材料力学 简单的超静定问题
- 格式:ppt
- 大小:7.68 MB
- 文档页数:9
轴力图01234-5-4-3-2-101234567N(F/4)x(a)第六章 简单超静定问题 习题解[习题6-1] 试作图示等直杆的轴力图解:把B 支座去掉,代之以约束反力B R (↓)。
设2F 作用点为C ,F 作用点为D ,则:B BD R N =F R N B CD +=F R N B AC 3+=变形谐调条件为:0=∆l02=⋅+⋅+⋅EAa N EA a N EA a N BD CD AC 02=++BD CD AC N N N03)(2=++++F R F R R B B B45F R B -=(实际方向与假设方向相反,即:↑) 故:45F N BD-= 445F F F N CD-=+-= 47345F F F N AC=+-= 轴力图如图所示。
[习题6-2] 图示支架承受荷载kN F 10=,1,2,3各杆由同一种材料制成,其横截面面积分别为21100mm A =,22150mm A =,23200mm A =。
试求各杆的轴力。
解:以节点A 为研究对象,其受力图如图所示。
∑=0X030cos 30cos 01032=-+-N N N0332132=-+-N N N0332132=+-N N N (1)∑=0Y030sin 30sin 0103=-+F N N2013=+N N (2)变形谐调条件:设A 节点的水平位移为x δ,竖向位移为y δ,则由变形协调图(b )可知:00130cos 30sin x y l δδ+=∆x l δ=∆200330cos 30sin x y l δδ-=∆03130cos 2x l l δ=∆-∆2313l l l ∆=∆-∆设l l l ==31,则l l 232= 223311233EA l N EA l N EA l N ⋅⋅=- 22331123A N A N A N =- 15023200100231⨯=-N N N23122N N N =-21322N N N -= (3)(1)、(2)、(3)联立解得:kN N 45.81=;kN N 68.22=;kN N 54.111=(方向如图所示,为压力,故应写作:kN N 54.111-=)。
材料力学超静定问题
材料力学是研究物质内部受力和变形的学科,其中超静定问题是力学中的一个
重要分支。
超静定问题是指在结构中由于支座的限制,导致结构处于超静定状态,无法通过静力学方法进行完全确定。
在实际工程中,超静定问题的解决对于结构的设计和分析具有重要意义。
超静定问题的解决方法有很多种,其中较为常用的是引入位移法和能量法。
位
移法是通过引入未知的位移量来解决超静定问题,通过位移的约束条件和力的平衡条件来求解结构的内力和位移。
而能量法则是通过能量的原理来解决超静定问题,通过构造适当的能量函数,利用能量的最小原理来求解结构的内力和位移。
在实际工程中,超静定问题的解决需要结合具体的结构和受力情况来进行分析。
通常可以通过建立结构的受力模型,确定支座的约束条件,引入适当的未知量,建立相应的方程组,利用位移法或能量法来求解结构的内力和位移。
在进行计算时,需要考虑结构的受力平衡和位移连续性等条件,确保所得到的解是合理的。
除了位移法和能量法外,还可以利用有限元方法来求解超静定问题。
有限元方
法是一种数值计算方法,通过将结构福利分割成有限个单元,建立相应的数学模型,利用数值计算的方法来求解结构的内力和位移。
有限元方法具有较高的计算精度和适用范围,可以有效地求解复杂结构的超静定问题。
总的来说,超静定问题的解决是结构力学中的一个重要课题,对于工程实践具
有重要意义。
在实际工程中,需要根据具体的结构和受力情况,选择合适的方法来进行分析和求解。
通过合理的建模和计算,可以有效地解决超静定问题,为工程设计和分析提供可靠的依据。