2)若采用函数f(x)=作为奖励函数模型,试确定最小的正整数a的值.22.(12分)已知指数函数y=g(x)满足:g(3)=8,定义域为R的函数f(x)=是奇函数.(1)确定y=g(x),y=f(x)的解析式;(2)若h(x)=f(x)+a在(﹣1,1)上有零点,求a的取值范围;(3)若对任意的t∈(﹣4,4),不等式f(6t﹣3)+f(t2﹣k)<0恒成立,求实数k的取值范围.2017-2018学年贵州省黔南州高一(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)已知集合P={x|﹣1<x<1},Q={x|0<x<3},那么P∪Q=()A.(﹣1,2)B.(0,1) C.(﹣1,0)D.(﹣1,3)【解答】解:集合P={x|﹣1<x<1},Q={x|0<x<3},那么P∪Q={x|﹣1<x<3}=(﹣1,3).故选:D.2.(5分)函数f(x)=x2﹣2x+2在区间(0,4]的值域为()A.(2,10] B.[1,10] C.(1,10] D.[2,10]【解答】解:函数f(x)=x2﹣2x+2的图象是开口朝上,且以直线x=1为对称轴的抛物线,故函数f(x)=x2﹣2x+2在区间(0,1]为减函数,在[1,4]上为增函数,故当x=1时,函数f(x)取最小值1;当x=4时,函数f(x)取最大值10;故函数f(x)=x2﹣2x+2在区间(0,4]的值域为[1,10],故选:B.3.(5分)(log29)•(log34)=()A.B.C.2 D.4【解答】解:(log29)•(log34)===4.故选D.4.(5分)在下列向量组中,可以把向量=(3,2)表示出来的是()A.=(0,0),=(1,2)B.=(﹣1,2),=(5,﹣2)C.=(3,5),=(6,10)D.=(2,﹣3),=(﹣2,3)【解答】解:根据,选项A:(3,2)=λ(0,0)+μ(1,2),则3=μ,2=2μ,无解,故选项A不能;选项B:(3,2)=λ(﹣1,2)+μ(5,﹣2),则3=﹣λ+5μ,2=2λ﹣2μ,解得,λ=2,μ=1,故选项B能.选项C:(3,2)=λ(3,5)+μ(6,10),则3=3λ+6μ,2=5λ+10μ,无解,故选项C不能.选项D:(3,2)=λ(2,﹣3)+μ(﹣2,3),则3=2λ﹣2μ,2=﹣3λ+3μ,无解,故选项D不能.故选:B.5.(5分)函数f(x)=的定义域为()A.[1,10] B.[1,2)∪(2,10]C.(1,10] D.(1,2)∪(2,10]【解答】解:函数f(x)=有意义,可得,即为,则1<x≤10,且x≠2,故选:D.6.(5分)为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin2x的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度 D.向右平行移动个单位长度【解答】解:把函数y=sin2x的图象向右平移个单位长度,可得函数y=sin2(x ﹣)=sin(2x﹣)的图象,故选:D.7.(5分)已知函数f(x)满足f(1﹣x)=f(1+x),当x∈(﹣∞,1]时,函数f(x)单调递减,设a=f(﹣),b=f(﹣1),c=f(2),则a、b、c的大小关系为()A.c<a<b B.a<b<c C.a<c<b D.c<b<a【解答】解:由f(1﹣x)=f(1+x),得函数关于x=1对称,则c=f(2)=f(1+1)=f(1﹣1)=f(0),∵当x∈(﹣∞,1]时,函数f(x)单调递减,且﹣1<﹣<0,∴f(﹣1)>f(﹣)>f(0),即c<a<b,故选:A8.(5分)若O为△ABC所在平面内任一点,且满足(﹣)•(+﹣2)=0,则△ABC的形状为()A.等腰三角形B.直角三角形C.正三角形D.等腰直角三角形【解答】解:因为(﹣)•(+﹣2)=0,即•(+)=0;又因为﹣=,所以(﹣)•(+)=0,即||=||,所以△ABC是等腰三角形.故选:A.9.(5分)设向量=(cosx,﹣sinx),=(﹣cos(﹣x),cosx),且=t,t ≠0,则sin2x值()A.1 B.﹣1 C.±1 D.0【解答】解:∵=t,t≠0,∴sinx•﹣cosxcosx=0,化为:tanx=±1.则sin2x====±1.故选:C.10.(5分)函数y=Asin(ωx+φ)在一个周期内的图象如图,此函数的解析式为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(﹣)D.y=2sin(2x﹣)【解答】解:由已知可得函数y=Asin(ωx+ϕ)的图象经过(﹣,2)点和(﹣,2)则A=2,T=π即ω=2则函数的解析式可化为y=2sin(2x+ϕ),将(﹣,2)代入得﹣+ϕ=+2kπ,k∈Z,即φ=+2kπ,k∈Z,当k=0时,φ=此时故选A11.(5分)已知在△ABC中,D是AB边上的一点,=λ(+),||=2,||=1,若=,=,则用,表示为()A.+ B.+ C.+ D.﹣【解答】解:∵=λ(+),∴为∠ACB角平分线方向,根据角平分线定理可知:=,∴=.∴===.故选:A.12.(5分)设函数f(x)的定义域为D,若函数f(x)满足条件:存在[a,b]⊆D,使f(x)在[a,b]上的值域是[,],则称f(x)为“倍缩函数”,若函数f(x)=log2(2x+t)为“倍缩函数”,则实数t的取值范围是()A.(0,)B.(﹣∞,) C.(0,]D.(﹣∞,]【解答】解:∵函数f(x)=f(x)=log2(2x+t)为“倍缩函数”,且满足存在[a,b]⊆D,使f(x)在[a,b]上的值域是[,],∴f(x)在[a,b]上是增函数;∴,即,∴a,b是方程2x﹣+t=0的两个根,设m==,则m>0,此时方程为m2﹣m+t=0即方程有两个不等的实根,且两根都大于0;∴,解得:0<t<,∴满足条件t的范围是(0,),故选:A.二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)设一扇形的弧长为4cm,面积为4cm2,则这个扇形的圆心角的弧度数是2.【解答】解:因为扇形的弧长l为4,面积S为4,所以扇形的半径r为:r=4,r=2,则扇形的圆心角α的弧度数为=2.故答案为:2.14.(5分)若tanα=﹣,则sin2α+2sinαcosα的值为.【解答】解:∵tanα=﹣,∴sin2α+2sinαcosα===.故答案为:.15.(5分)已知函数f(x)是定义在R上的偶函数,若对于x≥0,都有f(x+2)=﹣,且当x∈[0,2)时,f(x)=log2(x+1),则f(﹣2017)+f(2019)= 0.【解答】解:对于x≥0,都有f(x+2)=﹣,∴f(x+4)=﹣=﹣=f(x),即当x≥0时,函数f(x)是周期为4的周期函数,∵当x∈[0,2)时,f(x)=log2(x+1),∴f(﹣2017)=f(2017)=f(504×4+1)=f(1)=log22=1,f(2019)=f(504×4+3)=f(3)=f(2+1)=﹣=﹣1,则f(﹣2017)+f(2019)=﹣1+1=0,故答案为:0.16.(5分)已知函数(),若函数F(x)=f(x)﹣3的所有零点依次记为x1,x2,x3,…,x n,且x1<x2<x3<…<x n,则x1+2x2+2x3+…+2x n﹣1+x n=445π.【解答】解:令2x+=+kπ得x=+,k∈Z,即f(x)的对称轴方程为x=+,k∈Z.∵f(x)的最小正周期为T=π,,∴f(x)在(0,)上有30条对称轴,∴x1+x2=2×,x2+x3=2×,x3+x4=2×,…,x n﹣1+x n=2×,将以上各式相加得:x1+2x2+2x3+…+2x n﹣1+x n=2×(+++…+)=2××30=445π.故答案为:445π.三、简答题(共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知集合A={x|x2﹣6x+5<0},C={x|3a﹣2<x<4a﹣3},若C⊆A,求a的取值范围.【解答】解:∵集合A={x|x2﹣6x+5<0}={x|1<x<5},C={x|3a﹣2<x<4a﹣3},C⊆A,∴当C=∅时,3a﹣2≥4a﹣3,解得a≤1;当C≠∅时,a>1,∴.解得1<a≤2.综上所述:a的取值范围是(﹣∞,2].18.(12分)已知cosα=,cos(α﹣β)=,且0<β<α<,(1)求tan2α的值;(2)求β.【解答】解:(1)由0<β<α<,cosα=,可得sinα=,∴tan=,则tan2α==﹣;(2)由cosα=,cos(α﹣β)=,且0<β<α<,得sin(α﹣β)==,可得,cosβ=cos[α﹣(α﹣β)]=cosαcos(α﹣β)+sinαsin(α﹣β)=∴.19.(12分)已知(x∈R,a∈R,a是常数),且(其中O为坐标原点).(1)求函数y=f(x)的单调区间;(2)若时,f(x)的最大值为4,求a的值.【解答】解:(1)∵已知(x∈R,a∈R,a 是常数),且(其中O为坐标原点),∴f(x)=1+cos2x+sin2x+a=2sin(2x+)+a+1,令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,可得函数f(x)的增区间为[kπ﹣,kπ+],k∈Z.(2)当时,2x﹣∈[﹣,],故当2x﹣=时,f(x)取得最大值为a+3=4,∴a=1.20.(12分)若点M是△ABC所在平面内一点,且满足:=+.(1)求△ABM与△ABC的面积之比.(2)若N为AB中点,AM与CN交于点O,设=x+y,求x,y的值.【解答】解(1)由,可知M、B、C三点共线.如图令==,∴,即面积之比为1:4.(2)由,,由O、M、A三点共线及O、N、C三点共线21.(12分)某地方政府为鼓励全民创业,拟对本地产值在50万元到500万元的新增小微企业进行奖励,奖励方案遵循以下原则:奖金y(单位:万元)随年产值x(单位:万元)的增加而增加,且奖金不低于7万元,同时奖金不超过年产值的15%.(1)若某企业产值100万元,核定可得9万元奖金,试分析函数y=lgx+kx+5(k 为常数)是否为符合政府要求的奖励函数模型,并说明原因(已知lg2≈0.3,lg5≈0.7);(2)若采用函数f(x)=作为奖励函数模型,试确定最小的正整数a的值.【解答】解:(1)对于函数模型y=lgx+kx+5 (k 为常数),x=100时,y=9,代入解得k=,所以y=lgx++5.当x∈[50,500]时,y=lgx++5是增函数,但x=50时,f(50)=lg50+6>7.5,即奖金不超过年产值的15%不成立,故该函数模型不符合要求;(2)对于函数模型f(x)==15﹣a为正整数,函数在[50,500]递增;f(x)min=f(50)≥7,解得a≤344;要使f(x)≤0.15x对x∈[50,500]恒成立,即a≥﹣0.15x2+13.8x对x∈[50,500]恒成立,所以a≥315.综上所述,315≤a≤344,所以满足条件的最小的正整数a的值为315.22.(12分)已知指数函数y=g(x)满足:g(3)=8,定义域为R的函数f(x)=是奇函数.(1)确定y=g(x),y=f(x)的解析式;(2)若h(x)=f(x)+a在(﹣1,1)上有零点,求a的取值范围;(3)若对任意的t∈(﹣4,4),不等式f(6t﹣3)+f(t2﹣k)<0恒成立,求实数k的取值范围.【解答】(本小题12分)(1)设g(x)=a x(a>0且a≠1),∵g(3)=8,∴a3=8,解得a=2.∴g(x)=2x.…(1分)∴,∵函数f(x)是定义域为R的奇函数,∴f(0)=0,∴=0,∴n=1,∴又f(﹣1)=f(1),∴=,解得m=2∴.…(3分)(2)由(1)知,易知f(x)在R上为减函数,…(4分)又h(x)=f(x)+a在(﹣1,1)上有零点,从而h(﹣1)h(1)<0,即,…(6分)∴(a+)(a﹣)<0,∴﹣<a<,∴a的取值范围为(﹣,);…(8分)(3)由(1)知,又f(x)是奇函数,∴f(6t﹣3)+f(t2﹣k)<0,∴f(6t﹣3)<﹣f(t2﹣k)=f(k﹣t2),∵f(x)在R上为减函数,由上式得6t﹣3>k﹣t2,…(10分)即对一切t∈(﹣4,4),有t2+6t﹣3>k恒成立,令m(t)=t2+6t﹣3,t∈(﹣4,4),易知m(t)>﹣12,…(11分)∴k<﹣12,即实数k的取值范围是(﹣∞,﹣12).…(12分)。