2021高考数学一轮复习考点规范练:18任意角、弧度制及任意角的三角函数(含解析)
- 格式:docx
- 大小:20.21 KB
- 文档页数:5
高考一轮复习专题——三角函数第1讲 任意角、弧度制及任意角的三角函数基础梳理1.任意角 (1)角的概念的推广①按旋转方向不同分为正角、负角、零角. ②按终边位置不同分为象限角和轴线角. (2)终边相同的角终边与角α相同的角可写成α+k ·360°(k ∈Z ). (3)弧度制①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角. ②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零, |α|=l r,l 是以角α作为圆心角时所对圆弧的长,r 为半径.③用“弧度”做单位来度量角的制度叫做弧度制,比值lr 与所取的r 的大小无关,仅与角的大小有关.④弧度与角度的换算:360°=2π弧度;180°=π弧度. ⑤弧长公式:l =|α|r ,扇形面积公式:S 扇形=12lr =12|α|r 2.2.任意角的三角函数定义设α是一个任意角,角α的终边上任意一点P (x ,y ),它与原点的距离为r (r >0),那么角α的正弦、余弦、正切分别是:sin α=yr ,cos α=x r,tan α=y x,它们都是以角为自变量,以比值为函数值的函数. 3.三角函数线设角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边与单位圆相交于点P ,过P 作PM 垂直于x 轴于M ,则点M 是点P 在x 轴上的正射影.由三角函数的定义知,点P 的坐标为(cos_α,sin_α),即P (cos_α,sin_α),其中cos α=OM ,sin α=MP ,单位圆与x 轴的正半轴交于点A ,单位圆在A 点的切线与α的终边或其反向延长线相交于点T ,则tan α=AT .我们把有向线段OM 、MP 、AT 叫做α的余弦线、正弦线、正切线.三角函数线有向线段MP 为正弦线有向线段OM 为余弦线有向线段AT为正切线一条规律三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦. (2)终边落在x 轴上的角的集合{β|β=kπ,k ∈Z };终边落在y 轴上的角的集合⎭⎬⎫⎩⎨⎧∈+=Z k k ,2ππββ;终边落在坐标轴上的角的集合可以表示为⎭⎬⎫⎩⎨⎧∈=Z k k ,2πββ. 两个技巧(1)在利用三角函数定义时,点P 可取终边上任一点,如有可能则取终边与单位圆的交点,|OP |=r 一定是正值.(2)在解简单的三角不等式时,利用单位圆及三角函数线是一个小技巧. 三个注意(1)注意易混概念的区别:第一象限角、锐角、小于90°的角是概念不同的三类角,第一类是象限角,第二类、第三类是区间角.(2)角度制与弧度制可利用180°=π rad 进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.(3)注意熟记0°~360°间特殊角的弧度表示,以方便解题.双基自测1.(人教A版教材习题改编)下列与9π4的终边相同的角的表达式是( ).A.2kπ+45°(k∈Z) B.k·360°+94π(k∈Z)C.k·360°-315°(k∈Z) D.kπ+5π4(k∈Z)2.若α=k·180°+45°(k∈Z),则α在( ).A.第一或第三象限B.第一或第二象限C.第二或第四象限D.第三或第四象限3.若sin α<0且tan α>0,则α是( ).A.第一象限角B.第二象限角C.第三象限角D.第四象限角4.已知角α的终边过点(-1,2),则cos α的值为( ).A.-55B.255C.-255D.-125.(2011·江西)已知角θ的顶点为坐标原点,始边为x轴非负半轴,若P(4,y)是角θ终边上一点,且sin θ=-255,则y=________.考向一角的集合表示及象限角的判定【例1】►(1)写出终边在直线y=3x上的角的集合;(2)若角θ的终边与6π7角的终边相同,求在[0,2π)内终边与θ3角的终边相同的角;(3)已知角α是第二象限角,试确定2α、α2所在的象限.【训练1】角α与角β的终边互为反向延长线,则( ).A.α=-βB.α=180°+βC.α=k·360°+β(k∈Z)D .α=k ·360°±180°+β(k ∈Z )考向二 三角函数的定义【例2】►已知角θ的终边经过点P (-3,m )(m ≠0)且sin θ=24m ,试判断角θ所在的象限,并求cos θ和tan θ的值.【训练2】(2011·课标全国)已知角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边在直线y =2x 上,则cos 2θ=( ). A .-45 B .-35 C.35 D.45考向三 弧度制的应用【例3】►已知半径为10的圆O 中,弦AB 的长为10. (1)求弦AB 所对的圆心角α的大小;(2)求α所在的扇形的弧长l 及弧所在的弓形的面积S .【训练3】已知扇形周长为40,当它的半径和圆心角取何值时,才使扇形面积最大?考向四 三角函数线及其应用【例4】►在单位圆中画出适合下列条件的角α的终边的范围.并由此写出角α的集合: (1)sin α≥32; (2)cos α≤-12.【训练4】求下列函数的定义域:(1)y =2cos x -1; (2)y =lg(3-4sin 2x ). 解 (1)∵2cos x -1≥0,∴cos x ≥12.重点突破——如何利用三角函数的定义求三角函数值【问题研究】三角函数的定义:设α是任意角,其终边上任一点P (不与原点重合)的坐标为(x ,y ),它到原点的距离是r (r =x 2+y 2>0),则sin α=yr、cosα=x r 、tan α=yx 分别是α的正弦、余弦、正切,它们都是以角为自变量,以比值为函数值的函数,这样的函数称为三角函数,这里x ,y 的符号由α终边所在象限确定,r 的符号始终为正,应用定义法解题时,要注意符号,防止出现错误.三角函数的定义在解决问题中应用广泛,并且有时可以简化解题过程.【解决方案】利用三角函数的定义求三角函数值时,首先要根据定义正确地求得x ,y ,r 的值;然后对于含参数问题要注意分类讨论.【示例】►(本题满分12分)(2011·龙岩月考)已知角α终边经过点P (x ,-2)(x ≠0),且cos α=36x ,求sin α、tan α的值.【试一试】已知角α的终边在直线3x +4y =0上,求sin α+cos α+45tan α.第2讲 同角三角函数的基本关系与诱导公式基础梳理1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1; (2)商数关系:sin αcos α=tan α.2.诱导公式公式一:sin(α+2k π)=sin α,cos(α+2k π)=cos α,其中k ∈Z .公式二:sin(π+α)=-sin α,cos(π+α)=-cos α, tan(π+α)=tan α.公式三:sin(-α)=-sin α,cos(-α)=cos α. 公式四:sin(π-α)=sin α,cos(π-α)=-cos α. 公式五:sin )2(απ-=cos α,cos )2(απ-=sin α.公式六:sin )2(απ+=cos α,cos )2(απ+=-sin α. 诱导公式可概括为k ·π2±α的各三角函数值的化简公式.记忆规律是:奇变偶不变,符号看象限.其中的奇、偶是指π2的奇数倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称变为相应的余名函数;若是偶数倍,则函数名称不变,符号看象限是指把α看成锐角时原函数值的符号作为结果的符号.一个口诀诱导公式的记忆口诀为:奇变偶不变,符号看象限.三种方法在求值与化简时,常用方法有: (1)弦切互化法:主要利用公式tan α=sin αcos α化成正、余弦.(2)和积转换法:利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化.(3)巧用“1”的变换:1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=tan π4=…. 三个防范(1)利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负-脱周-化锐. 特别注意函数名称和符号的确定.(2)在利用同角三角函数的平方关系时,若开方,要特别注意判断符号. (3)注意求值与化简后的结果一般要尽可能有理化、整式化.双基自测1.(人教A 版教材习题改编)已知sin(π+α)=12,则cos α的值为( ).A .±12 B.12 C.32 D .±322.(2012·杭州调研)点A (sin 2 011°,cos 2 011°)在直角坐标平面上位于( ). A .第一象限 B .第二象限 C .第三象限D .第四象限3.已知cos α=45,α∈(0,π),则tan α的值等于( ).A.43B.34 C .±43 D .±344.cos )417(π--sin )417(π-的值是( ). A. 2 B .- 2 C .0 D.225.已知α是第二象限角,tan α=-12,则cos α=________.考向一 利用诱导公式化简、求值【例1】►已知)tan()2sin()2cos()sin()(απαπαπαπα++--=f ,求【训练1】已知角α终边上一点P (-4,3),则的值为________.考向二 同角三角函数关系的应用)3(πf )29sin()211cos()sin()2cos(απαπαπαπ+---+【例2】►(2011·长沙调研)已知tan α=2. 求:(1)2sin α-3cos α4sin α-9cos α;(2)4sin 2α-3sin αcos α-5cos 2α.【训练2】已知sin α+3cos α3cos α-sin α=5.则sin 2α-sin αcos α=________.考向三 三角形中的诱导公式【例3】►在△ABC 中,sin A +cos A =2,3cos A =-2cos(π-B ),求△ABC 的三个内角.【训练3】若将例3的已知条件“sin A +cos A =2”改为“sin(2π-A )=-2sin(π-B )”其余条件不变,求△ABC 的三个内角.重点突破——忽视题设的隐含条件致误【问题诊断】涉及到角的终边、函数符号和同角函数关系问题时,应深挖隐含条件,处理好开方、平方关系,避免出现增解与漏解的错误.,【防范措施】一要考虑题设中的角的范围;二要考虑题设中的隐含条件 【示例】►若sin θ,cos θ是关于x 的方程5x 2-x +a =0(a 是常数)的两根,θ∈(0,π),求cos 2θ的值.【试一试】已知sin θ+cos θ=713,θ∈(0,π),求tan θ.第3讲 三角函数的图象与性质基础梳理1.“五点法”描图(1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为(0,0),)1,2(π,(π,0),)1,23(-π,(2π,0).(2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为(0,1),)0,2(π,(π,-1),)0,23(π,(2π,1).2.三角函数的图象和性质定义域R R {x|x≠kπ+π2,k∈Z}图象值域[-1,1][-1,1]R对称性对称轴:x=kπ+π2(k∈Z)对称中心:(kπ,0)(k∈Z)对称轴:x=kπ(k∈Z)对称中心:错误!无对称轴对称中心:)0,2(πk(k∈Z)周期2π2ππ单调性单调增区间⎥⎦⎤⎢⎣⎡+-22,22ππππkk(k∈Z);单调减区间⎥⎦⎤⎢⎣⎡++ππππ232,22kk(k∈Z)单调增区间[2kπ-π,2kπ](k∈Z);单调减区间[2kπ,2kπ+π](k∈Z)单调增区间)2,2(ππππ+-kk(k∈Z)奇偶性奇偶奇两条性质(1)周期性函数y=A sin(ωx+φ)和y=A cos(ωx+φ)的最小正周期为2π|ω|,y=tan(ωx+φ)的最小正周期为π|ω|.(2)奇偶性三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx ,而偶函数一般可化为y =A cos ωx +b 的形式.三种方法求三角函数值域(最值)的方法: (1)利用sin x 、cos x 的有界性;(2)形式复杂的函数应化为y =A sin(ωx +φ)+k 的形式逐步分析ωx +φ的范围,根据正弦函数单调性写出函数的值域;(3)换元法:把sin x 或cos x 看作一个整体,可化为求函数在区间上的值域(最值)问题.双基自测1.(人教A 版教材习题改编)函数y =cos )3(π+x ,x ∈R ( ).A .是奇函数B .是偶函数C .既不是奇函数也不是偶函数D .既是奇函数又是偶函数2.函数y =tan )4(x -π的定义域为( ).A.⎭⎬⎫⎩⎨⎧∈-≠Z k k x x ,4ππB.⎭⎬⎫⎩⎨⎧∈-≠Z k k x x ,42ππC.⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,4ππD.⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,42ππ3.(2011·全国新课标)设函数f (x )=sin(ωx +φ)+cos(ωx +φ)(20πϕω<,>)的最小正周期为π,且f (-x )=f (x ),则( ). A .f (x )在)2,0(π单调递减B .f (x )在)43,4(ππ单调递减C .f (x )在)2,0(π单调递增D .f (x )在)43,4(ππ单调递增4.y =sin )4(π-x 的图象的一个对称中心是( ).A .(-π,0) B.)0,43(π-C.)0,23(π D.)0,2(π5.(2011·合肥三模)函数f (x )=cos )62(π+x 的最小正周期为________.考向一 三角函数的定义域与值域【例1】►(1)求函数y =lg sin 2x +9-x 2的定义域. (2)求函数y =cos 2x +sin x (4π≤x )的最大值与最小值.【训练1】(1)求函数y =sin x -cos x 的定义域.(2)已知函数f (x )=cos )32(π-x +2sin )4(π-x ·sin )4(π+x ,求函数f (x )在区间⎥⎦⎤⎢⎣⎡-2,12ππ上的最大值与最小值.考向二 三角函数的奇偶性与周期性【例2】►(2011·大同模拟)函数y =2cos 2)4(π-x -1是( ).A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数 【训练2】已知函数f (x )=(sin x -cos x )sin x ,x ∈R ,则f (x )的最小正周期是________.考向三 三角函数的单调性【例3】►已知f (x )=sin x +sin )2(x -π,x ∈[0,π],求f (x )的单调递增区间.【训练3】函数f (x )=sin )32(π+-x 的单调减区间为______.考向四 三角函数的对称性【例4】►(1)函数y =cos )32(π+x 图象的对称轴方程可能是( ).A .x =-π6B .x =-π12C .x =π6D .x =π12【训练4】(1)函数y =2sin(3x +φ)(2πϕ<)的一条对称轴为x =π12,则φ=________.(2)函数y =cos(3x +φ)的图象关于原点成中心对称图形.则φ=________.重点突破——利用三角函数的性质求解参数问题含有参数的三角函数问题,一般属于逆向型思维问题,难度相对较大一些.正确利用三角函数的性质解答此类问题,是以熟练掌握三角函数的各条性质为前提的,解答时通常将方程的思想与待定系数法相结合.下面就利用三角函数性质求解参数问题进行策略性的分类解析. 一、根据三角函数的单调性求解参数【示例】►(2011·镇江三校模拟)已知函数f (x )=sin )3(πω+x (ω>0)的单调递增区间为⎥⎦⎤⎢⎣⎡+-12,125ππππk k (k ∈Z ),单调递减区间为⎥⎦⎤⎢⎣⎡++127,12ππππk k (k ∈Z ),则ω的值为________.二、根据三角函数的奇偶性求解参数【示例】► (2011·泉州模拟)已知f (x )=cos(3x +φ)-3sin(3x +φ)为偶函数,则φ可以取的一个值为( ). A.π6 B.π3 C .-π6 D .-π3▲根据三角函数的周期性求解参数【示例】► (2011·合肥模拟)若函数y =sin ωx ·sin )2(πω+x (ω>0)的最小正周期为π7,则ω=________.▲根据三角函数的最值求参数【示例】► (2011·洛阳模拟)若函数f(x)=a sin x-b cos x在x=π3处有最小值-2,则常数a、b的值是( ).A.a=-1,b= 3 B.a=1,b=- 3C.a=3,b=-1 D.a=-3,b=1第4讲正弦型函数y=A sin(ωx+φ)的图象及应用基础梳理1.用五点法画y=A sin(ωx+φ)一个周期内的简图时,要找五个特征点如下表所示x 0-φωπ2-φωπ-φω3π2-φω2π-φωωx+φ0π2π3π22πy=A sin(ωx+φ)0 A 0-A 0 2.函数y=sin x的图象变换得到y=A sin(ωx+φ)的图象的步骤3.图象的对称性函数y =A sin(ωx +φ)(A >0,ω>0)的图象是轴对称也是中心对称图形,具体如下:(1)函数y =A sin(ωx +φ)的图象关于直线x =x k (其中 ωx k +φ=k π+π2,k∈Z )成轴对称图形.(2)函数y =A sin(ωx +φ)的图象关于点(x k,0)(其中ωx k +φ=k π,k ∈Z )成中心对称图形. 一种方法在由图象求三角函数解析式时,若最大值为M ,最小值为m ,则A =M -m 2,k =M +m 2,ω由周期T 确定,即由2πω=T 求出,φ由特殊点确定.一个区别由y =sin x 的图象变换到y =A sin (ωx +φ)的图象,两种变换的区别:先相位变换再周期变换(伸缩变换),平移的量是|φ|个单位;而先周期变换(伸缩变换)再相位变换,平移的量是|φ|ω(ω>0)个单位.原因在于相位变换和周期变换都是针对x 而言,即x 本身加减多少值,而不是依赖于ωx 加减多少值. 两个注意作正弦型函数y =A sin(ωx +φ)的图象时应注意: (1)首先要确定函数的定义域;(2)对于具有周期性的函数,应先求出周期,作图象时只要作出一个周期的图象,就可根据周期性作出整个函数的图象.双基自测1.(人教A 版教材习题改编)y =2sin )42(π-x 的振幅、频率和初相分别为( ). A .2,1π,-π4 B .2,12π,-π4 C .2,1π,-π8D .2,12π,-π82.已知简谐运动f (x )=A sin(ωx +φ)(2πϕ<)的部分图象如图所示,则该简谐运动的最小正周期T 和初相φ分别为( ). A .T =6π,φ=π6B .T =6π,φ=π3C .T =6,φ=π6D .T =6,φ=π33.函数y =cos x (x ∈R )的图象向左平移π2个单位后,得到函数y =g (x )的图象,则g (x )的解析式应为( ).A .-sin xB .sin xC .-cos xD .cos x4.设ω>0,函数y =sin )3(πω+x +2的图象向右平移4π3个单位后与原图象重合,则ω的最小值是( ). A.23 B.43 C.32D .35.(2011·重庆六校联考)已知函数f (x )=sin(ωx +φ)(ω>0)的图象如图所示,则ω=________.考向一 作函数y =A sin(ωx +φ)的图象【例1】►设函数f (x )=cos(ωx +φ)(02-0<<,>ϕπω)的最小正周期为π,且)4(πf =32.(1)求ω和φ的值;(2)在给定坐标系中作出函数f (x )在[0,π]上的图象.【训练1】已知函数f (x )=3sin )421(π-x ,x ∈R .(1)画出函数f (x )在长度为一个周期的闭区间上的简图; (2)将函数y =sin x 的图象作怎样的变换可得到f (x )的图象?考向二 求函数y =A sin(ωx +φ)的解析式【例2】►(2011·江苏)函数f (x )=A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0)的部分图象如图所示,则f (0)的值是________.【训练2】已知函数y =A sin(ωx +φ)(A >0,|φ|<π2,ω>0)的图象的一部分如图所示. (1)求f (x )的表达式; (2)试写出f (x )的对称轴方程.考向三 函数y =A sin(ωx +φ)的图象与性质的综合应用【例3】►(2012·西安模拟)已知函数f (x )=A sin(ωx +φ),x ∈R (其中A >0,ω>0,0<φ<π2)的图象与x 轴的交点中,相邻两个交点之间的距离为π2,且图象上的一个最低点为M )2,32(-π. (1)求f (x )的解析式;(2)当x ∈⎥⎦⎤⎢⎣⎡2,12ππ时,求f (x )的值域.【训练3】(2011·南京模拟)已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象过点P )0,12(π,图象上与点P 最近的一个最高点是Q )5,3(π.(1)求函数的解析式; (2)求函数f (x )的递增区间.重点突破——怎样求解三角函数的最值问题【问题研究】(1)求三角函数的最值是高考的一个热点.在求解中,一定要注意其定义域,否则容易产生错误.(2)主要题型:①求已知三角函数的值域(或最值);②根据三角函数的值域(或最值)求相关的参数;③三角函数的值域(或最值)作为工具解决其他与范围相关的问题.【解决方案】①形如y =a sin x +b cos x +c 的三角函数,可通过引入辅助角Φ(2222sin ,cos b a b b a a +=+=φφ),将原式化为y =a 2+b 2·sin(x +φ)+c的形式后,再求值域(或最值);②形如y =a sin 2x +b sin x +c 的三角函数,可先设t =sin x ,将原式化为二次函数y =at 2+bt +c 的形式,进而在t ∈[-1,1]上求值域(或最值);③形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,将原式化为二次函数y =±12a (t 2-1)+bt +c 的形式,进而在闭区间t ∈[-2,2]上求最值.【示例】►(本题满分12分)(2011·北京)已知函数f (x )=4cos x sin )6(π+x -1.(1)求f (x )的最小正周期;(2)求f (x )在区间⎥⎦⎤⎢⎣⎡-4,6ππ上的最大值和最小值.【试一试】是否存在实数a ,使得函数y =sin 2x +a cos x +58a -32在闭区间⎥⎦⎤⎢⎣⎡2,0π上的最大值是1?若存在,求出对应的a 值?若不存在,试说明理由.第5讲 两角和与差的正弦、余弦和正切基础梳理1.两角和与差的正弦、余弦、正切公式(1)C (α-β):cos(α-β)=cos αcos β+sin αsin β; (2)C (α+β):cos(α+β)=cos αcos β-sin αsin β; (3)S (α+β):sin(α+β)=sin αcos β+cos_αsin β; (4)S (α-β):sin(α-β)=sin αcos β-cos αsin β; (5)T (α+β):tan(α+β)=tan α+tan β1-tan αtan β;(6)T (α-β):tan(α-β)=tan α-tan β1+tan αtan β.2.二倍角的正弦、余弦、正切公式 (1)S 2α:sin 2α=2sin_αcos_α;(2)C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; (3)T 2α:tan 2α=2tan α1-tan 2α.3.有关公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan_αtan_β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2; (3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin )4(πα±.4.函数f (α)=a cos α+b sin α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)或f (α)=a 2+b 2cos(α-φ),其中φ可由a ,b 的值唯一确定.两个技巧(1)拆角、拼角技巧:2α=(α+β)+(α-β);α=(α+β)-β;β=α+β2-α-β2;α-β2=)2(βα+-)2(βα+.(2)化简技巧:切化弦、“1”的代换等.三个变化(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”. (2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.双基自测1.(人教A 版教材习题改编)下列各式的值为14的是( ).A .2cos 2 π12-1 B .1-2sin 275° C.2tan 22.5°1-tan 222.5°D .sin 15°cos 15° 2.(2011·福建)若tan α=3,则sin 2αcos 2α的值等于( ).A .2B .3C .4D .6 3.已知sin α=23,则cos(π-2α)等于( ).A .-53 B .-19 C.19 D.534.(2011·辽宁)设sin )4(θπ+=13,则sin 2θ=( ).A .-79B .-19 C.19 D.795.tan 20°+tan 40°+3tan 20° tan 40°=________.考向一 三角函数式的化简【例1】►化简)4(sin )4tan(221cos 2cos 2224x x x x +-+-ππ.【训练1】化简:ααααα2sin )1cos )(sin 1cos (sin +--+.考向二 三角函数式的求值【例2】►已知0<β<π2<α<π,且cos )2(βα-=-19,sin )2(βα-=23,求cos(α+β)的值.【训练2】已知α,β∈)2,0(π,sin α=45,tan(α-β)=-13,求cos β的值.考向三 三角函数的求角问题【例3】►已知cos α=17,cos(α-β)=1314,且0<β<α<π2,求β.【训练3】已知α,β∈)2,2(ππ-,且tan α,tan β是方程x 2+33x +4=0的两个根,求α+β的值.考向四 三角函数的综合应用【例4】►(2010·北京)已知函数f (x )=2cos 2x +sin 2x .(1)求f )3(π的值;(2)求f (x )的最大值和最小值.【训练4】已知函数f (x )=2sin(π-x )cos x . (1)求f (x )的最小正周期;(2)求f (x )在区间⎥⎦⎤⎢⎣⎡-2,6ππ上的最大值和最小值.重点突破——三角函数求值、求角问题策略面对有关三角函数的求值、化简和证明,许多考生一筹莫展,而三角恒等变换更是三角函数的求值、求角问题中的难点和重点,其难点在于:其一,如何牢固记忆众多公式,其二,如何根据三角函数的形式去选择合适的求值、求角方法. 一、给值求值一般是给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如α=(α+β)-β,2α=(α+β)+(α-β)等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论.【示例】► (2011·江苏)已知tan )4(π+x =2,则tan x tan 2x 的值为________.二、给值求角“给值求角”:实质上也转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角.【示例】► (2011·南昌月考)已知tan(α-β)=12,tan β=-17,且α,β∈(0,π),求2α-β的值.▲三角恒等变换与向量的综合问题两角和与差的正弦、余弦、正切公式作为解题工具,是每年高考的必考内容,常在选择题中以条件求值的形式考查.近几年该部分内容与向量的综合问题常出现在解答题中,并且成为高考的一个新考查方向.【示例】► (2011·温州一模)已知向量a =(sin θ,-2)与b =(1,cos θ)互相垂直,其中θ∈)2,0(π.(1)求sin θ和cos θ的值;(2)若5cos(θ-φ)=35cos φ,0<φ<π2,求cos φ的值.第6讲正弦定理和余弦定理基础梳理1.正弦定理:asin A =bsin B=csin C=2R,其中R是三角形外接圆的半径.由正弦定理可以变形为:(1)a∶b∶c=sin A∶sin B∶sin C;(2)a=2R sin_A,b=2R sin_B,c=2R sin_C;(3)sin A=a2R,sin B=b2R,sin C=c2R等形式,以解决不同的三角形问题.2.余弦定理:a2=b2+c2-2bc cos A,b2=a2+c2-2ac cos B,c2=a2+b2-2ab cos C.余弦定理可以变形为:cos A=b2+c2-a22bc,cos B=a2+c2-b22ac,cos C=a2+b2-c22ab.3.S△ABC=12ab sin C=12bc sin A=12ac sin B=abc4R=12(a+b+c)·r(R是三角形外接圆半径,r是三角形内切圆的半径),并可由此计算R,r.4.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a,b,A,则A为锐角A为钝角或直角图形关系式a<b sin A a=b sin Ab sin A<a<ba≥b a>b a≤b解的个数无解一解两解一解一解无解一条规律在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC中,A>B⇔a>b⇔sin A>sin B.两类问题在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.情况(2)中结果可能有一解、两解、无解,应注意区分.余弦定理可解决两类问题:(1)已知两边及夹角求第三边和其他两角;(2)已知三边,求各角.两种途径根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.双基自测1.(人教A版教材习题改编)在△ABC中,A=60°,B=75°,a=10,则c等于( ).A.5 2 B.10 2C.1063D.5 62.在△ABC中,若sin Aa=cos Bb,则B的值为( ).A.30° B.45° C.60° D.90°3.(2011·郑州联考)在△ABC中,a=3,b=1,c=2,则A等于( ). A.30° B.45° C.60° D.75°4.在△ABC中,a=32,b=23,cos C=13,则△ABC的面积为( ).A.3 3 B.2 3 C.4 3 D. 35.已知△ABC三边满足a2+b2=c2-3ab,则此三角形的最大内角为________.考向一利用正弦定理解三角形【例1】►在△ABC中,a=3,b=2,B=45°.求角A,C和边c.【训练1】(2011·北京)在△ABC中,若b=5,∠B=π4,tan A=2,则sin A=________;a=________.考向二利用余弦定理解三角形【例2】►在△ABC中,a、b、c分别是角A、B、C的对边,且cos Bcos C=-b2a+c.(1)求角B的大小;(2)若b=13,a+c=4,求△ABC的面积.【训练2】(2011·桂林模拟)已知A,B,C为△ABC的三个内角,其所对的边分别为a,b,c,且2cos2A2+cos A=0.(1)求角A的值;(2)若a=23,b+c=4,求△ABC的面积.考向三 利用正、余弦定理判断三角形形状【例3】►在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,试判断△ABC 的形状.【训练3】在△ABC 中,若a cos A =b cos B =c cos C ;则△ABC 是( ). A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形考向四 正、余弦定理的综合应用【例3】►在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3. (1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin 2A ,求△ABC 的面积.【训练4】(2011·北京西城一模)设△ABC 的内角A ,B ,C 所对的边长分别为a ,b,c,且cos B=45,b=2.(1)当A=30°时,求a的值;(2)当△ABC的面积为3时,求a+c的值.重点突破——忽视三角形中的边角条件致错【问题诊断】考查解三角形的题在高考中一般难度不大,但稍不注意,会出现“会而不对,对而不全”的情况,其主要原因就是忽视三角形中的边角条件., 【防范措施】解三角函数的求值问题时,估算是一个重要步骤,估算时应考虑三角形中的边角条件.【示例】►(2011·安徽)在△ABC中,a,b,c分别为内角A,B,C所对的边长,a=3,b=2,1+2cos(B+C)=0,求边BC上的高.【试一试】(2011·辽宁)△ABC的三个内角A,B,C所对的边分别为a,b,c,a sin A sin B+b cos2A=2a.(1)求b a ;(2)若c2=b2+3a2,求B.第7讲正弦定理、余弦定理应用举例基础梳理1.用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.2.实际问题中的常用角(1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图(1)).(2)方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图(2)).(3)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏东60°等.(4)坡度:坡面与水平面所成的二面角的度数.一个步骤解三角形应用题的一般步骤:(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型.(3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.两种情形解三角形应用题常有以下两种情形(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.双基自测1.(人教A版教材习题改编)如图,设A,B两点在河的两岸,一测量者在A所在的同侧河岸边选定一点C,测出AC的距离为50 m,∠ACB=45°,∠CAB=105°后,就可以计算出A,B两点的距离为( ).A.50 2 m B.50 3 m C.25 2 m D.2522m2.从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为( ). A.α>β B.α=βC.α+β=90° D.α+β=180°3.若点A在点C的北偏东30°,点B在点C的南偏东60°,且AC=BC,则点A 在点B的( ).A.北偏东15° B.北偏西15°C.北偏东10°D.北偏西10°4.一船向正北航行,看见正西方向相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时( ).A.5海里B.53海里C.10海里D.103海里5.海上有A,B,C三个小岛,测得A,B两岛相距10海里,∠BAC=60°,∠ABC =75°,则B,C间的距离是________海里.考向一测量距离问题【例1】►如图所示,为了测量河对岸A,B两点间的距离,在这岸定一基线CD,现已测出CD=a和∠ACD=60°,∠BCD=30°,∠BDC=105°,∠ADC=60°,试求AB的长.【训练1】如图,A,B,C,D都在同一个与水平面垂直的平面内,B、D为两岛上的两座灯塔的塔顶,测量船于水面A处测得B点和D点的仰角分别为75°,30°,于水面C处测得B点和D点的仰角均为60°,AC=0.1 km.试探究图中B、D间距离与另外哪两点间距离相等,然后求B,D的距离.考向二测量高度问题【例2】►如图,山脚下有一小塔AB,在塔底B测得山顶C的仰角为60°,在山顶C测得塔顶A的俯角为45°,已知塔高AB=20 m,求山高CD.【训练2】如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D,现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A的仰角为θ,求塔高AB.考向三正、余弦定理在平面几何中的综合应用【例3】►如图所示,在梯形ABCD中,AD∥BC,AB=5,AC=9,∠BCA=30°,∠ADB=45°,求BD的长.【训练3】如图,在△ABC中,已知∠B=45°,D是BC边上的一点,AD=10,AC=14,DC=6,求AB的长.重点突破——如何运用解三角形知识解决实际问【问题研究】1.解三角形实际应用问题的一般步骤是:审题——建模准确地画出图形——求解——检验作答;2.三角形应用题常见的类型:①实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理解之;②实际问题经抽象概括后,已知量与未知量涉及两个三角形,这时需按顺序逐步在两个三角形中求出问题的解;③实际问题经抽象概括后,涉及的三角形只有一个,但由题目已知条件解此三角形需连续使用正弦定理或余弦定理.【解决方案】航海、测量问题利用的就是目标在不同时刻的位置数据,这些数据反映在坐标系中就构成了一些三角形,根据这些三角形就可以确定目标在一定的时间内的运动距离,因此解题的关键就是通过这些三角形中的已知数据把测量目标归入到一个可解三角形中.【示例】►(本题满分12分)如图,甲船以每小时302海里的速度向正北方航行,乙船按固定方向匀速直线航行.当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,此时两船相距20海里,当甲船航行20分钟到达A2处时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距102海里.问:乙船每小时航行多少海里?【试一试】如图所示,位于A处的信息中心获悉:在其正东方向相距40海里的B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C处的乙船,现乙船朝北偏东θ的方向即沿直线CB前往B处救援,求cos θ.。
专题5.1 任意角和弧度制及任意角的三角函数1.(2021·宁夏高三三模(文))已知角α终边经过点()1,2,P-则cosα=()A.12B.12-C D.【答案】D【解析】直接利用三角函数的定义即可.【详解】由三角函数定义,cos5α==-.故选:D.2.(2021·中牟县教育体育局教学研究室高一期中)已知角α的终边经过点()3,1P-,则cosα=()A B.C.D【答案】C【解析】由三角函数的定义即可求得cosα的值.【详解】角α的终边经过点(3,1)P-,cosα∴==故选:C.3.(2020·全国高一课时练习)若α=-2,则α的终边在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】练基础根据角的弧度制与角度制之间的转化关系可得选项.【详解】因为1 rad≈57.30°,所以-2 rad≈-114.60°,故α的终边在第三象限.故选:C.4.(2021·江苏高一期中)下列命题:①钝角是第二象限的角;②小于90︒的角是锐角;③第一象限的角一定不是负角;④第二象限的角一定大于第一象限的角;⑤手表时针走过2小时,时针转过的角度为60︒;⑥若5α=,则α是第四象限角.其中正确的题的个数是()A.1个B.2个C.3个D.4个【答案】B【解析】结合象限角和任意角的概念逐个判断即可.【详解】对于①:钝角是大于90小于180的角,显然钝角是第二象限角. 故①正确;对于②:锐角是大于0小于90的角,小于90的角也可能是负角. 故②错误;对于③:359-显然是第一象限角. 故③错误;对于④:135是第二象限角,361是第一象限角,但是135361<. 故④错误;对于⑤:时针转过的角是负角. 故⑤错误;对于⑥:因为157.3rad≈,所以5557.3=286.5rad≈⨯,是第四象限角. 故⑥正确.综上,①⑥正确.故选:B.5.(2021·辽宁高三其他模拟)装饰公司制作一种扇形板状装饰品,其圆心角为23π,并在扇形弧上正面等距安装7个发彩光的小灯泡且在背面用导线将小灯泡串连(弧的两端各一个灯泡,导线接头忽略不计),已知扇形的半径为30厘米,则连接导线大致需要的长度约为()A.55厘米B.63厘米C.69厘米D.76厘米【答案】B【解析】由于实际问题中扇形弧长较小,可将导线的长视为扇形弧长,利用弧长公式计算即可.【详解】因为在弧长比较短的情况下分成6等份,每部分的弦长和弧长相差很小, 所以可以用弧长近似代替弦长, 所以导线的长度为23020633ππ⨯=≈(厘米). 故选:B6.(2021·上海格致中学高三三模)半径为2,中心角为3π的扇形的面积等于( ) A .43π B .πC .23π D .3π 【答案】C 【解析】根据扇形的面积公式即可求解. 【详解】解:因为扇形的半径2r ,中心角3πα=,所以扇形的面积2211222233S r ππα==⨯⨯=, 故选:C.7.(2021·辽宁高三其他模拟)“数摺聚清风,一捻生秋意”是宋朝朱翌描写折扇的诗句,折扇出人怀袖,扇面书画,扇骨雕琢,是文人雅士的宠物,所以又有“怀袖雅物”的别号.如图是折扇的示意图,其中OA =20cm ,∠AOB =120°,M 为OA 的中点,则扇面(图中扇环)部分的面积是( )A .50πcm 2B .100πcm 2C .150πcm 2D .200πcm 2【答案】B 【解析】根据扇形面积公式计算可得; 【详解】解:扇环的面积为22211332400100222883r S r r παααπ⎛⎫=-==⨯⨯= ⎪⎝⎭.故选:B8.(2021·重庆八中高三其他模拟)如图所示,扇环ABCD 的两条弧长分别是4和10,两条直边AD 与BC 的长都是3,则此扇环的面积为( )A .84B .63C .42D .21【答案】D 【解析】设扇环的圆心角为α,小圆弧的半径为r ,依题意可得4αr =且()310αr +=,解得α、r ,进而可得结果. 【详解】设扇环的圆心角为α,小圆弧的半径为r ,由题可得4αr =且()310αr +=,解得2α=,2r ,从而扇环面积()221252212S =⨯⨯-=. 故选:D .9.(2021·浙江高二期末)已知角α的终边过点(1,)P y ,若sin 3α=,则y =___________.【答案】【解析】利用三角函数的定义可求y . 【详解】由三角函数的定义可得sin α==y =故答案为:10.(2021·山东日照市·高三月考)已知函数()3sin,06log ,0xx f x x x π⎧≤⎪=⎨⎪>⎩,则13f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭______. 【答案】12- 【解析】利用分段函数直接进行求值即可. 【详解】∵函数()3,06log ,0xsinx f x x x π⎧≤⎪=⎨⎪>⎩, ∴311log 133f ⎛⎫=- ⎪⎝⎭=, ∴611(1)sin 32f f f π⎛⎫⎛⎫⎛⎫=-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 故答案为:12-.1.(2021·河南洛阳市·高一期中(文))点P 为圆221x y +=与x 轴正半轴的交点,将点P 沿圆周逆时针旋转至点P ',当转过的弧长为2π3时,点P '的坐标为( )A .1,2⎛ ⎝⎭B .12⎛- ⎝⎭C .21⎛⎫⎪ ⎪⎝⎭D .122⎛⎫- ⎪ ⎪⎝⎭【答案】B 【解析】先求出旋转角,就可以计算点的坐标了. 【详解】设旋转角为θ,则22123θπππ⨯⨯=,得23πθ=,从而可得1(,22P '-. 故选:B.2.(2021·上海高二课时练习)若A 是三角形的最小内角,则A 的取值范围是( )练提升A .0,2π⎛⎫⎪⎝⎭B .0,3π⎛⎫ ⎪⎝⎭C .,32ππ⎛⎫ ⎪⎝⎭D .0,3π⎛⎤ ⎥⎝⎦【答案】D 【解析】由给定条件结合三角形三内角和定理即可作答. 【详解】设B ,C 是三角形的另外两个内角,则必有,A B A C ≤≤,又A B C π++=, 则3A A A A A B C π=++≤++=,即3A π≤,当且仅当3C B A π===,即A 是正三角形内角时取“=”,又0A >,于是有03A π<≤,所以A 的取值范围是(0,]3π.故选:D3.(2021·北京清华附中高三其他模拟)已知,R αβ∈.则“,k k Z αβπ=+∈”是“sin 2sin 2αβ=”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A 【解析】求解出sin 2sin 2αβ=成立的充要条件,再与,k k Z αβπ=+∈分析比对即可得解. 【详解】,R αβ∈,sin 2sin 2sin[()()]sin[()()]αβαβαβαβαβ=⇔++-=+--⇔2cos()sin()0αβαβ+-=,则sin()0αβ-=或cos()0αβ+=,由sin()0αβ-=得,k k k Z αβπαβπ-=⇔=+∈, 由cos()0αβ+=得,22k k k Z ππαβπαβπ+=+⇔=-+∈,显然s ,in 2sin 2k k Z απαββ=+∈=⇒,sin 2s ,in 2k k Z αβαβπ=+=∈,所以“,k k Z αβπ=+∈”是“sin 2sin 2αβ=”的充分不必要条件. 故选:A4.(2021·安徽池州市·池州一中高三其他模拟(理))已知一个半径为3的扇形的圆心角为()02θθπ<<,面积为98π,若()tan 3θϕ+=,则tan ϕ=( ) A .12-B .34C .12D .43【答案】C 【解析】由扇形的面积公式得4πθ=,进而根据正切的和角公式解方程得1tan 2ϕ=. 【详解】解:由扇形的面积公式212S r θ=得9928πθ=,解得4πθ=, 所以()tan tan 1tan tan 31tan tan 1tan θϕϕθϕθϕϕ+++===--,解得1tan 2ϕ=故选:C5.(2021·新蔡县第一高级中学高一月考)一个圆心角为60的扇形,它的弧长是4π,则扇形的内切圆(与扇形的弧和半径的相切)的半径等于( ) A .2 B .4 C .2π D .4π【答案】B 【解析】设扇形内切圆的半径为x ,扇形所在圆的半径为r ,求得3r x =,结合弧长公式,列出方程,即可求解. 【详解】如图所示,设扇形内切圆的半径为x ,扇形所在圆的半径为r , 过点O 作OD CD ⊥, 在直角CDO 中,可得2sin 30ODCO x ==,所以扇形的半径为23r x x x =+=, 又由扇形的弧长公式,可得343x ππ⨯=,解得4x =,即扇形的内切圆的半径等于4. 故选:B.6.(2021·安徽合肥市·合肥一中高三其他模拟(文))已知顶点在原点的锐角α,始边在x 轴的非负半轴,始终绕原点逆时针转过3π后交单位圆于1(,)3P y -,则sin α的值为( )A .6B C .16D .16【答案】B 【解析】根据任意角的三角函数的定义求出1cos()33πα+=-,然后凑角结合两角差的正弦公式求出sin α. 【详解】由题意得1cos()33πα+=-(α为锐角) ∵α为锐角,∴5336πππα,∴sin()03πα+>sin()sin sin ()3333πππααα⎡⎤⇒+=⇒=+-⎢⎥⎣⎦1132326⎛⎫=⨯--⨯=⎪⎝⎭ 故选:B7.(2020·安徽高三其他模拟(文))已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边经过点A (1,-3),则tan()4πα+=( )A .12B .12-C .1D .-1【解析】根据终边上的点求出tan 3α=-,再结合正切和公式求解即可. 【详解】由题知tan 3α=-,则tan tan3114tan()41321tan tan 4παπαπα+-++===-+-. 故选:B8.(2021·合肥一六八中学高三其他模拟(理))已知顶点在原点,始边在x 轴非负半轴的锐角α绕原点逆时针转π3后,终边交单位圆于P x ⎛ ⎝⎭,则sin α的值为( ) ABCD. 【答案】C 【解析】设锐角α绕原点逆时针转π3后得角β,由2113x +=,则x =,分x 的值结合三角函数的定义,求解即可,根据条件进行取舍. 【详解】设锐角α绕原点逆时针转π3后得角β,则3πβα=+,由α为锐角, 根据题意角β终边交单位圆于,3P x ⎛ ⎝⎭,则2113x +=,则3x =±若3x =,则sin ,cos 33ββ==所以sin sin sin cos cos sin 03336πππαβββ⎛⎫=-=-=< ⎪⎝⎭,与α为锐角不符合.若x =,则sin ββ==所以sin sin sin cos cos sin 0333πππαβββ⎛⎫=-=-=> ⎪⎝⎭,满足条件.9.(2021·安徽宣城市·高三二模(文))刘徽是中国魏晋时期杰出的数学家,他提出“割圆求周”方法:当n 很大时,用圆内接正n 边形的周长近似等于圆周长,并计算出精确度很高的圆周率 3.1416π≈.在《九章算术注》中总结出“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”的极限思想.运用此思想,当π取3.1416时,可得sin 2︒的近似值为( )A .0.00873B .0.01745C .0.02618D .0.03491【答案】D 【解析】由圆的垂径定理,求得2sin 2AB =︒,根据扇形对应的弦长之和近似于单位圆的周长,列出方程,即可求解. 【详解】将一个单位圆分成90个扇形,则每个扇形的圆心角度数均为4︒由圆的垂径定理,可得每个圆心角所对的弦长221sin 22sin 2AB AC ==⨯⨯︒=︒, 因为这90个扇形对应的弦长之和近似于单位圆的周长, 所以9021sin 2180sin 22π⨯⨯⨯︒=︒≈, 所以22 3.1416sin 20.03491180180π⨯︒≈=≈. 故选:D .10.(2021·江苏南通市·高三其他模拟)某设计师为天文馆设计科普宣传图片,其中有一款设计图如图所示.QRT 是一个以点O 为圆心、QT 长为直径的半圆,QT =.QST 的圆心为P ,2dm PQ PT ==.QRT与QST 所围的灰色区域QRTSQ 即为某天所见的月亮形状,则该月亮形状的面积为___________2dm .6π 【解析】连接PO ,可得PO QT ⊥,求出23QPT π∠=,利用割补法即可求出月牙的面积. 【详解】解:连接PO ,可得PO QT ⊥,因为sin 2QO QPO PQ ∠==, 所以3QPO π∠=,23QPT π∠=,所以月牙的面积为2221121(21)dm 22326S πππ=⨯⨯-⨯⨯-⨯=.6π.1.(全国高考真题)已知角α的终边经过点(−4,3),则cosα=( )A .45B .35C .−35D .−45 练真题【答案】D【解析】由题意可知x=-4,y=3,r=5,所以cosα=x r =−45.故选D. 2.(2020·全国高考真题(理))若α为第四象限角,则( )A .cos2α>0B .cos2α<0C .sin2α>0D .sin2α<0 【答案】D【解析】方法一:由α为第四象限角,可得3222,2k k k Z ππαππ+<<+∈, 所以34244,k k k Z ππαππ+<<+∈此时2α的终边落在第三、四象限及y 轴的非正半轴上,所以sin 20α<故选:D. 方法二:当6πα=-时,cos 2cos 03πα⎛⎫=-> ⎪⎝⎭,选项B 错误; 当3πα=-时,2cos 2cos 03πα⎛⎫=-< ⎪⎝⎭,选项A 错误; 由α在第四象限可得:sin 0,cos 0αα<>,则sin 22sin cos 0ααα=<,选项C 错误,选项D 正确; 故选:D.3.(2015·上海高考真题(文))已知点的坐标为,将绕坐标原点逆时针旋转至,则点的纵坐标为( ). A . B . C . D .【答案】D【解析】由题意,设OA 与x 轴所成的角为,显然,,故,故纵坐标为4.(2018·全国高考真题(文))已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A(1 , a),B(2 , b),且cos2α=23,则|a −b |= A .15 B .√55 C .2√55D .1 【答案】B【解析】由O,A,B 三点共线,从而得到b =2a ,因为cos2α=2cos 2α−1=2⋅(√a 2+1)2−1=23, 解得a 2=15,即|a |=√55, 所以|a −b |=|a −2a |=√55,故选B.5.(2017·北京高考真题(理))在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则()cos αβ-=___________. 【答案】79- 【解析】因为α和β关于y 轴对称,所以2,k k Z αβππ+=+∈,那么1sin sin 3βα==,cos cos 3αβ=-=(或cos cos 3βα=-=), 所以()2227cos cos cos sin sin cos sin 2sin 19αβαβαβααα-=+=-+=-=-. 6.(2021·北京高考真题)若点(cos ,sin )P θθ与点(cos(),sin())66Q ππθθ++关于y 轴对称,写出一个符合题意的θ=___. 【答案】512π(满足5,12k k Z πθπ=+∈即可) 【解析】根据,P Q 在单位圆上,可得,6πθθ+关于y 轴对称,得出2,6k k Z πθθππ++=+∈求解. 【详解】(cos ,sin )P θθ与cos ,sin66Q ππθθ⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭关于y 轴对称, 即,6πθθ+关于y 轴对称,2,6k k Z πθθππ++=+∈, 则5,12k k Z πθπ=+∈, 当0k =时,可取θ的一个值为512π. 故答案为:512π(满足5,12k k Z πθπ=+∈即可).。
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,★★★答案★★★解析附后。
关闭Word文档返回原板块。
核心素养测评十八任意角的概念与弧度制、任意角的三角函数(25分钟50分)一、选择题(每小题5分,共35分)1.若sin α<0且tan α<0,则α是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角【解析】选D.由sin α<0,得α的终边在第三或第四象限或在y轴非正半轴上;由tan α<0,得α在第二或第四象限,所以α是第四象限角.2.sin 2cos 3tan 4的值( )A.小于0B.大于0C.等于0D.不存在【解析】选A.因为sin 2>0,cos 3<0,tan 4>0,所以sin 2cos 3tan 4<0.3.若角α=45°+k·180°,k∈Z,则角α的终边落在( )A.第一或第三象限B.第一或第二象限C.第二或第四象限D.第三或第四象限【解析】选A.当k为偶数时,令k=2n,α=45°+n·360°,此时α为第一象限角,排除C,D;当k为奇数时,令k=2n+1,α=225°+n·360°,此时α是第三象限角,排除B;所以角α的终边落在第一或第三象限.4.已知扇形的半径为12 cm,弧长为18 cm,则扇形圆心角的弧度数是( )A. B. C. D.【解析】选B.l=|α|r,所以|α|===.5.已知角α的终边经过点(3a-9,a+2),且cos α≤0,sin α>0,则实数a的取值范围是( )A.(-2,3]B.(-2,3)C.[-2,3)D.[-2,3]【解析】选A.由cos α≤0,sin α>0可知,角α的终边落在第二象限或y轴的正半轴上,所以解得-2<a≤3.6.已知点P落在角θ的终边上,且θ∈[0,2π),则θ的值为 ( )A. B. C. D.【解析】选D.点P,即P,点P落在角θ的终边上,且θ∈[0,2π),所以θ=.7.(多选)已知角2α的终边在x轴的上方,那么角α可能是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角【解析】选AC.因为角2α的终边在x轴的上方,所以k·360°<2α<k·360°+180°,k∈Z,则有k·180°<α<k·180°+90°,k∈Z.故当k=2n,n∈Z时,n·360°<α<n·360°+90°,n∈Z,α为第一象限角;当k=2n+1,n∈Z时,n·360°+180°·<α<n·360°+270°,n∈Z,α为第三象限角.二、填空题(每小题5分,共15分)8.将表的分针拨慢10分钟,则分针转过的角的弧度数是________. 【解析】一个周角是2π,因此分针10分钟转过的角的弧度数为×2π=.★★★答案★★★:9.(2020·扬州模拟)在平面直角坐标系xOy中,60°角终边上一点P的坐标为(1,m),则实数m的值为________. 世纪金榜导学号【解析】因为60°角终边上一点P的坐标为(1,m),所以tan 60°=,因为tan 60°=,所以m=.★★★答案★★★:10.在平面直角坐标系中,角α的顶点与原点重合,始边与x轴的非负半轴重合,终边过点P(-,-1),则tan α=________,cosα+sin=________.【解析】因为角α的顶点与坐标原点重合,始边与x轴的非负半轴重合,终边过点P,所以x=-,y=-1,r===2,所以tan α==,cos α+sin=cos α-cos α=0.★★★答案★★★:0(15分钟35分)1.(5分)已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( )A.2B.4C.6D.8【解析】选C.设扇形的半径为r(r>0),弧长为l,则由扇形面积公式可得2=l r=|α|r2=×4×r2,解得r=1,l=|α|r=4,所以所求扇形的周长为2r+l=6.2.(5分)(2019·南昌模拟)已知角α终边上一点P的坐标是(2sin 2,-2cos 2),则sin α等于( )A.sin 2B.-sin 2C.cos 2D.-cos 2【解析】选D.因为r==2,由任意角的三角函数的定义,sin α==-cos 2.3.(5分)函数y=的定义域为________.【解析】因为2sin x-1≥0,所以sin x≥.由三角函数线画出x满足条件的终边范围(如图中阴影部分所示).所以x∈(k∈Z).★★★答案★★★:(k∈Z)4.(10分)已知角α的顶点在坐标原点,始边为x轴的非负半轴,终边上有一点P(3a,4a),其中a≠0,求sin α,cosα,tanα.世纪金榜导学号【解析】设r=|OP|==5|a|.①当a>0时,r=5a,所以sin α==,cos α==,tan α==;②当a<0时,r=-5a,所以sin α=-,cos α=-,tan α=.综上,sin α=,cos α=,tan α=,或sin α=-,cos α=-,tan α=.5.(10分)已知角α终边经过点P(x,-)(x≠0),且cos α=x.求sin α+的值. 世纪金榜导学号【解析】因为P(x,-)(x≠0),所以点P到原点的距离r=. 又cos α=x,所以cos α==x.因为x≠0,所以x=±,r=2.当x=时,P点坐标为(,-),由三角函数的定义,sin α=-,=-,所以sin α+=--=-;当x=-时,同理可得sin α+=.【变式备选】在平面直角坐标系xOy中,角α的顶点是坐标原点,始边为x轴的非负半轴,终边与单位圆O交于点A(x1,y1),α∈.将角α终边绕原点按逆时针方向旋转,交单位圆于点B(x2,y2).(1)若x1=,求x2.(2)过A,B作x轴的垂线,垂足分别为C,D,记△AOC及△BOD的面积分别为S1,S2,且S1=S2,求tan α的值.【解析】(1)因为x1=,y1>0,所以y1==,sin α=,cos α=,所以x2=cos=cos αcos-sin αsin=-.(2)S1=sin αcos α=sin 2α.因为α∈,所以α+∈,S2=-sin cos=-sin=-cos 2α.因为S1=S2,所以sin 2α=-cos 2α,即tan 2α=-,所以=-,解得tan α=2或tan α=-.因为α∈,所以tan α=2.关闭Word文档返回原板块感谢您的下载!快乐分享,知识无限!由Ruize收集整理!。
2020年领军高考数学一轮复习(文理通用)专题18任意角、弧度制及任意角的三角函数最新考纲1.了解任意角的概念和弧度制的概念.2.能进行弧度与角度的互化.3.理解任意角三角函数(正弦、余弦、正切)的定义.基础知识融会贯通1.角的概念(1)任意角:①定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是S ={β|β=k ·360°+α,k ∈Z }.(3)象限角:使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限. 2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0. (2)角度制和弧度制的互化:180°=π rad,1°=π180 rad ,1 rad =⎝⎛⎭⎫180π°. (3)扇形的弧长公式:l =|α|·r ,扇形的面积公式:S =12lr =12|α|·r 2.3.任意角的三角函数任意角α的终边与单位圆交于点P (x ,y )时, 则sin α=y ,cos α=x ,tan α=yx (x ≠0).三个三角函数的性质如下表:4.三角函数线如下图,设角α的终边与单位圆交于点P,过P作PM⊥x轴,垂足为M,过A(1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T.【知识拓展】1.三角函数值的符号规律三角函数值在各象限内的符号:一全正、二正弦、三正切、四余弦.2.任意角的三角函数的定义(推广)设P(x,y)是角α终边上异于顶点的任一点,其到原点O的距离为r,则sin α=yr,cos α=xr,tan α=yx(x≠0).重点难点突破【题型一】角及其表示【典型例题】已知集合{α|2kπα≤2kπ,k∈Z},则角α的终边落在阴影处(包括边界)的区域是()A.B.C .D .【解答】解:集合{α|2k πα≤2k π,k ∈Z },表示第一象限的角,故选:B . 【再练一题】直角坐标系内,β终边过点P (sin2,cos2),则终边与β重合的角可表示成( )A .2+2πk ,k ∈ZB .2+k π,k ∈ZC .2+2k π,k ∈zD .﹣2+2k π,k ∈Z【解答】解:∵β终边过点P (sin2,cos2),即为(cos (2),sin (2))∴终边与β重合的角可表示成2+2k π,k ∈Z ,故选:A .思维升华 (1)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需的角. (2)确定kα,αk(k ∈N *)的终边位置的方法先写出kα或αk 的范围,然后根据k 的可能取值确定kα或αk的终边所在位置.【题型二】弧度制【典型例题】已知扇形的周长是6cm ,面积是2cm 2,试求扇形的圆心角的弧度数( ) A .1B .4C .1或 4D .1或 2【解答】解:设扇形的圆心角为αrad ,半径为Rcm ,则,解得α=1或α=4.故选:C .【再练一题】将300°化成弧度得:300°=rad.【解答】解:∵180°=π,∴1°,则300°=300.故答案为:.思维升华应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.【题型三】三角函数的概念及应用命题点1三角函数定义的应用【典型例题】已知角θ的顶点与原点重合,始边与x轴正半轴重合,若A(x,3)是角θ终边上一点,且,则x=()A.B.C.1 D.﹣1【解答】解:角θ的顶点与原点重合,始边与x轴正半轴重合,若A(x,3)是角θ终边上一点,且,则x=﹣1,故选:D.【再练一题】已知角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上一点A(2sinα,3),则cosα=()A.B.C.D.【解答】解:∵由题意可得:x=2sinα,y=3,可得:r,∴cosα,可得:cos2α,整理可得:4cos4α﹣17cos2α+4=0,∴解得:cos2α,或(舍去),∴cosα.故选:A.命题点2三角函数线的应用【典型例题】已知,a=sinα,b=cosα,c=tanα,那么a,b,c的大小关系是()A.a>b>c B.b>a>c C.a>c>b D.c>a>b【解答】解:作出三角函数对应的三角函数线如图:则AT=tanα,MP=sinα,OM=cosα,则sinα>0,AT<OM<0,即sinα>cosα>tanα,则a>b>c,故选:A.【再练一题】已知a=sin,b=cos,c=tan,则()A.b<a<c B.c<b<a C.b<c<a D.a<b<c【解答】解:因为,所以cos sin,tan1,所以b<a<c.故选:A.思维升华(1)利用三角函数的定义,已知角α终边上一点P的坐标可求α的三角函数值;已知角α的三角函数值,也可以求出点P的坐标.(2)利用三角函数线解不等式要注意边界角的取舍,结合三角函数的周期性写出角的范围.基础知识训练2,3-,则1.【湖南省衡阳市第八中学2018-2019学年高一下学期期中考试】已知角θ的终边经过点()()A .5B .15-C .15D .5-【答案】A 【解析】由任意角的三角函数定义可知:3tan 2θ=-本题正确选项:A2.【甘肃省会宁县第一中学2018-2019学年高一下学期期中考试】函数的值域是( ) A .B .C .D .【答案】C 【解析】由题意可知:角的终边不能落在坐标轴上, 当角终边在第一象限时, 当角终边在第二象限时, 当角终边在第三象限时,当角终边在第四象限时,因此函数的值域为,故选:C.3.【安徽省淮北师范大学附属实验中学2018-2019学年高一下学期第二次月考】已知角α的终边上一点P 的坐标为,则sin α的值为( )A .12B .1-2C .2D .-2【答案】B 【解析】解:角α的终边上一点P的坐标为1,22⎛⎫- ⎪ ⎪⎝⎭, 它到原点的距离为r =1,由任意角的三角函数定义知:,故选:B .4.【甘肃省宁县第二中学2018-2019学年高一下学期期中考试】已知点P (sin α+cos α,tan α)在第四象限,则在[0,2π)内α的取值范围是( )A .(2π,34π)∪(54π,32π) B .(0,4π)∪(54π,32π) C .(2π,34π)∪(74π,2π)D .(2π,34π)∪(π,32π)【答案】C 【解析】∵点P (sin α+cos α,tan α)在第四象限, ∴,由sin α+cosα=(α4π+), 得2k π<α4<π+2k π+π,k∈Z,即2k π4π-<α<2k π34π+π,k∈Z. 由tan α<0,得k π2π+<α<k π+π,k∈Z.∴α∈(2π,34π)∪(74π,2π).故选:C .5.【安徽省示范高中2018-2019学年高一下学期第三次联考】若角θ是第四象限角,则32πθ+是( ) A .第一象限角 B .第二象限角C .第三象限角D .第四象限角【答案】C 【解析】角θ是第四象限角.,则故32πθ+是第三象限角.故选C. 6.【河南省南阳市第一中学2018-2019学年高一下学期第四次月考】已知且sin 0α>,则下列不等式一定成立的是( ) A . B . C .D .【答案】D 【解析】 由于且sin 0α>,故α为第二象限角,故,故D 选项一定成立,故本小题选D.7.【宁夏石嘴山市第三中学2018-2019学年高一5月月考】半径为1cm ,中心角为150°的角所对的弧长为( )cm . A .23B .23π C .56D .56π 【答案】D 【解析】由题意,半径1r cm =,中心角,又由弧长公式,故选:D .8.【甘肃省会宁县第一中学2018-2019学年高一下学期期中考试】与0420-终边相同的角是( ) A .0120- B .0420C .0660D .0280【答案】C 【解析】与0420-角终边相同的角为:,当3n =时,.故选:C .9.【安徽省淮北师范大学附属实验中学2018-2019学年高一下学期第二次月考】下列说法正确的是( ) A .钝角是第二象限角B .第二象限角比第一象限角大C.大于90︒的角是钝角D.-165︒是第二象限角【答案】A【解析】解:钝角的范围为,钝角是第二象限角,故A正确;﹣200°是第二象限角,60°是第一象限角,-200°<60°,故B错误;由钝角的范围可知C错误;-180°<-165°<-90°,-165°是第三象限角,D错误.故选:A.10.直角坐标系内,角β的终边过点,则终边与角β重合的角可表示成()A.B.C.D.【答案】A【解析】因为点为第四象限内的点,角β的终边过点,所以β为第四象限角,所以终边与角β重合的角也是第四象限角,而,均为第三象限角,为第二象限角,所以BCD排除,故选A11.【江苏省南通市启东中学2018-2019学年高二5月月考】给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论用角度制还是用弧度制度量一个角,它们与扇形所在半径的大小无关;④若,则α与β的终边相同;θ<,则θ是第二或第三象限的角.⑤若cos0其中正确的命题是______.(填序号) 【答案】③ 【解析】 ①43απ=-,则α为第二象限角;3πβ=,则β为第一象限角,此时αβ<,可知①错误;②当三角形的一个内角为直角时,不属于象限角,可知②错误; ③由弧度角的定义可知,其大小与扇形半径无关,可知③正确; ④若3πα=,23πβ=,此时,但,αβ终边不同,可知④错误;⑤当θπ=时,,此时θ不属于象限角,可知⑤错误.本题正确结果:③12.【甘肃省会宁县第一中学2018-2019学年高一下学期期中考试】与02018-角终边相同的最小正角是______ 【答案】0142 【解析】 解:,即与02018-角终边相同的最小正角是0142, 故答案为:0142.13.【河南省平顶山市郏县第一高级中学2018-2019学年高一下学期第二次5月月考】从8:05到8:50,分针转了________(rad ). 【答案】3π2- 【解析】从8:05到8:50,过了45分钟,时针走一圈是60分钟, 故分针是顺时针旋转,应为负角, 故分针转了32π-. 14.【2017届四川省成都市石室中学高三二诊模拟考试】已知角3πα+的始边是x 轴非负半轴.其终边经过点34(,)55P--,则sinα的值为__________.【解析】解:∵点P(1,2)在角α的终边上,∴tanα2=,将原式分子分母除以cosα,则原式故答案为:5.16.【江苏省涟水中学2018-2019学年高二5月月考】欧拉公式(i为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,3ie-表示的复数在复平面中位于第_______象限.【答案】三【解析】由题e-3i=cos3-i sin3,又cos3<0, sin3>0,故3ie-表示的复数在复平面中位于第三象限.故答案为三17.【甘肃省会宁县第一中学2018-2019学年高一下学期期中考试】(1)已知扇形的周长为8,面积是4,求扇形的圆心角.(2)已知扇形的周长为40,当它的半径和圆心角取何值时,才使扇形的面积最大?【答案】(1)2;(2)当半径为10圆心角为2时,扇形的面积最大,最大值为100.【解析】(1)设扇形的圆心角大小为α()rad,半径为r,则由题意可得:.联立解得:扇形的圆心角2α=.(2)设扇形的半径和弧长分别为r和l,由题意可得240r l+=,∴扇形的面积.当10r =时S 取最大值,此时20l =, 此时圆心角为2lrα==, ∴当半径为10圆心角为2时,扇形的面积最大,最大值为100.18.【上海市徐汇区2019届高三上学期期末学习能力诊断】我国的“洋垃极禁止入境”政策已实施一年多某沿海地区的海岸线为一段圆弧AB ,对应的圆心角,该地区为打击洋垃圾走私,在海岸线外侧20海里内的海域ABCD 对不明船只进行识别查证如图:其中海域与陆地近似看作在同一平面内在圆弧的两端点A ,B 分别建有监测站,A 与B 之间的直线距离为100海里.求海域ABCD 的面积;现海上P 点处有一艘不明船只,在A 点测得其距A 点40海里,在B 点测得其距B 点海里判断这艘不明船只是否进入了海域ABCD ?请说明理由. 【答案】(1)平方海里; (2)这艘不明船只没进入了海域ABCD ..【解析】,在海岸线外侧20海里内的海域ABCD ,,,平方海里,由题意建立平面直角坐标系,如图所示; 由题意知,点P 在圆B 上,即,点P也在圆A上,即;由组成方程组,解得;又区域ABCD内的点满足,由,不在区域ABCD内,由,也不在区域ABCD内;即这艘不明船只没进入了海域ABCD.19.已知角β的终边在直线x-y=0上.①写出角β的集合S;②写出S中适合不等式-360°≤β<720°的元素.【答案】①{β|β=60°+n·180°,n∈Z};②-120°,240°,600°.【解析】①如图,直线x-y=0过原点,倾斜角为60°,在0°~360°范围内,终边落在射线OA上的角是60°,终边落在射线OB上的角是240°,所以以射线OA、OB为终边的角的集合为:S1={β|β=60°+k·360°,k∈Z},S2={β|β=240°+k·360°,k∈Z},所以,角β的集合S=S1∪S2={β|β=60°+k·360°,k∈Z}∪{β|β=60°+180°+k·360°,k∈Z}={β|β=60°+2k·180°,k∈Z}∪{β|β=60°+(2k+1)·180°,k∈Z}={β|β=60°+n·180°,n∈Z}.②由于-360°≤β<720°,即-360°≤60°+n·180°<720°,n∈Z,解得,n∈Z,所以n可取-2、-1、0、1、2、3.所以S中适合不等式-360°≤β<720°的元素为:60°-2×180°=-300°;60°-1×180°=-120°;60°-0×180°=60°;60°+1×180°=240°;60°+2×180°=420;60°+3×180°=600°.20.已知,如图所示.(1)分别写出终边落在OA,OB位置上的角的集合.(2)写出终边落在阴影部分(包括边界)的角的集合.【答案】(1) 终边落在OA位置上的角的集合为{α|α=135°+k·360°,k∈Z};终边落在OB位置上的角的集合为{α|α=-30°+k·360°,k∈Z};(2) {α|-30°+k·360°≤α≤135°+k·360°,k∈Z}.【解析】(1)终边落在OA位置上的角的集合为{α|α=90°+45°+k·360°,k∈Z}={α|α=135°+k·360°,k∈Z};终边落在OB位置上的角的集合为{α|α=-30°+k·360°,k∈Z}.(2)由题干图可知,阴影部分(包括边界)的角的集合是由所有介于[-30°,135°]之间的角及终边与它们相同的角组成的集合,故该区域可表示为{α|-30°+k·360°≤α≤135°+k·360°,k∈Z}.能力提升训练1.【安徽省芜湖市2019届高三模拟考试】如图,点为单位圆上一点,,点沿单位圆逆时针方向旋转角到点,则()A.B.C.D.【答案】D【解析】∵点A为单位圆上一点,,点A沿单位圆逆时针方向旋转角α到点,∴A(cos,sin),即A(),且cos(α),sin(α).则sinα=sin[(α)]=sin(α)cos cos(α)sin,故选:D.∆中,若,那么2.【黑龙江省大庆实验中学2018-2019学年高一下学期期中考试】在ABC∆是()ABCA.锐角三角形B.钝角三角形C.直角三角形D.不能确定【答案】A【解析】∆中,,∵在ABC∴,∴,A B为锐角.又,∴,∴,∴C为锐角,∆为锐角三角形.∴ABC故选A .3.【河北省邯郸市2018-2019学年高一下学期期中考试】已知,那么角是( )A .第一或第二象限角B .第二或第三象限角C .第三或第四象限角D .第一或第四象限角 【答案】B 【解析】由,得异号,则角是第二或第三象限角, 故选:.4.【河南省洛阳市2018-2019学年高一下学期期中考试】已知角α的终边经过点P (-3,y ),且y <0,cosα=-,则tanα=( ) A .B .C .D .【答案】C 【解析】由题意,角的终边经过点,且,则,∴,所以,故选:C .5.【四川省攀枝花市2019届高三下学期第三次统考】已知角83πθ=的终边经过点(,P x ,则x 的值为( ) A .±2 B .2C .﹣2D .﹣4【答案】C 【解析】∵已知角83πθ=的终边经过点(,P x ,∴,则2x =-,故选:C .6.【黑龙江省哈尔滨市第三中学2019届高三上学期期中考试】,则3f π⎛⎫=⎪⎝⎭( )A B C .12D 【答案】C 【解析】根据题意,,且13π<<,则.故选:C .7.【四川省华文大教育联盟2019届高三第二次质量检测考试】在平面直角坐标系xOy 中,已知02απ<<,点是角α终边上一点,则α的值是___________.【答案】3π【解析】,∵02απ<<,且点P 在第一象限, ∴α为锐角,∴α的值是3π, 故答案为:3π8.【安徽省淮北市第一中学2018-2019学年高一下学期开学考试】函数的定义域为______.【答案】或x k π=,k Z}∈【解析】因为所以 2sin x 0cosx≥等价于0cosx >或0sinx =所以或x k π=,k Z ∈故答案为:或x k π=,k Z}∈.9.【四川省蓉城名校联盟2018-2019学年上期期末联考高一】在平面直角坐标系中,已知一个角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点P (5,-12),则sin α+cos α的值为___. 【答案】【解析】∵一个角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点P (5,-12), ∴sin α=则sin α+cos α=-,故答案为:-.10.对于任意实数,事件“”的概率为_______.【答案】 【解析】由于“”,故为第二象限角,故概率为.。
第三章三角函数、解三角形第1讲任意角和弧度制及任意角的三角函数[考纲解读]1。
了解任意角的概念及弧度制的概念,能进行弧度与角度的互化.(重点)2.理解任意角的三角函数(正弦、余弦、正切)的定义,并能熟练运用基本知识与基本技能、转化与化归思想等.(重点、难点)[考向预测]从近三年高考情况来看,本讲内容属于基础考查范围.预测2021年高考会考查三角函数的定义、根据终边上点的坐标求三角函数值或根据三角函数值求参数值.常以客观题形式考查,属中、低档试题.1.任意角的概念(1)定义:角可以看成平面内的一条射线绕着错误!端点从一个位置旋转到另一个位置所成的图形.(2)角的分类(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z}.2.弧度制的定义和公式(1)定义:把长度等于错误!半径长的弧所对的圆心角叫做1弧度的角.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0。
(2)公式3.任意角的三角函数定义:设α是一个任意角,它的终边与单位圆交于点P(x,y),那么sinα=错误!y,cosα=错误!x,tanα=错误!错误!.1.概念辨析(1)锐角是第一象限的角,第一象限的角也都是锐角.()(2)角α的三角函数值与其终边上点P的位置无关.()(3)不相等的角终边一定不相同.()(4)三角形的内角必是第一、第二象限角.()答案(1)×(2)√(3)×(4)×2.小题热身(1)下列与错误!的终边相同的角的表达式中正确的是()A.2kπ+45°(k∈Z)B.k·360°+错误!(k∈Z)C.k·360°-315°(k∈Z) D.kπ+5π4(k∈Z)答案C解析角度制与弧度制不能混用,排除A,B;因为错误!=2π+π4,所以与错误!终边相同的角可表示为k·360°+45°(k∈Z)或k·360°-315°等,故选C。
专题18任意角、弧度制及任意角的三角函数最新考纲1.了解任意角的概念和弧度制的概念.2.能进行弧度与角度的互化.3.理解任意角三角函数(正弦、余弦、正切)的定义.基础知识融会贯通 1.角的概念(1)任意角:①定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是S ={β|β=k ·360°+α,k ∈Z }. (3)象限角:使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限. 2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.(2)角度制和弧度制的互化:180°=π rad,1°=π180 rad ,1 rad =⎝ ⎛⎭⎪⎫180π°. (3)扇形的弧长公式:l =|α|·r ,扇形的面积公式:S =12lr =12|α|·r 2.3.任意角的三角函数任意角α的终边与单位圆交于点P (x ,y )时, 则sin α=y ,cos α=x ,tan α=yx(x ≠0). 三个三角函数的性质如下表:三角函数 定义域第一象限符号第二象限符号第三象限符号 第四象限符号sinαR+ + - - cosR+--+αtanα{α|α≠k π+π2,k ∈Z } +-+-4.三角函数线如下图,设角α的终边与单位圆交于点P ,过P 作PM ⊥x 轴,垂足为M ,过A (1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T .【知识拓展】1.三角函数值的符号规律三角函数值在各象限内的符号:一全正、二正弦、三正切、四余弦. 2.任意角的三角函数的定义(推广)设P (x ,y )是角α终边上异于顶点的任一点,其到原点O 的距离为r ,则sin α=y r ,cos α=x r,tan α=y x(x ≠0).重点难点突破 【题型一】角及其表示【典型例题】已知集合{α|2k πα≤2k π,k ∈Z },则角α的终边落在阴影处(包括边界)的区域是( )A .B .C .D .【解答】解:集合{α|2k πα≤2k π,k ∈Z },表示第一象限的角,故选:B . 【再练一题】直角坐标系内,β终边过点P (sin2,cos2),则终边与β重合的角可表示成( )A .2+2πk ,k ∈ZB .2+k π,k ∈ZC .2+2k π,k ∈zD .﹣2+2k π,k ∈Z【解答】解:∵β终边过点P (sin2,cos2),即为(cos (2),sin (2))∴终边与β重合的角可表示成2+2k π,k ∈Z ,故选:A .思维升华 (1)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需的角. (2)确定kα,αk(k ∈N *)的终边位置的方法先写出kα或αk 的X 围,然后根据k 的可能取值确定kα或αk的终边所在位置. 【题型二】弧度制 【典型例题】已知扇形的周长是6cm,面积是2cm2,试求扇形的圆心角的弧度数()A.1B.4C.1或 4D.1或 2【解答】解:设扇形的圆心角为αrad,半径为Rcm,则,解得α=1或α=4.故选:C.【再练一题】将300°化成弧度得:300°=rad.【解答】解:∵180°=π,∴1°,则300°=300.故答案为:.思维升华应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.【题型三】三角函数的概念及应用命题点1 三角函数定义的应用【典型例题】已知角θ的顶点与原点重合,始边与x轴正半轴重合,若A(x,3)是角θ终边上一点,且,则x=()A.B.C.1D.﹣1【解答】解:角θ的顶点与原点重合,始边与x轴正半轴重合,若A(x,3)是角θ终边上一点,且,则x=﹣1,故选:D.【再练一题】已知角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上一点A(2sinα,3),则cosα=()A.B.C.D.【解答】解:∵由题意可得:x=2sinα,y=3,可得:r,∴cosα,可得:cos2α,整理可得:4cos4α﹣17cos2α+4=0,∴解得:cos2α,或(舍去),∴cosα.故选:A.命题点2 三角函数线的应用【典型例题】已知,a=sinα,b=cosα,c=tanα,那么a,b,c的大小关系是()A.a>b>c B.b>a>c C.a>c>b D.c>a>b【解答】解:作出三角函数对应的三角函数线如图:则AT=tanα,MP=sinα,OM=cosα,则sinα>0,AT<OM<0,即sinα>cosα>tanα,则a>b>c,故选:A.【再练一题】已知a =sin ,b =cos ,c =tan ,则( )A .b <a <cB .c <b <aC .b <c <aD .a <b <c【解答】解:因为,所以cos sin ,tan 1,所以b <a <c . 故选:A .思维升华 (1)利用三角函数的定义,已知角α终边上一点P 的坐标可求α的三角函数值;已知角α的三角函数值,也可以求出点P 的坐标.(2)利用三角函数线解不等式要注意边界角的取舍,结合三角函数的周期性写出角的X 围.基础知识训练1.【某某省某某市第八中学2018-2019学年高一下学期期中考试】已知角θ的终边经过点()2,3-,则( )A .5B .15-C .15D .5-【答案】A【解析】由任意角的三角函数定义可知:3 tan2θ=-本题正确选项:A2.【某某省会宁县第一中学2018-2019学年高一下学期期中考试】函数的值域是()A.B.C.D.【答案】C【解析】由题意可知:角的终边不能落在坐标轴上,当角终边在第一象限时,当角终边在第二象限时,当角终边在第三象限时,当角终边在第四象限时,因此函数的值域为,故选:C.3.【某某省某某师X大学附属实验中学2018-2019学年高一下学期第二次月考】已知角α的终边上一点P的坐标为,则sinα的值为()A.12B.1-2C3D.3【答案】B 【解析】解:角α的终边上一点P 的坐标为31,22⎛⎫- ⎪ ⎪⎝⎭, 它到原点的距离为r =1,由任意角的三角函数定义知:,故选:B .4.【某某省宁县第二中学2018-2019学年高一下学期期中考试】已知点P (sinα+cosα,tanα)在第四象限,则在[0,2π)内α的取值X 围是( )A .(2π,34π)∪(54π,32π) B .(0,4π)∪(54π,32π) C .(2π,34π)∪(74π,2π)D .(2π,34π)∪(π,32π)【答案】C 【解析】∵点P (sinα+cosα,tanα)在第四象限, ∴,由sinα+cosα2=(α4π+), 得2kπ<α4<π+2kπ+π,k∈Z,即2kπ4π-<α<2kπ34π+π,k∈Z. 由tanα<0,得kπ2π+<α<kπ+π,k∈Z.∴α∈(2π,34π)∪(74π,2π).故选:C .5.【某某省示X 高中2018-2019学年高一下学期第三次联考】若角θ是第四象限角,则32πθ+是( ) A .第一象限角 B .第二象限角C .第三象限角D .第四象限角【答案】C 【解析】角θ是第四象限角.,则故32πθ+是第三象限角.故选C. 6.【某某省某某市第一中学2018-2019学年高一下学期第四次月考】已知且sin 0α>,则下列不等式一定成立的是() A . B . C .D .【答案】D 【解析】 由于且sin 0α>,故α为第二象限角,故,故D 选项一定成立,故本小题选D. 7.【某某某某市第三中学2018-2019学年高一5月月考】半径为1cm ,中心角为150°的角所对的弧长为( )cm .A .23B .23π C .56D .56π 【答案】D 【解析】由题意,半径1r cm =,中心角,又由弧长公式,故选:D .8.【某某省会宁县第一中学2018-2019学年高一下学期期中考试】与0420-终边相同的角是( ) A .0120- B .0420C .0660D .0280【答案】C 【解析】与0420-角终边相同的角为:,当3n =时,.故选:C.9.【某某省某某师X大学附属实验中学2018-2019学年高一下学期第二次月考】下列说法正确的是()A.钝角是第二象限角B.第二象限角比第一象限角大C.大于90︒的角是钝角D.-165︒是第二象限角【答案】A【解析】解:钝角的X围为,钝角是第二象限角,故A正确;﹣200°是第二象限角,60°是第一象限角,-200°<60°,故B错误;由钝角的X围可知C错误;-180°<-165°<-90°,-165°是第三象限角,D错误.故选:A.10.直角坐标系内,角β的终边过点,则终边与角β重合的角可表示成()A.B.C.D.【答案】A【解析】因为点为第四象限内的点,角β的终边过点,所以β为第四象限角,所以终边与角β重合的角也是第四象限角,而,均为第三象限角,为第二象限角,所以BCD排除,故选A11.【某某省某某市启东中学2018-2019学年高二5月月考】给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论用角度制还是用弧度制度量一个角,它们与扇形所在半径的大小无关; ④若,则α与β的终边相同;⑤若cos 0θ<,则θ是第二或第三象限的角. 其中正确的命题是______.(填序号) 【答案】③ 【解析】 ①43απ=-,则α为第二象限角;3πβ=,则β为第一象限角,此时αβ<,可知①错误;②当三角形的一个内角为直角时,不属于象限角,可知②错误; ③由弧度角的定义可知,其大小与扇形半径无关,可知③正确; ④若3πα=,23πβ=,此时,但,αβ终边不同,可知④错误;⑤当θπ=时,,此时θ不属于象限角,可知⑤错误.本题正确结果:③12.【某某省会宁县第一中学2018-2019学年高一下学期期中考试】与02018-角终边相同的最小正角是______ 【答案】0142 【解析】 解:,即与02018-角终边相同的最小正角是0142, 故答案为:0142.13.【某某省某某市郏县第一高级中学2018-2019学年高一下学期第二次5月月考】从8:05到8:50,分针转了________(rad ). 【答案】3π2- 【解析】从8:05到8:50,过了45分钟,时针走一圈是60分钟,故分针是顺时针旋转,应为负角, 故分针转了32π-. 14.【2017届某某省某某市石室中学高三二诊模拟考试】已知角3πα+的始边是x 轴非负半轴.其终边经过点34(,)55P --,则sin α的值为__________.【答案】43310-+ 【解析】解:∵点P (1,2)在角α的终边上,∴tan α2=, 将原式分子分母除以cos α,则原式故答案为:5.16.【某某省涟水中学2018-2019学年高二5月月考】欧拉公式(i 为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,3i e -表示的复数在复平面中位于第_______象限. 【答案】三 【解析】由题e -3i=cos3-i sin3,又cos3<0, sin3>0,故3i e -表示的复数在复平面中位于第三象限. 故答案为三17.【某某省会宁县第一中学2018-2019学年高一下学期期中考试】(1)已知扇形的周长为8,面积是4,求扇形的圆心角.(2)已知扇形的周长为40,当它的半径和圆心角取何值时,才使扇形的面积最大? 【答案】(1)2;(2)当半径为10圆心角为2时,扇形的面积最大,最大值为100. 【解析】(1)设扇形的圆心角大小为α()rad ,半径为r ,则由题意可得:.联立解得:扇形的圆心角2α=. (2)设扇形的半径和弧长分别为r 和l , 由题意可得240r l +=, ∴扇形的面积.当10r =时S 取最大值,此时20l =, 此时圆心角为2l rα,∴当半径为10圆心角为2时,扇形的面积最大,最大值为100.18.【某某市徐汇区2019届高三上学期期末学习能力诊断】我国的“洋垃极禁止入境”政策已实施一年多某沿海地区的海岸线为一段圆弧AB ,对应的圆心角,该地区为打击洋垃圾走私,在海岸线外侧20海里内的海域ABCD 对不明船只进行识别查证如图:其中海域与陆地近似看作在同一平面内在圆弧的两端点A ,B 分别建有监测站,A 与B 之间的直线距离为100海里.求海域ABCD 的面积;现海上P 点处有一艘不明船只,在A 点测得其距A 点40海里,在B 点测得其距B 点海里判断这艘不明船只是否进入了海域ABCD ?请说明理由. 【答案】(1)平方海里; (2)这艘不明船只没进入了海域ABCD ..【解析】,在海岸线外侧20海里内的海域ABCD,,,平方海里,由题意建立平面直角坐标系,如图所示;由题意知,点P在圆B上,即,点P也在圆A上,即;由组成方程组,解得;又区域ABCD内的点满足,由,不在区域ABCD内,由,也不在区域ABCD内;即这艘不明船只没进入了海域ABCD.19.已知角β的终边在直线x-y=0上.①写出角β的集合S;②写出S中适合不等式-360°≤β<720°的元素.【答案】①{β|β=60°+n·180°,n∈Z};②-120°,240°,600°.【解析】①如图,直线x-y=0过原点,倾斜角为60°,在0°~360°X围内,终边落在射线OA上的角是60°,终边落在射线OB上的角是240°,所以以射线OA、OB为终边的角的集合为:S1={β|β=60°+k·360°,k∈Z},S2={β|β=240°+k·360°,k∈Z},所以,角β的集合S=S1∪S2={β|β=60°+k·360°,k∈Z}∪{β|β=60°+180°+k·360°,k∈Z}={β|β=60°+2k·180°,k∈Z}∪{β|β=60°+(2k+1)·180°,k∈Z}={β|β=60°+n·180°,n∈Z}.②由于-360°≤β<720°,即-360°≤60°+n·180°<720°,n∈Z,解得,n∈Z,所以n可取-2、-1、0、1、2、3.所以S中适合不等式-360°≤β<720°的元素为:60°-2×180°=-300°;60°-1×180°=-120°;60°-0×180°=60°;60°+1×180°=240°;60°+2×180°=420;60°+3×180°=600°.20.已知,如图所示.(1)分别写出终边落在OA,OB位置上的角的集合.(2)写出终边落在阴影部分(包括边界)的角的集合.【答案】(1) 终边落在OA位置上的角的集合为{α|α=135°+k·360°,k∈Z};终边落在OB位置上的角的集合为{α|α=-30°+k ·360°,k ∈Z};(2) {α|-30°+k ·360°≤α≤135°+k ·360°,k ∈Z}. 【解析】(1)终边落在OA 位置上的角的集合为{α|α=90°+45°+k ·360°,k ∈Z}={α|α=135°+k ·360°,k ∈Z};终边落在OB 位置上的角的集合为{α|α=-30°+k ·360°,k ∈Z}.(2)由题干图可知,阴影部分(包括边界)的角的集合是由所有介于[-30°,135°]之间的角及终边与它们相同的角组成的集合,故该区域可表示为{α|-30°+k ·360°≤α≤135°+k ·360°,k ∈Z}.能力提升训练1.【某某省某某市2019届高三模拟考试】如图,点为单位圆上一点,,点沿单位圆逆时针方向旋转角到点,则( )A .B .C .D .【答案】D 【解析】∵点A 为单位圆上一点,,点A 沿单位圆逆时针方向旋转角α到点,∴A (cos ,sin ),即A (),且cos (α),sin (α).则sinα=sin[(α)]=sin (α)cos cos (α)sin,故选:D .2.【某某省某某实验中学2018-2019学年高一下学期期中考试】在ABC ∆中,若,那么ABC∆是()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定【答案】A【解析】∆中,,∵在ABC∴,∴,A B为锐角.又,∴,∴,∴C为锐角,∆为锐角三角形.∴ABC故选A.3.【某某省某某市2018-2019学年高一下学期期中考试】已知,那么角是()A.第一或第二象限角B.第二或第三象限角C.第三或第四象限角D.第一或第四象限角【答案】B【解析】由,得异号,则角是第二或第三象限角,故选:.【某某省某某市2018-2019学年高一下学期期中考试】已知角α的终边经过点P(-3,y),且y<0,cosα=-,4.则tanα=()A.B.C.D.【答案】C 【解析】由题意,角的终边经过点,且,则,∴,所以,故选:C .5.【某某省某某市2019届高三下学期第三次统考】已知角83πθ=的终边经过点(,23)P x ,则x 的值为( ) A .±2 B .2C .﹣2D .﹣4【答案】C 【解析】 ∵已知角83πθ=的终边经过点(,23)P x ,∴23x,则2x =-,故选:C .6.【某某省某某市第三中学2019届高三上学期期中考试】,则3f π⎛⎫=⎪⎝⎭( ) A .32B .33C .12D .3【答案】C 【解析】根据题意,,且123π<<,则.故选:C .7.【某某省华文大教育联盟2019届高三第二次质量检测考试】在平面直角坐标系xOy 中,已知02απ<<,点是角α终边上一点,则α的值是___________.【答案】3π 【解析】,∵02απ<<,且点P 在第一象限, ∴α为锐角,∴α的值是3π, 故答案为:3π8.【某某省某某市第一中学2018-2019学年高一下学期开学考试】函数的定义域为______.【答案】或x k π=,k Z}∈【解析】 因为所以 2sin x 0cosx≥等价于0cosx >或0sinx =所以或x k π=,k Z ∈故答案为:或x k π=,k Z}∈.9.【某某省蓉城名校联盟2018-2019学年上期期末联考高一】在平面直角坐标系中,已知一个角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点P (5,-12),则sinα+cosα的值为___. 【答案】【解析】∵一个角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点P (5,-12),∴sinα=则sinα+cosα=-,故答案为:-.10.对于任意实数,事件“”的概率为_______.【答案】【解析】由于“”,故为第二象限角,故概率为.。
2021版高考数学一轮复习第三章三角函数解三角形课时达标18任意角蝗制及任意角的三角函数202105072190[解密考纲]本考点要紧考查三角函数的概念、任意角和弧度制.通常以选择题、填空题的形式出现.安排在比较靠前的位置.一、选择题1.将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是( C ) A .π3B .π6C .-π3D .-π6解析 将表的分针拨快应按顺时针方向旋转,为负角.故A 项,B 项不正确,又因为拨快10分钟,故应转过的角为圆周的16,即为-16×2π=-π3,故选C .2.点P 从(1,0)动身,沿单位圆逆时针方向运动2π3弧长到达点Q ,则点Q 的坐标为( A )A .⎝ ⎛⎭⎪⎫-12,32 B .⎝ ⎛⎭⎪⎫-32,-12 C .⎝ ⎛⎭⎪⎫-12,-32D .⎝⎛⎭⎪⎫-32,12 解析 由三角函数定义可知Q 点的坐标(x ,y )满足x =cos 2π3=-12,y =sin 2π3=32.3.已知角α的终边通过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范畴是( A )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3]解析 由cos α≤0,sin α>0可知,角α的终边在第二象限或y 轴的正半轴上,因此有⎩⎪⎨⎪⎧3a -9≤0,a +2>0,解得-2<a ≤3.4.(2020·福建三明模拟)设α是第二象限角,P (x,4)为其终边上的一点,且cos α=15x ,则sin α=( A ) A .45 B .-35C .35D .-45解析 因为r =x 2+42,cos α=15x =x x 2+42,得x =3或x =-3,又因为α是第二象限角,则x =-3,r =5,因此sin α=45,故选A .5.(2020·安徽合肥模拟)已知角θ的顶点与坐标原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=( B )A .-45B .-35C .35D .45解析 由题意知,tan θ=2,即sin θ=2cos θ,将其代入sin 2θ+cos 2θ=1中可得cos 2θ=15,故cos 2θ=2cos 2θ-1=-35,故选B .6.已知正角α的终边上一点的坐标为⎝ ⎛⎭⎪⎫sin 2π3,cos 2π3,则角α的最小值为( D )A .5π6B .2π3C .5π3D .11π6解析 ∵⎝ ⎛⎭⎪⎫sin 2π3,cos 2π3=⎝ ⎛⎭⎪⎫32,-12,∴角α为第四象限角,且sin α=-12,cosα=32,∴角α的最小值为11π6,故选D . 二、填空题7.在与2 010°终边相同的角中,绝对值最小的角的弧度数为 -5π6 .解析 ∵2 010°=676π=12π-5π6,∴与2 010°终边相同的角中绝对值最小的角的弧度数为-5π6.8.设角θ为第四象限角,同时角θ的终边与单位圆交于点P (x 0,y 0).若x 0+y 0=-13,则cos 2θ= -9. 解析 由三角函数的定义,得x 0=cos θ,y 0=sin θ.∵ cos θ+sin θ=-13,两边平方得sin 2θ=-89,∴cos 2θ=±1-sin 22θ=±179.∵θ为第四象限角,sin θ<0,cos θ>0,sin θ+cos θ<0,∴|sin θ|>|cos θ|,∴cos 2θ=cos 2θ-sin 2θ<0,∴cos 2θ=-179. 9.设角α是第三象限角,且⎪⎪⎪⎪⎪⎪sin α2=-sin α2,则角α2是第 四 象限角.解析 由α是第三象限角,知2k π+π<α<2k π+3π2(k ∈Z ),k π+π2<α2<k π+3π4(k ∈Z ),知α2是第二或第四象限角,再由⎪⎪⎪⎪⎪⎪sin α2=-sin α2,知sin α2≤0,因此α2只能是第四象限角.三、解答题10.已知角α终边上一点P ,点P 到x 轴的距离与到y 轴的距离之比为3∶4,且sin α<0,求cos α+2tan α的值.解析 设P (x ,y ),则依照题意,得|y ||x |=34.∵sin α<0,∴α的终边只可能在第三、四象限. ①若点P 位于第三象限,可设P (-4k ,-3k )(k >0),则r =x 2+y 2=5k ,从而cos α=x r =-45,tan α=y x =34,∴cos α+2tan α=710.②若点P 位于第四象限,可设P (4k ,-3k )(k >0), 则r =x 2+y 2=5k ,从而cos α=x r =45,tan α=y x =-34,∴cos α+2tan α=-710.综上所述,若点P 位于第三象限,则cos α+2tan α=710;若点P 位于第四象限,则cos α+2tan α=-710.11.已知扇形AOB 的周长为8.(1)若那个扇形的面积为3,求圆心角的大小;(2)求那个扇形的面积取得最大值时圆心角的大小和弦AB 的长. 解析 设扇形AOB 的半径为r ,弧长为l ,圆心角为α, (1)由题意可得⎩⎪⎨⎪⎧2r +l =8,12lr =3,解得⎩⎪⎨⎪⎧r =3,l =2,或⎩⎪⎨⎪⎧r =1,l =6,∴α=l r =23或α=lr=6.(2)∵2r +l =8,∴S 扇=12lr =12r (8-2r )=r (4-r )=-(r -2)2+4≤4,当且仅当r =2,即α=lr=2时,扇形面积取得最大值4.∴弦长AB =2sin 1×2=4sin 1. 12.已知sin α<0,tan α>0. (1)求α角的集合;(2)确定α2的终边所在的象限;(3)试判定tan α2sin α2cos α2的符号.解析 (1)由sin α<0,知α的终边在第三、四象限或y 轴的负半轴上;由tan α>0,知α的终边在第一、三象限,故α的终边在第三象限,其集合为⎩⎨⎧⎭⎬⎫α|2k +1π<α<2k π+3π2,k ∈Z .(2)由(2k +1)π<α<2k π+3π2,k ∈Z , 得k π+π2<α2<k π+3π4,k ∈Z ,故α2的终边在第二、四象限.(3)当α2在第二象限时,tan α2<0,sin α2>0,cos α2<0, 因此tan α2sin α2cos α2取正号; 当α2在第四象限时,tan α2<0,sin α2<0,cos α2>0, 因此tan α2sin α2cos α2也取正号.因此tan α2sin α2cos α2取正号.。
2021高考数学一轮复习考点规范练:18任意角、弧度制及任意角
的三角函数(含解析)
基础巩固
1.若sin α<0,且tan α>0,则α是()
A.第一象限角
B.第二象限角
C.第三象限角
D.第四象限角
答案:C
解析:∵sinα<0,∴α的终边落在第三、第四象限或y轴的负半轴.
又tanα>0,∴α在第一象限或第三象限.综上可知,α在第三象限.
2.将表的分针拨慢10分钟,则分针转过的角的弧度数是()
ABC.-D.-
答案:A
解析:将表的分针拨慢应按逆时针方向旋转,故选项C,D不正确.
∵拨慢10分钟,∴转过的角度应为圆周的,即为2π=
3.(2019河北石家庄模拟)已知角α(0°≤α<360°)终边上一点的坐标为(sin 150°,cos 150°),则α=()
A.150°
B.135°
C.300°
D.60°
答案:C
解析:由sin150°=,cos150°=-,可知角α终边上一点的坐标为,故α为第四象限角.由三角函数的定义得sinα=-,因为0°≤α<360°,所以α=300°.
4.如果1弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长为()
AB.sin 0.5C.2sin 0.5D.tan 0.5
答案:A
解析:连接圆心与弦的中点,则由弦心距、弦长的一半、半径构成一个直角三角形,弦长的一半为1,其所对的圆心角为0.5,故半径为,这个圆心角所对的弧长为故选A.
5.(2019安徽示范高中高三测试)已知角θ的顶点在坐标原点,始边在x轴的非负半轴上,终边经过点P(4,y),且sin θ=-,则tan θ=()
A.-BC.-D
答案:C
解析:由题意可知,r=,sinθ==-,解得y=-3,所以P(4,-3),所以tanθ=-
6.已知角α的终边经过点(3a-9,a+2),且cos α≤0,sin α>0,则实数a的取值范围是()
A.(-2,3]
B.(-2,3)
C.[-2,3)
D.[-2,3]
答案:A
解析:由cosα≤0,sinα>0可知,角α的终边在第二象限或y轴的正半轴上,所以有解得-2<a≤3.
7.已知角α的终边上一点P的坐标为,则角α的最小正值为()
ABCD
答案:D
解析:由题意知点P在第四象限,根据三角函数的定义得cosα=sin,故α=2kπ-(k∈Z),所以α的最小正值为
8.已知点A的坐标为(4,1),将OA绕坐标原点O逆时针旋转至OB,则点B的纵坐标为() ABCD
答案:D
解析:由点A的坐标为(4,1),可知OA绕坐标原点O逆时针旋转至OB,则OB边仍在第一象限.故可设直线OA的倾斜角为α,B(m,n)(m>0,n>0),则直线OB的倾斜角为+α.
因为A(4,1),所以tanα=,tan,即m2=n2,
因为m2+n2=(4)2+12=49,
所以n2+n2=49,所以n=或n=-(舍去),所以点B的纵坐标为
9.若点P(3,y)是角α终边上的一点,且满足y<0,cos α=,则tan α=.
答案:-
解析:由三角函数定义,知cosα=,且y<0,
可解得y=-4.故tanα==-。