比例练习题带答案十道
- 格式:doc
- 大小:37.00 KB
- 文档页数:17
比例练习题及答案在数学学科中,比例是一个重要的概念,经常用于解决实际问题。
本文将带您进行一些比例练习题,并附上详细的答案解析。
练习题一:某比例尺为1:2000的地图上,两个城市的实际距离为35公里。
请问在该地图上,这两个城市之间的距离是多少毫米?解析:比例尺表示地图上的1单位对应于实际距离的多少单位。
根据比例尺1:2000,1毫米对应2000米。
通过单位转换,35公里可以转换为35000米,所以在地图上的距离为35000 ÷ 2000 = 17.5毫米。
练习题二:甲队和乙队比赛,比分为3:4。
已知甲队得到了27分,求乙队得到的分数是多少?解析:根据比例关系,甲队的得分与乙队的得分之间的比例为3:4。
设乙队得分为x,则甲队得分为27,所以有3:4 = 27:x。
通过求解比例关系,可以得到x = 36,因此乙队得到的分数为36分。
练习题三:一根长为2.4米的绳子需要切成8段,每段的长度都相等。
请问每段绳子的长度是多少厘米?解析:根据题目条件,将绳子切成8段,每段长度相等,设每段长度为x,则有2.4米 = 240厘米 = 8x。
通过求解方程可以得到x = 30,因此每段绳子的长度为30厘米。
练习题四:某工厂中,甲班和乙班的男女比例分别是5:4和7:5。
如果甲班男生有45人,求乙班的男生人数。
解析:根据题目条件,甲班的男女比例为5:4,乙班的男女比例为7:5。
已知甲班男生有45人,设乙班男生为x人,则有5:4 = 45:x。
通过求解比例关系,可以得到x = 36,因此乙班的男生人数为36人。
练习题五:某材料由甲、乙、丙三种成分组成,甲的质量占总质量的30%,乙的质量占总质量的45%,丙的质量占总质量的25%。
如果总质量为400克,求甲、乙、丙三种成分各自的质量。
解析:根据题目条件,甲的质量占总质量的30%,乙的质量占总质量的45%,丙的质量占总质量的25%。
已知总质量为400克,设甲、乙、丙的质量分别为x、y、z克,所以有30:45:25 = x:y:z。
小学数学比例练习题及答案【小学数学练习题及答案】题一:某商品原价为800元,现已降价20%,请问现在的售价为多少?A. 600元B. 640元C. 720元D. 760元答案:D. 760元题二:一个矩形的长和宽成比例,长边为12cm,短边为4cm,求这个矩形的长边和短边的比值是多少?A. 1:2B. 2:1C. 3:1D. 1:3答案:A. 1:2题三:小明购买了一箱苹果,每箱有20个苹果,他打算将苹果平均分给4个朋友,每人分多少个?A. 3个B. 4个C. 5个D. 6个答案:D. 6个题四:小明的爸爸购买了一辆新车,他发现每行驶100公里需要消耗10升汽油,那么行驶80公里需要消耗多少升汽油?A. 8升B. 12升C. 16升D. 20升答案:A. 8升题五:某商店一个月的营业额为40000元,其中销售商品的总利润为6000元,那么这个月该商店的利润率是多少?A. 12%B. 15%C. 18%D. 20%答案:B. 15%题六:玛丽每天早上骑自行车上学,上学路程是她家到学校路程的3/4,她到学校用了20分钟,那么她家到学校的路程需要多少分钟?A. 15分钟B. 16分钟C. 25分钟D. 30分钟答案:C. 25分钟题七:一个正方形的边长是x,另一个正方形的边长是x+5,求较大正方形的面积与较小正方形的面积的比值是多少?A. x:x+5B. x+5:xC. x^2:(x+5)^2D. (x+5)^2:x^2答案:D. (x+5)^2:x^2题八:某班级一共有50个学生,其中男生占总人数的1/4,女生人数是男生人数的3倍,求女生的人数。
A. 10人B. 15人C. 20人D. 25人答案:C. 20人题九:小明的体重是45千克,小红的体重是小明体重的3/5,两人体重的差是多少千克?A. 9千克B. 18千克C. 27千克D. 36千克答案:B. 18千克题十:某商品原价为120元,打折后降价20%,再经过一次满减活动,实际支付80元,满减的金额是多少?A. 10元B. 20元C. 30元D. 40元答案:A. 10元。
数学比的应用题有答案数学比的应用题及答案1. 问题:小明和小红一起买了一些苹果,小明买了苹果的2/5,小红买了苹果的3/5。
如果小红买了15个苹果,那么小明买了多少个苹果?答案:小明买了12个苹果。
2. 问题:一个班级有40名学生,其中男生和女生的比是3:2。
这个班级有多少男生和女生?答案:这个班级有24名男生和16名女生。
3. 问题:一个工厂生产两种类型的产品,A型产品和B型产品。
A型产品和B型产品的生产比是4:3。
如果工厂一天生产了120个A型产品,那么它生产了多少个B型产品?答案:工厂生产了90个B型产品。
4. 问题:在一个水果店,苹果和橘子的比例是5:3。
如果水果店有100个苹果,那么有多少个橘子?答案:水果店有60个橘子。
5. 问题:在一次长跑比赛中,小华和小李的速度比是3:2。
如果小华跑了3600米,那么小李跑了多少米?答案:小李跑了2400米。
6. 问题:一个公园的树木中,松树和柏树的比例是7:4。
如果公园里有42棵柏树,那么有多少棵松树?答案:公园里有63棵松树。
7. 问题:在一个合唱团中,男生和女生的人数比是5:4。
如果合唱团有30名男生,那么合唱团有多少名女生?答案:合唱团有24名女生。
8. 问题:一个农场的奶牛和山羊的头数比是6:5。
如果农场有45头奶牛,那么有多少头山羊?答案:农场有37.5头山羊,但由于山羊的数量必须是整数,所以实际上会有37头山羊。
9. 问题:一个学校的图书馆中,科学书籍和文学书籍的比例是2:3。
如果图书馆有60本科学书籍,那么有多少本文学书籍?答案:图书馆有90本文学书籍。
10. 问题:在一次数学竞赛中,小刚和小强的得分比是4:5。
如果小强得了50分,那么小刚得了多少分?答案:小刚得了40分。
比和比例单元测试题及答案一、选择题(每题2分,共20分)1. 比的基本性质是什么?A. 比的前项和后项同时乘或除以相同的数(0除外)B. 比的前项和后项相加或相减C. 比的前项和后项相乘或相除D. 比的前项和后项相等2. 比例的基本性质是什么?A. 内项之积等于外项之积B. 内项之和等于外项之和C. 内项之差等于外项之差D. 内项之比等于外项之比3. 已知a:b=c:d,当b=2时,c的值是多少?A. 1B. 2C. 4D. 无法确定4. 两个比的比值相等,这两个比是什么关系?A. 互为倒数B. 互为相反数C. 成正比D. 成反比5. 一个比的前项扩大10倍,后项缩小10倍,比值会如何变化?A. 保持不变B. 扩大100倍C. 缩小100倍D. 扩大10倍6. 一个比例的两个外项的积是24,一个内项是3,另一个内项是多少?A. 8B. 7C. 6D. 97. 已知A:B=2:3,B:C=4:5,那么A:B:C的比例是什么?A. 2:3:4B. 2:3:5C. 8:12:15D. 无法确定8. 一个比的后项是10,比值是1/2,那么前项是多少?A. 5B. 10C. 20D. 无法确定9. 两个比相等,它们的比值相等吗?A. 一定相等B. 可能相等C. 不一定相等D. 一定不相等10. 已知比例3:4=9:12,如果第一个比的前项增加3,那么后项应该增加多少?A. 4B. 5C. 6D. 7二、填空题(每题2分,共20分)11. 比的前项是8,后项是4,比值是________。
12. 如果比的前项是10,比值是1/2,那么后项是________。
13. 比例2:3=8:12可以化简为________:________。
14. 如果一个比例的两个内项分别是6和18,那么两个外项的积是________。
15. 已知A:B=3:2,B:C=4:3,那么A:B:C的比例是________:________:________。
正比例和反比例练习题及答案一、对号入座。
1、35:=20÷16==%=2、因为X=2Y,所以X:Y=:,X和Y成比例。
3、一个长方形的长比宽多20%,这个长方形的长和宽的最简整数比是。
4、向阳小学三年级与四年级人数比是3:4,三年级人数比四年级少% 四年级比三年级多%5、甲乙两个正方形的边长比是2:3,甲乙两个正方形的周长比是,甲乙两个正方形的面积比是。
6、一个比例由两个比值是2的比组成,又知比例的外项分别是1.2和5,这个比例是。
7、已知被减数与差的比是5:3,减数是100,被减数是。
8、在一幅地图上量得甲乙两地距离6厘米,乙丙两地距离8厘米;已知甲乙两地间的实际距离是 120千米,乙丙两地间的实际距离是千米;这幅地图的比例尺是。
9、从2:8、1.6:和:这三个比中,选两个比组成的比例是。
10、一块铜锌合金重180克,铜与锌的比是2:3,锌重克。
如果再熔入30克锌,这时铜与锌的比是。
二、明辨是非。
1、一项工程,甲队40天可以完成,乙队50天可以完成。
甲乙两队的工作效率比是4:5。
2、圆柱体与圆锥体的体积比是3:1,则圆柱体与圆锥体一定等底等高。
3、甲数与乙数的比是3:4,甲数就是乙数的。
4、比的前项和后项同时乘以同一个数,比值不变。
5、总价一定,单价和数量成反比例。
6、实际距离一定,图上距离与比例尺成正比例。
7、正方体体积一定,底面积和高成反比例。
8、订阅《今日泰兴》的总钱数和份数成正比例。
三、选择题。
1、把一个直径4毫米的手表零件,画在图纸上直径是8厘米,这幅图纸的比例尺是。
A、1:B、2:1C、1:20D、20:12、已知=1.2、=1.2,所以X和Y比较。
A、X大B、YC、一样大3、如果A×2=B÷3,那么A:B=。
A、2:B、3:C、1:D:14、一个三角形的三个内角的度数比是2:3:4,这个三角形是。
A、锐角三角形B、直角三角形C、钝角三角形5、体积和高都相等的圆柱体和圆锥体,它们底面积的比是。
比例测试题及答案一、选择题1. 已知比例A:B=2:3,若A=6,则B的值是多少?A. 4B. 6C. 9D. 12答案:C2. 某班级男生与女生的比例是5:3,若男生人数为30人,求女生人数。
A. 18B. 24C. 30D. 36答案:A3. 一个比例尺为1:10000的地图上,1厘米代表实际距离多少米?A. 100B. 1000C. 10000D. 100000答案:B二、填空题1. 若比例A:B=3:5,且B=15,则A的值是________。
答案:92. 一个物体的长和宽的比例是4:3,若长是16厘米,则宽是________厘米。
答案:123. 若某地图上的比例尺为1:50000,则地图上2厘米代表实际距离________公里。
答案:1三、简答题1. 解释什么是比例尺,并给出一个实际应用的例子。
答案:比例尺是地图或图纸上的距离与实际地面距离的比值。
例如,建筑图纸上的比例尺可能是1:50,意味着图纸上的1厘米代表实际建筑的50厘米。
2. 如何通过已知的比例和部分数值,计算出未知的比例数值?答案:首先确定已知的比例和数值,然后根据比例关系设置等式,通过简单的数学运算求解未知数值。
例如,若A:B=2:3且A=6,则B=(3/2)*6=9。
四、计算题1. 已知某地区男女比例为7:5,若该地区总人口为1400人,求男性和女性的人数。
答案:男性人数为1400*(7/(7+5))=700人,女性人数为1400*(5/(7+5))=700人。
2. 若一张地图的比例尺为1:20000,地图上某段距离为4厘米,求这段距离在实际中的长度。
答案:实际长度=4厘米*20000=80000厘米,即800米。
五、论述题1. 论述比例在日常生活中的应用,并举例说明。
答案:比例在日常生活中有广泛应用,例如在烹饪中,食谱会给出食材的比例,以确保食物的味道和质地。
在金融领域,投资组合的比例分配可以帮助投资者分散风险。
在设计领域,黄金分割比例被用来创造视觉上的平衡和美感。
比例练习题及答案一、选择题1. 某班级有男生30人,女生20人,男生和女生的比例是多少?A. 3:2B. 2:3C. 5:4D. 4:52. 如果一个比例的前项是20,后项是5,这个比例的比值是多少?A. 4B. 3C. 2D. 13. 一个比例的比值是2,后项是10,前项是多少?A. 5B. 20C. 15D. 254. 某工厂生产零件,合格品与次品的比例是9:1,如果生产了100个零件,次品有多少个?A. 10B. 1C. 9D. 115. 如果一个比例的前项增加20%,后项不变,比值会如何变化?A. 增加20%B. 增加25%C. 不变D. 减少20%二、填空题6. 比例3:4可以写成分数形式为________。
7. 如果一个比例的前项是15,比值是1/3,那么后项是________。
8. 如果一个比例的后项是24,比值是1/4,那么前项是________。
9. 某班级有学生50人,男生和女生的比例是2:3,那么女生有________人。
10. 某商品原价100元,打8折后的价格是________元。
三、简答题11. 解释什么是比例,并给出一个生活中的例子。
12. 如果一个比例的前项和后项都乘以同一个数,比值会如何变化?13. 一个班级有40个学生,男生和女生的比例是3:2,求男生和女生各有多少人?14. 某公司员工总数为200人,其中技术人员和非技术人员的比例是2:3,求技术人员有多少人?15. 某商品原价200元,现在打7.5折,求打折后的价格。
四、计算题16. 某工厂生产零件,合格品与次品的比例是8:1,如果生产了150个零件,求次品有多少个?17. 某班级有学生60人,男生和女生的比例是5:3,求男生和女生各有多少人?18. 某商品原价300元,现在打6折,求打折后的价格。
19. 某工厂生产零件,合格品与次品的比例是7:3,如果生产了200个零件,求合格品有多少个?20. 某班级有学生70人,男生和女生的比例是4:3,求男生和女生各有多少人?答案:1. A2. B3. B4. B5. A6. 3/47. 458. 69. 3010. 8011. 比例是两个数之间的一种关系,表示两个数之间的相对大小。
比例试题及答案1. 已知甲乙两数的比是3:4,甲数是12,求乙数。
答案:根据题目,甲乙两数的比是3:4,甲数是12,因此乙数是12÷3×4=16。
2. 一个长方形的长是宽的2倍,如果长是10厘米,那么宽是多少厘米?答案:设宽为x厘米,则长为2x厘米。
已知长为10厘米,所以2x=10,解得x=5厘米。
3. 甲乙两数的比是5:6,甲数比乙数少20%,求甲乙两数。
答案:设甲数为5x,乙数为6x,根据题意,5x=6x×(1-20%),解得x=10,所以甲数为5×10=50,乙数为6×10=60。
4. 一个比例的两个外项的积是36,一个内项是9,求另一个内项。
答案:设另一个内项为y,则根据比例的性质,9×y=36,解得y=4。
5. 甲乙两数的比是2:3,甲数增加10,乙数增加15后,新的比变为3:4,求甲乙两数。
答案:设甲数为2x,乙数为3x。
根据题意,(2x+10)/(3x+15)=3/4,解得x=10,所以甲数为2×10=20,乙数为3×10=30。
6. 甲乙两数的比是7:8,甲数是乙数的几分之几?答案:甲数是乙数的7/8。
7. 甲乙两数的比是3:2,甲数是乙数的1.5倍,求甲乙两数。
答案:设甲数为3x,乙数为2x。
根据题意,3x=1.5×2x,解得x=1,所以甲数为3×1=3,乙数为2×1=2。
8. 甲乙两数的比是5:3,甲数是20,求乙数。
答案:根据题意,甲数是20,甲乙两数的比是5:3,所以乙数是20÷5×3=12。
9. 甲乙两数的比是4:3,甲数比乙数多25%,求甲乙两数。
答案:设甲数为4x,乙数为3x。
根据题意,4x=3x×(1+25%),解得x=5,所以甲数为4×5=20,乙数为3×5=15。
10. 甲乙两数的比是6:5,甲数是乙数的120%,求甲乙两数。
六年级比例练习题带答案1. 题目:小明拥有5本英语书和3本数学书,求其英语书与数学书的比例。
解答:英语书与数学书的数量比为5:3,即英语书数 ÷数学书数 = 5 ÷ 3。
约分后得到英语书与数学书的比值为5:3。
2. 题目:某班级有60名男生和40名女生,请问男生和女生的比例是多少?解答:男生与女生的数量比为60:40,即男生数 ÷女生数 = 60 ÷ 40。
约分后得到男生和女生的比值为3:2。
3. 题目:一辆汽车经过一段路程用时6小时,如果速度提高一倍,则经过同样路程需要多少时间?解答:原速度为1单位路程/1小时,提高一倍后速度为2单位路程/1小时。
根据比例关系,原用时 ÷提高后用时 = 原速度 ÷提高后速度。
代入数值计算得到 6 ÷ x = 1 ÷ 2,求得 x = 12。
因此,提高后的速度下经过同样路程需要12小时。
4. 题目:在一家商店中,某商品售价为100元,若商家打八折出售,求打折后的售价。
解答:打八折意味着商品售价的80%,即打折后售价 = 商品售价 ×打折比例 = 100 × 80% = 80元。
5. 题目:某商品原价为120元,经过折扣出售后,售价为96元,求折扣比例。
解答:折扣比例 = 折扣金额 ÷商品原价 = (商品原价 - 折后售价) ÷商品原价 = (120 - 96) ÷ 120 = 24 ÷ 120 = 0.2。
因此,折扣比例为20%。
6. 题目:甲、乙两人分别走了12公里和15公里的路程,求他们的路程比。
解答:甲、乙两人的路程比为12:15,即甲走的路程 ÷乙走的路程= 12 ÷ 15。
约分后得到甲、乙两人的路程比为4:5。
7. 题目:一桶油漆可以涂刷80平方米的墙面,求涂刷100平方米墙面需要多少桶油漆?解答:1桶油漆可以涂刷80平方米的墙面,因此涂刷100平方米墙面需要的油漆桶数为 100 ÷ 80 = 1.25(桶)。
小学数学比例应用题100道及答案(完整版)1. 小明用10 元钱买了5 个本子,照这样计算,16 元可以买几个本子?答案:8 个解析:先算出每个本子的价格10÷5 = 2 元,16÷2 = 8 个2. 工厂生产一种零件,3 小时生产了180 个,照这样计算,8 小时可以生产多少个?答案:480 个解析:每小时生产180÷3 = 60 个,8 小时生产60×8 = 480 个3. 一辆汽车5 小时行驶250 千米,照这样的速度,7 小时行驶多少千米?答案:350 千米解析:速度为250÷5 = 50 千米/时,7 小时行驶50×7 = 350 千米4. 4 头牛5 天吃草800 千克,照这样计算,7 头牛8 天吃草多少千克?答案:2240 千克解析:1 头牛1 天吃草800÷4÷5 = 40 千克,7 头牛8 天吃草40×7×8 = 2240 千克5. 用20 千克花生可以榨油8 千克,照这样计算,100 千克花生可以榨油多少千克?答案:40 千克解析:出油率为8÷20 = 0.4,100×0.4 = 40 千克6. 某工厂8 个工人6 天加工零件720 个,照这样计算,12 个工人15 天可以加工零件多少个?答案:2700 个解析:1 个工人1 天加工720÷8÷6 = 15 个,12 个工人15 天加工15×12×15 = 2700 个7. 5 台织布机8 小时织布480 米,照这样计算,7 台织布机12 小时织布多少米?答案:1008 米解析:1 台织布机1 小时织布480÷5÷8 = 12 米,7 台织布机12 小时织布12×7×12 = 1008 米8. 修一条路,3 人5 天可以修150 米,照这样计算,8 人10 天可以修多少米?答案:800 米解析:1 人1 天修150÷3÷5 = 10 米,8 人10 天修10×8×10 = 800 米9. 10 辆汽车12 次运货物600 吨,照这样计算,20 辆汽车15 次可以运货物多少吨?答案:1500 吨解析:1 辆汽车1 次运600÷10÷12 = 5 吨,20 辆汽车15 次运5×20×15 = 1500 吨10. 学校用同样的方砖铺地,铺5 平方米需要方砖120 块,照这样计算,铺30 平方米需要方砖多少块?答案:720 块解析:1 平方米需要120÷5 = 24 块,30 平方米需要24×30 = 720 块11. 小明2 分钟走120 米,照这样的速度,他从家到学校走了8 分钟,他家到学校有多远?答案:480 米解析:速度为120÷2 = 60 米/分钟,8 分钟走60×8 = 480 米12. 工人师傅4 小时加工零件160 个,照这样计算,7 小时加工零件多少个?答案:280 个解析:每小时加工160÷4 = 40 个,7 小时加工40×7 = 280 个13. 6 台收割机8 天收割小麦240 公顷,照这样计算,10 台收割机12 天收割小麦多少公顷?答案:600 公顷解析:1 台收割机1 天收割240÷6÷8 = 5 公顷,10 台收割机12 天收割5×10×12 = 600 公顷14. 某服装厂3 天生产服装180 套,照这样计算,9 天可以生产服装多少套?答案:540 套解析:每天生产180÷3 = 60 套,9 天生产60×9 = 540 套15. 15 头牛4 天吃草180 千克,照这样计算,8 头牛6 天吃草多少千克?答案:576 千克解析:1 头牛1 天吃草180÷15÷4 = 3 千克,8 头牛 6 天吃草3×8×6 = 144 千克16. 5 个工人6 小时加工零件300 个,照这样计算,8 个工人10 小时加工零件多少个?答案:480 个解析:1 个工人1 小时加工300÷5÷6 = 10 个,8 个工人10 小时加工10×8×10 = 800 个17. 一辆汽车3 小时行驶180 千米,照这样的速度,5 小时行驶多少千米?答案:300 千米解析:速度为180÷3 = 60 千米/时,5 小时行驶60×5 = 300 千米18. 用100 千克大豆可以榨油16 千克,照这样计算,400 千克大豆可以榨油多少千克?答案:64 千克解析:出油率为16÷100 = 0.16,400×0.16 = 64 千克19. 修一条路,5 人7 天可以修350 米,照这样计算,10 人14 天可以修多少米?答案:1400 米解析:1 人1 天修350÷5÷7 = 10 米,10 人14 天修10×10×14 = 1400 米20. 3 台抽水机4 小时抽水240 立方米,照这样计算,5 台抽水机6 小时抽水多少立方米?答案:600 立方米解析:1 台抽水机1 小时抽水240÷3÷4 = 20 立方米,5 台抽水机6 小时抽水20×5×6 = 600 立方米21. 某工厂6 个工人5 天生产零件900 个,照这样计算,15 个工人8 天可以生产零件多少个?答案:3600 个解析:1 个工人1 天生产900÷6÷5 = 30 个,15 个工人8 天生产30×15×8 = 3600 个22. 8 台印刷机10 小时印刷纸张48000 张,照这样计算,12 台印刷机15 小时印刷纸张多少张?答案:108000 张解析:1 台印刷机1 小时印刷48000÷8÷10 = 600 张,12 台印刷机15 小时印刷600×12×15 = 108000 张23. 5 辆汽车7 次运煤140 吨,照这样计算,8 辆汽车10 次运煤多少吨?答案:320 吨解析:1 辆汽车1 次运煤140÷5÷7 = 4 吨,8 辆汽车10 次运煤4×8×10 = 320 吨24. 服装厂2 天生产服装120 套,照这样计算,6 天可以生产服装多少套?答案:360 套解析:每天生产120÷2 = 60 套,6 天生产60×6 = 360 套25. 12 头牛5 天吃草300 千克,照这样计算,18 头牛8 天吃草多少千克?答案:864 千克解析:1 头牛1 天吃草300÷12÷5 = 5 千克,18 头牛8 天吃草5×18×8 = 720 千克26. 4 个工人3 小时加工零件120 个,照这样计算,7 个工人8 小时加工零件多少个?答案:560 个解析:1 个工人1 小时加工120÷4÷3 = 10 个,7 个工人8 小时加工10×7×8 = 560 个27. 一辆汽车4 小时行驶280 千米,照这样的速度,7 小时行驶多少千米?答案:490 千米解析:速度为280÷4 = 70 千米/时,7 小时行驶70×7 = 490 千米28. 用80 千克花生可以榨油32 千克,照这样计算,200 千克花生可以榨油多少千克?答案:80 千克解析:出油率为32÷80 = 0.4,200×0.4 = 80 千克29. 修一条路,4 人6 天可以修240 米,照这样计算,6 人9 天可以修多少米?答案:540 米解析:1 人1 天修240÷4÷6 = 10 米,6 人9 天修10×6×9 = 540 米30. 5 台拖拉机6 小时耕地150 亩,照这样计算,8 台拖拉机9 小时耕地多少亩?答案:216 亩解析:1 台拖拉机1 小时耕地150÷5÷6 = 5 亩,8 台拖拉机9 小时耕地5×8×9 = 360 亩31. 某工厂10 个工人8 天生产零件800 个,照这样计算,15 个工人12 天可以生产零件多少个?答案:1800 个解析:1 个工人1 天生产800÷10÷8 = 10 个,15 个工人12 天生产10×15×12 = 1800 个32. 6 台磨面机7 小时磨面粉2520 千克,照这样计算,9 台磨面机10 小时磨面粉多少千克?答案:3600 千克解析:1 台磨面机1 小时磨面粉2520÷6÷7 = 60 千克,9 台磨面机10 小时磨面粉60×9×10 = 5400 千克33. 4 辆卡车5 次运货物160 吨,照这样计算,7 辆卡车8 次运货物多少吨?答案:448 吨解析:1 辆卡车1 次运货物160÷4÷5 = 8 吨,7 辆卡车8 次运货物8×7×8 = 448 吨34. 服装厂3 天生产服装180 套,照这样计算,9 天可以生产服装多少套?答案:540 套解析:每天生产180÷3 = 60 套,9 天生产60×9 = 540 套35. 18 头牛6 天吃草540 千克,照这样计算,12 头牛8 天吃草多少千克?答案:480 千克解析:1 头牛1 天吃草540÷18÷6 = 5 千克,12 头牛8 天吃草5×12×8 = 480 千克36. 5 个工人8 小时加工零件400 个,照这样计算,7 个工人12 小时加工零件多少个?答案:840 个解析:1 个工人1 小时加工400÷5÷8 = 10 个,7 个工人12 小时加工10×7×12 = 840 个37. 一辆汽车6 小时行驶360 千米,照这样的速度,8 小时行驶多少千米?答案:480 千米解析:速度为360÷6 = 60 千米/时,8 小时行驶60×8 = 480 千米38. 用120 千克大豆可以榨油24 千克,照这样计算,300 千克大豆可以榨油多少千克?答案:60 千克解析:出油率为24÷120 = 0.2,300×0.2 = 60 千克39. 修一条路,6 人8 天可以修480 米,照这样计算,9 人12 天可以修多少米?答案:864 米解析:1 人1 天修480÷6÷8 = 10 米,9 人12 天修10×9×12 = 1080 米40. 7 台织布机9 小时织布630 米,照这样计算,10 台织布机12 小时织布多少米?答案:960 米解析:1 台织布机1 小时织布630÷7÷9 = 10 米,10 台织布机12 小时织布10×10×12 = 1200 米41. 某工厂12 个工人10 天生产零件1200 个,照这样计算,18 个工人15 天可以生产零件多少个?答案:2700 个解析:1 个工人 1 天生产1200÷12÷10 = 10 个,18 个工人15 天生产10×18×15 = 2700 个42. 8 台收割机9 天收割小麦360 公顷,照这样计算,12 台收割机15 天收割小麦多少公顷?答案:900 公顷解析:1 台收割机1 天收割360÷8÷9 = 5 公顷,12 台收割机15 天收割5×12×15 = 900 公顷43. 5 辆汽车6 次运货物150 吨,照这样计算,8 辆汽车10 次运货物多少吨?答案:400 吨解析:1 辆汽车1 次运货物150÷5÷6 = 5 吨,8 辆汽车10 次运货物5×8×10 = 400 吨44. 服装厂4 天生产服装240 套,照这样计算,12 天可以生产服装多少套?答案:720 套解析:每天生产240÷4 = 60 套,12 天生产60×12 = 720 套45. 20 头牛7 天吃草700 千克,照这样计算,15 头牛10 天吃草多少千克?答案:750 千克解析:1 头牛1 天吃草700÷20÷7 = 5 千克,15 头牛10 天吃草5×15×10 = 750 千克46. 6 个工人7 小时加工零件210 个,照这样计算,9 个工人14 小时加工零件多少个?答案:630 个解析:1 个工人1 小时加工210÷6÷7 = 5 个,9 个工人14 小时加工5×9×14 = 630 个47. 一辆汽车5 小时行驶250 千米,照这样的速度,9 小时行驶多少千米?答案:450 千米解析:速度为250÷5 = 50 千米/时,9 小时行驶50×9 = 450 千米48. 用150 千克花生可以榨油60 千克,照这样计算,350 千克花生可以榨油多少千克?答案:140 千克解析:出油率为60÷150 = 0.4,350×0.4 = 140 千克49. 修一条路,7 人9 天可以修630 米,照这样计算,10 人18 天可以修多少米?答案:1800 米解析:1 人1 天修630÷7÷9 = 10 米,10 人18 天修10×10×18 = 1800 米50. 8 台拖拉机7 小时耕地280 亩,照这样计算,12 台拖拉机10 小时耕地多少亩?答案:600 亩解析:1 台拖拉机1 小时耕地280÷8÷7 = 5 亩,12 台拖拉机10 小时耕地5×12×10 = 600 亩51. 某工厂15 个工人12 天生产零件1800 个,照这样计算,20 个工人18 天可以生产零件多少个?答案:5400 个解析:1 个工人 1 天生产1800÷15÷12 = 10 个,20 个工人18 天生产10×20×18 = 3600 个52. 9 台印刷机11 小时印刷纸张49500 张,照这样计算,15 台印刷机16 小时印刷纸张多少张?答案:120000 张解析:1 台印刷机1 小时印刷49500÷9÷11 = 500 张,15 台印刷机16 小时印刷500×15×16 = 120000 张53. 7 辆汽车8 次运煤224 吨,照这样计算,10 辆汽车12 次运煤多少吨?答案:480 吨解析:1 辆汽车1 次运煤224÷7÷8 = 4 吨,10 辆汽车12 次运煤4×10×12 = 480 吨54. 服装厂5 天生产服装300 套,照这样计算,15 天可以生产服装多少套?答案:900 套解析:每天生产300÷5 = 60 套,15 天生产60×15 = 900 套55. 25 头牛8 天吃草1000 千克,照这样计算,18 头牛12 天吃草多少千克?答案:864 千克解析:1 头牛 1 天吃草1000÷25÷8 = 5 千克,18 头牛12 天吃草5×18×12 = 1080 千克56. 8 个工人9 小时加工零件360 个,照这样计算,12 个工人15 小时加工零件多少个?答案:900 个解析:1 个工人1 小时加工360÷8÷9 = 5 个,12 个工人15 小时加工5×12×15 = 900 个57. 一辆汽车7 小时行驶420 千米,照这样的速度,10 小时行驶多少千米?答案:600 千米解析:速度为420÷7 = 60 千米/时,10 小时行驶60×10 = 600 千米58. 用200 千克大豆可以榨油80 千克,照这样计算,450 千克大豆可以榨油多少千克?答案:180 千克解析:出油率为80÷200 = 0.4,450×0.4 = 180 千克59. 修一条路,9 人11 天可以修990 米,照这样计算,12 人20 天可以修多少米?答案:2400 米解析:1 人1 天修990÷9÷11 = 10 米,12 人20 天修10×12×20 = 2400 米60. 10 台收割机12 小时收割小麦600 公顷,照这样计算,15 台收割机18 小时收割小麦多少公顷?答案:1350 公顷解析:1 台收割机1 小时收割600÷10÷12 = 5 公顷,15 台收割机18 小时收割5×15×18 = 1350 公顷61. 某工厂18 个工人14 天生产零件2520 个,照这样计算,24 个工人21 天可以生产零件多少个?答案:6048 个解析:1 个工人 1 天生产2520÷18÷14 = 10 个,24 个工人21 天生产10×24×21 = 5040 个62. 11 台磨面机13 小时磨面粉5720 千克,照这样计算,16 台磨面机18 小时磨面粉多少千克?答案:11520 千克解析:1 台磨面机1 小时磨面粉5720÷11÷13 = 40 千克,16 台磨面机18 小时磨面粉40×16×18 = 11520 千克63. 9 辆卡车10 次运货物450 吨,照这样计算,12 辆卡车15 次运货物多少吨?答案:900 吨解析:1 辆卡车1 次运货物450÷9÷10 = 5 吨,12 辆卡车15 次运货物5×12×15 = 900 吨64. 服装厂6 天生产服装360 套,照这样计算,18 天可以生产服装多少套?答案:1080 套解析:每天生产360÷6 = 60 套,18 天生产60×18 = 1080 套65. 30 头牛10 天吃草1200 千克,照这样计算,24 头牛15 天吃草多少千克?答案:1440 千克解析:1 头牛1 天吃草1200÷30÷10 = 4 千克,24 头牛15 天吃草4×24×15 = 1440 千克66. 10 个工人12 小时加工零件600 个,照这样计算,15 个工人20 小时加工零件多少个?答案:1500 个解析:1 个工人1 小时加工600÷10÷12 = 5 个,15 个工人20 小时加工5×15×20 = 1500 个67. 一辆汽车8 小时行驶480 千米,照这样的速度,12 小时行驶多少千米?答案:720 千米解析:速度为480÷8 = 60 千米/时,12 小时行驶60×12 = 720 千米68. 用250 千克花生可以榨油100 千克,照这样计算,550 千克花生可以榨油多少千克?答案:220 千克解析:出油率为100÷250 = 0.4,550×0.4 = 220 千克69. 修一条路,11 人13 天可以修715 米,照这样计算,14 人22 天可以修多少米?答案:1638 米解析:1 人1 天修715÷11÷13 = 5 米,14 人22 天修5×14×22 = 1540 米70. 12 台拖拉机14 小时耕地504 亩,照这样计算,18 台拖拉机20 小时耕地多少亩?答案:1080 亩解析:1 台拖拉机1 小时耕地504÷12÷14 = 3 亩,18 台拖拉机20 小时耕地3×18×20 = 1080 亩71. 某工厂20 个工人16 天生产零件3200 个,照这样计算,25 个工人24 天可以生产零件多少个?答案:9000 个解析:1 个工人 1 天生产3200÷20÷16 = 10 个,25 个工人24 天生产10×25×24 = 6000 个72. 13 台印刷机15 小时印刷纸张78000 张,照这样计算,18 台印刷机20 小时印刷纸张多少张?答案:144000 张解析:1 台印刷机1 小时印刷78000÷13÷15 = 400 张,18 台印刷机20 小时印刷400×18×20 = 144000 张73. 11 辆汽车12 次运煤396 吨,照这样计算,15 辆汽车18 次运煤多少吨?答案:810 吨解析:1 辆汽车1 次运煤396÷11÷12 = 3 吨,15 辆汽车18 次运煤3×15×18 = 810 吨74. 服装厂7 天生产服装420 套,照这样计算,21 天可以生产服装多少套?答案:1260 套解析:每天生产420÷7 = 60 套,21 天生产60×21 = 1260 套75. 35 头牛12 天吃草1680 千克,照这样计算,28 头牛16 天吃草多少千克?答案:1792 千克解析:1 头牛1 天吃草1680÷35÷12 = 4 千克,28 头牛16 天吃草4×28×16 = 1792 千克76. 12 个工人14 小时加工零件720 个,照这样计算,18 个工人21 小时加工零件多少个?解析:1 个工人1 小时加工720÷12÷14 = 5 个,18 个工人21 小时加工5×18×21 = 1890 个77. 一辆汽车9 小时行驶540 千米,照这样的速度,15 小时行驶多少千米?答案:900 千米解析:速度为540÷9 = 60 千米/时,15 小时行驶60×15 = 900 千米78. 用300 千克大豆可以榨油120 千克,照这样计算,650 千克大豆可以榨油多少千克?答案:260 千克解析:出油率为120÷300 = 0.4,650×0.4 = 260 千克79. 修一条路,13 人15 天可以修780 米,照这样计算,16 人25 天可以修多少米?答案:1600 米解析:1 人1 天修780÷13÷15 = 4 米,16 人25 天修4×16×25 = 1600 米80. 14 台收割机16 小时收割小麦896 公顷,照这样计算,20 台收割机24 小时收割小麦多少公顷?答案:1536 公顷解析:1 台收割机1 小时收割896÷14÷16 = 4 公顷,20 台收割机24 小时收割4×20×24 = 1920 公顷81. 某工厂22 个工人18 天生产零件3960 个,照这样计算,28 个工人27 天可以生产零件多少个?答案:9072 个解析:1 个工人 1 天生产3960÷22÷18 = 10 个,28 个工人27 天生产10×28×27 = 7560 个82. 15 台磨面机17 小时磨面粉8500 千克,照这样计算,20 台磨面机25 小时磨面粉多少千克?答案:12500 千克解析:1 台磨面机1 小时磨面粉8500÷15÷17 = 100/3 千克,20 台磨面机25 小时磨面粉100/3×20×25 = 50000/3 千克≈16666.67 千克83. 13 辆卡车14 次运货物588 吨,照这样计算,18 辆卡车21 次运货物多少吨?答案:1134 吨解析:1 辆卡车1 次运货物588÷13÷14 = 3 吨,18 辆卡车21 次运货物3×18×21 = 1134 吨84. 服装厂8 天生产服装480 套,照这样计算,24 天可以生产服装多少套?答案:1440 套解析:每天生产480÷8 = 60 套,24 天生产60×24 = 1440 套85. 40 头牛15 天吃草1800 千克,照这样计算,32 头牛20 天吃草多少千克?解析:1 头牛1 天吃草1800÷40÷15 = 3 千克,32 头牛20 天吃草3×32×20 = 1920 千克86. 14 个工人16 小时加工零件896 个,照这样计算,20 个工人24 小时加工零件多少个?答案:1920 个解析:1 个工人1 小时加工896÷14÷16 = 4 个,20 个工人24 小时加工4×20×24 = 1920 个87. 一辆汽车10 小时行驶600 千米,照这样的速度,18 小时行驶多少千米?答案:1080 千米解析:速度为600÷10 = 60 千米/时,18 小时行驶60×18 = 1080 千米88. 用350 千克花生可以榨油140 千克,照这样计算,750 千克花生可以榨油多少千克?答案:300 千克解析:出油率为140÷350 = 0.4,750×0.4 = 300 千克89. 修一条路,15 人18 天可以修900 米,照这样计算,18 人30 天可以修多少米?答案:1800 米解析:1 人1 天修900÷15÷18 = 10 / 3 米,18 人30 天修10 / 3×18×30 = 1800 米90. 16 台拖拉机18 小时耕地864 亩,照这样计算,24 台拖拉机27 小时耕地多少亩?答案:1944 亩解析:1 台拖拉机1 小时耕地864÷16÷18 = 3 亩,24 台拖拉机27 小时耕地3×24×27 = 1944 亩91. 某工厂25 个工人20 天生产零件5000 个,照这样计算,30 个工人30 天可以生产零件多少个?答案:9000 个解析:1 个工人 1 天生产5000÷25÷20 = 10 个,30 个工人30 天生产10×30×30 = 9000 个92. 17 台印刷机19 小时印刷纸张96900 张,照这样计算,22 台印刷机25 小时印刷纸张多少张?答案:165000 张解析:1 台印刷机1 小时印刷96900÷17÷19 = 300 张,22 台印刷机25 小时印刷300×22×25 = 165000 张93. 15 辆汽车16 次运煤600 吨,照这样计算,20 辆汽车24 次运煤多少吨?答案:1200 吨解析:1 辆汽车 1 次运煤600÷15÷16 = 2.5 吨,20 辆汽车24 次运煤 2.5×20×24 = 1200 吨94. 服装厂9 天生产服装540 套,照这样计算,27 天可以生产服装多少套?答案:1620 套解析:每天生产540÷9 = 60 套,27 天生产60×27 = 1620 套95. 45 头牛18 天吃草2160 千克,照这样计算,36 头牛24 天吃草多少千克?答案:2592 千克解析:1 头牛1 天吃草2160÷45÷18 = 8 / 3 千克,36 头牛24 天吃草8 / 3×36×24 = 2592 千克96. 16 个工人18 小时加工零件960 个,照这样计算,24 个工人27 小时加工零件多少个?答案:2592 个解析:1 个工人1 小时加工960÷16÷18 = 10 / 3 个,24 个工人27 小时加工10 / 3×24×27 = 2160 个97. 一辆汽车11 小时行驶660 千米,照这样的速度,16 小时行驶多少千米?答案:960 千米解析:速度为660÷11 = 60 千米/时,16 小时行驶60×16 = 960 千米98. 用400 千克花生可以榨油160 千克,照这样计算,850 千克花生可以榨油多少千克?答案:340 千克解析:出油率为160÷400 = 0.4,850×0.4 = 340 千克99. 修一条路,17 人21 天可以修1020 米,照这样计算,20 人35 天可以修多少米?答案:2000 米解析:1 人1 天修1020÷17÷21 = 10 / 3 米,20 人35 天修10 / 3×20×35 = 2000 米100. 18 台收割机20 小时收割小麦960 公顷,照这样计算,27 台收割机30 小时收割小麦多少公顷?答案:2160 公顷解析:1 台收割机1 小时收割960÷18÷20 = 8 / 3 公顷,27 台收割机30 小时收割8 / 3×27×30 = 2160 公顷。
人教版六年级下册数学第四单元《比例》达标测试卷一、单选题1.x∶80=2.4 x=()A.112B.25C.315D.1922.a的 4 倍等于 b 的13( a、b均不为 0),a 与b( )。
A.成正比例B.成反比例C.不成比例D.无法判断3.如果a:3=5:b,那么a和b()A.成正比例B.成反比例C.不成比例D.无法判断4.表示x,y正比例关系的是()A.x﹣y=5 B.y=x× 34C.y+x=20 D.xy=75.用比例解.沿着一个圆形的人造池塘种树,每隔2米植一棵树,需要树苗600棵.如果每隔3米植一棵树,需要树苗()A.1200棵B.600棵C.800棵D.400棵二、判断题6.比例的內项互为倒数,比例的外项也互为倒数。
()7.如果a:b23,那么b:a=32(a.b均不为0)。
()8.一幅图的比例尺是1:500米。
()9.订阅《小学生数学报》的份数和钱数不成比例。
()10.比例的两个內项分别是2和5,两个外项分别是x和2.5,可以列出多个比例,其中一个是x∶2=5∶2.5,解比例得x=4。
()三、填空题11.一张资料照片上显示一只恐龙的身长是5cm ,这只恐龙的实际身长是8m ,这张照片的比例尺是 。
12.设计一座厂房,在一个用10厘米的距离表示地面上10米的距离,这幅图的比例尺为 13.一幅地图的比例尺为这是 比例尺,把它改写成数值比例尺是 ;在该地图上量得甲乙两地之间的距离是5.5cm ,则这两地之间的实际距离是 km 。
14.北京到石家庄的高速公路全程288千米,在这一幅地图上高速公路的全长是7.2厘米,这幅地图的比例尺是 。
北京到天津的实际距离约120千米,在这幅地图上,两地之间的距离是 厘米。
.15.比例的两个内项分别是4和5,两个外项分别是x 和2.5,则x = 。
16.如果 12 x = 13y ,那么,x :y = : .17.在比例尺的地图上,如果实际距离240千米,那么图上距离是 厘米。
比例计算题题目一:已知2:3 = 4:x,求x 的值。
解析:根据比例的性质,内项之积等于外项之积。
所以2x = 3×4,2x = 12,解得x = 6。
题目二:如果5:7 = y:21,求y 的值。
解析:同样根据比例性质,7y = 5×21,7y = 105,y = 15。
题目三:3:4 = 9:z,求z 的值。
解析:3z = 4×9,3z = 36,z = 12。
题目四:x:6 = 8:12,求x 的值。
解析:12x = 6×8,12x = 48,x = 4。
题目五:4:5 = 12:m,求m 的值。
解析:4m = 5×12,4m = 60,m = 15。
题目六:7:n = 21:27,求n 的值。
解析:21n = 7×27,21n = 189,n = 9。
题目七:2:3 = (x + 1):6,求x 的值。
解析:3(x + 1) = 2×6,3x + 3 = 12,3x = 9,x = 3。
题目八:5:(y - 2) = 10:8,求y 的值。
解析:10(y - 2) = 5×8,10y - 20 = 40,10y = 60,y = 6。
题目九:3:4 = (z - 1):8,求z 的值。
解析:4(z - 1) = 3×8,4z - 4 = 24,4z = 28,z = 7。
解析:10(x + 2) = 5×4,10x + 20 = 20,10x = 0,x = 0。
题目十一:6:7 = (y + 3):14,求y 的值。
解析:7(y + 3) = 6×14,7y + 21 = 84,7y = 63,y = 9。
题目十二:4:5 = (z + 2):15,求z 的值。
解析:5(z + 2) = 4×15,5z + 10 = 60,5z = 50,z = 10。
题目十三:(x + 3):6 = 8:12,求x 的值。
解比例练习题及答案【练习题1】题目:如果3个苹果的总价是15元,那么1个苹果的价格是多少?【答案】解:设1个苹果的价格为x元。
根据题意,我们可以得到比例关系:3x = 15。
通过简单的除法,我们可以解出x = 15 ÷ 3 = 5。
所以,1个苹果的价格是5元。
【练习题2】题目:在一次数学竞赛中,小明的得分是小红的3倍。
如果小明得了90分,小红得了多少分?【答案】解:设小红的得分为y分。
根据题意,我们有比例关系:小明的得分 : 小红的得分 = 3 : 1。
已知小明得了90分,可以列出等式:90 = 3y。
通过除以3,我们得到y = 90 ÷ 3 = 30。
所以,小红得了30分。
【练习题3】题目:如果4千克的大米价格是24元,那么1千克大米的价格是多少?【答案】解:设1千克大米的价格为z元。
根据题意,我们有比例关系:4千克大米的价格 : 1千克大米的价格= 24元 : z元。
可以列出等式:4z = 24。
通过除以4,我们得到z = 24 ÷ 4 = 6。
所以,1千克大米的价格是6元。
【练习题4】题目:一个班级有40名学生,其中女生占总数的40%,求男生人数。
【答案】解:设男生人数为m,女生人数为f。
根据题意,我们有比例关系:女生人数 : 总人数 = 40% : 100%。
已知女生人数为40% × 40 = 16。
因为班级总人数是40,所以男生人数m = 40 - 16 = 24。
所以,男生人数是24人。
【练习题5】题目:在一次植树活动中,如果每棵树需要浇2升水,那么100棵树需要多少升水?【答案】解:设100棵树需要浇x升水。
根据题意,我们有比例关系:每棵树需要的水 : 总树数 = 2升 : 1。
可以列出等式:2 × 100 = x。
通过乘法,我们得到x = 2 × 100 = 200。
所以,100棵树需要200升水。
【结束语】通过以上练习题,我们可以看到比例关系在日常生活中的应用非常广泛,无论是购物、竞赛还是活动组织,掌握比例关系有助于我们快速准确地解决问题。
六年级比例的试题及答案一、选择题(每题2分,共10分)1. 以下哪个选项是比例关系?A. 3:4B. 3:4=6:8C. 3:4=7:9D. 3:4=5:6答案:B2. 一个比例的两个外项分别是8和12,两个内项分别是x和15,那么x的值是多少?A. 10B. 12C. 15D. 20答案:A3. 甲数与乙数的比例为3:2,甲数是18,那么乙数是多少?A. 12B. 24C. 36D. 48答案:A4. 一个比例的两个内项分别是4和9,两个外项分别是x和6,那么x 的值是多少?A. 2B. 3C. 4D. 5答案:B5. 一个比例的两个外项分别是5和10,两个内项分别是x和20,那么x的值是多少?A. 4B. 5C. 10D. 20答案:A二、填空题(每题2分,共10分)1. 如果2:3=4:6,那么6:9=______:12。
答案:42. 甲数是乙数的2倍,甲数与乙数的比例是______:1。
答案:23. 一个比例的两个内项分别是8和16,两个外项分别是4和______。
答案:324. 甲数与乙数的比例为5:3,如果甲数是25,那么乙数是______。
答案:155. 一个比例的两个外项分别是7和14,两个内项分别是______和28。
答案:4三、解答题(每题5分,共20分)1. 已知一个比例的两个外项分别是12和18,两个内项分别是x和y,且x+y=30,求x和y的值。
答案:根据比例的性质,我们有12/18 = x/y,即2/3 = x/y。
又因为x+y=30,可以设x=2k,y=3k,那么2k+3k=30,解得k=6。
所以x=12,y=18。
2. 甲、乙、丙三个数的比例为2:3:5,如果甲数是20,求乙数和丙数的值。
答案:根据比例关系,乙数是甲数的3/2倍,即20*3/2=30。
丙数是甲数的5/2倍,即20*5/2=50。
3. 一个比例的两个内项分别是10和15,两个外项分别是x和20,求x的值。
人教版数学七年级下册:《比例运算》专
项练习含答案
练题一:比例关系
1. 小明用12个苹果换了3个梨,那么苹果和梨的比例是多少?
答案:4:1
2. 甲乙丙三个人合作修建一座房子,甲需要10天完成,乙需
要15天完成,丙需要12天完成。
他们按照比例分工,一起修建了
4天后,甲已经完成了多少工作?
答案:\(\frac{4}{10}\) = 40%
3. 一个长方形的长和宽的比例是3:2,如果长是15cm,那么宽
是多少?
答案:\(15 \div 3 \times 2 = 10\),宽是10cm
练题二:比例计算
1. 用1升水果糖浆可以制作2千克水果糖,那么3升水果糖浆
可以制作多少千克水果糖?
答案:\(3 \times \frac{2}{1} = 6\),3升水果糖浆可以制作6千
克水果糖。
2. 甲乙两台机器生产产品的比例是5:3,如果甲机器生产了
200个产品,那么乙机器生产了多少个产品?
答案:\(200 \div 5 \times 3 = 120\),乙机器生产了120个产品。
3. 一辆火车从A地到B地共行驶400公里,行驶时间是4小时,速度是多少千米/小时?
答案:\(400 \div 4 = 100\),火车的速度是100千米/小时。
以上是《比例运算》的专项练习题目及答案。
希望能帮助你巩
固和理解比例运算的知识。
加油!。
比例练习题及答案练习题1:如果一个班级有40名学生,其中男生和女生的比例是3:2,求男生和女生各有多少人?答案:首先,将比例的总和计算出来:3 + 2 = 5。
这意味着每5个学生中有3个男生和2个女生。
接下来,将班级总人数40除以5,得到每份的人数:40 ÷ 5 = 8。
因此,男生的人数为3份,即3 × 8 = 24人;女生的人数为2份,即2 × 8 = 16人。
练习题2:如果一个长方形的长是宽的4倍,且周长为40厘米,求长方形的长和宽。
答案:设长方形的宽为x厘米,那么长就是4x厘米。
根据周长公式,2(长 + 宽) = 周长,我们有2(4x + x) = 40。
简化后得到10x = 40,解得x = 4。
所以宽是4厘米,长是4 × 4 = 16厘米。
练习题3:在一个混合比例的溶液中,水和酒精的比例是5:3。
如果溶液总量为450毫升,求水和酒精各有多少毫升?答案:首先,计算比例的总和:5 + 3 = 8。
这意味着每8毫升溶液中有5毫升水和3毫升酒精。
接下来,将总量450毫升除以8,得到每份的毫升数:450 ÷ 8 = 56.25。
因此,水的量为5份,即5 × 56.25 =281.25毫升;酒精的量为3份,即3 × 56.25 = 168.75毫升。
练习题4:如果一个三角形的底边是高的2倍,且面积为120平方厘米,求三角形的底边和高。
答案:设三角形的高为h厘米,那么底边就是2h厘米。
根据三角形面积公式,面积 = (底× 高) ÷ 2,我们有120 = (2h × h) ÷ 2。
简化后得到120 = h²,解得h = √120 = 10.95厘米(四舍五入到小数点后两位)。
所以底边是2 × 10.95 = 21.9厘米。
练习题5:在一个比例尺为1:10000的地图上,如果一个实际距离是5公里,求地图上的距离。
小学六年级《比例》选择题60道一.选择题(共60题,共120分)1.下面的问题,还需要确定一个信息才能解决,是()。
某花店新进了玫瑰、百合,菊花三种花,已知玫瑰有200朵,是三种花中数量最多的。
这个花店一共新进了多少朵花?A.玫瑰比菊花多20朵B.三种花的总数是百合的6倍C.玫现的数量占三种花总数的D.攻瑰、百合的数量比是5:32.已知有比例3∶9=1.3∶x ,则x的值是()。
A.6B.2.6C.3.9D.5.23.如图将四边形AEFG变换到四边形ABCD,其中E、G分别是AB、AD的中点,下列叙述不正确的是()。
A.这种变换是相似变换B.对应边扩大到原来的2倍C.各对应角的大小不变D.面积扩大到原来的2倍4.不能与∶组成比例的是()。
A.12∶10B.30∶25C.15∶18D.6∶55.汽车总辆数一定,每排停放的辆数和停放的排数()。
A.成正比例B.成反比例C.不成比例D.不成反比例6.把一个正方形接2:1的比例放大后,得到的图形与原来的图形相比较,()。
A.面积扩大到原来的2倍B.周长扩大到原来的2倍C.面积扩大到原来的D.周长缩小到原来的7.同时同地,物体的高度和影长()。
A.成正比例B.成反比例C.不成比例8.如果x=y 那么y:x=()。
A.1:B.:1C.3:49.给一个房间铺地砖,所需砖的块数与每块砖的()成反比例。
A.边长B.面积C.体积10.8:5=20:x中,x的值是()。
A.4B.8.5C.12.511.ab=c(a、b、c均不为0),当a一定时,b与c()。
A.成正比例B.成反比例C.不成比例12.如果a=6b,那么a与b()。
A.成反比例关系B.成正比例关系C.不成比例关系 D.无法确定13.仔细观察下表,表中相对应的两个量()。
A.成正比例B.成反比例C.不成比例14.我国资源总量一定,人均资源占有量和我国人口总数()。
A.成正比例B.成反比例C.不成比例15.下面的说法中,正确的有()句。
比例练习题参考答案化简下列各比(1)()()35:105=3535:105351:3÷÷= (2)91:13=(9113):(1313)=7:1÷÷ (3)77:3=(9):(39)7:2799⨯⨯=(4)446:(67):(7)42:421:277=⨯⨯== (5)1111:(10):(10)5:22525=⨯⨯=(6)11811:(49):(49)56:1749749=⨯⨯= (7)1790.7:2(20):(20)14:454104=⨯⨯= (8)333:0.75(20):(20)2:510104=⨯⨯= (9)1.6:2.5(1.610):(2.510)16:25=⨯⨯= (10)3.5:8.4(3.510):(8.410)5:12=⨯⨯= (11)3132131.05:1:(40):(40)42:15(423):(153)14:58208208==⨯⨯==÷÷= (12)5511561:2.44:2200:200125:4888825825⎛⎫⎛⎫==⨯⨯= ⎪ ⎪⎝⎭⎝⎭(13)36:0.2836:28(364):(284)9:79:7=÷÷厘米米=厘米厘米厘米厘米=厘米厘米=36:0.28=036:0.2809:0.7(0910):(0.710)9:79:7=⨯⨯=或厘米米.米米=.米米.米米=米米(14)48:1.648:164816):(1616)=÷÷分米米=分米分米=(分米分米=3分米:1分米3:1(15)4:1254=601248:12(4812):(1212)5⎛⎫⨯==÷÷ ⎪⎝⎭时分分:分分分分分=4:1(16)120:4120:(60)20:15(205):(155)4:34:34⨯==÷÷==分时=分分分分分分分分(17)220:5220:(1000)20:400(2020):(40020)5⨯=÷÷克千克=克克=克克克克=1:20(18)33:50053333(1000):6:(65):(5)==500555=⨯==⨯⨯千克克克克克克克克30克:3克10:1(19)71:101022121700(7002)=22==⨯⨯升毫升毫升:毫升毫升:(2)毫升=1400毫升:21毫升200:3(20)44:24=(100)2455=8024=103=10:3⨯平方米平方分米平方分米:平方分米平方分米:平方分米平方分米:平方分米解比例方程 (21)2:4:189x x ==(22):518:452x x ==(23)20:74:75x x ==(24)51:817:83xx ==(25)125::64600x x ==(26)12:7:33311x x ==(27)542::6531x x ==(28)62248::933554855x x ==(29)1.8:9:10.2x x ==(30)0.14:4.8:123.5x x ==(31)1.6:4.80.2:0.6xx ==(32):2.1 1.6:8.40.4x x ==(33)40.16::1553x x ==(34)614.4::151.2x x ==(35)7:6.3:4.990.1xx==(36)35:0.8:86169xx==(37)1.225750.4xx==(38)24:335210xx==(39)5235::857336125xx==(40)2639:1:1.53737xx==(41)2781632xx+==(42)3741157xx=+=(43)5312157xxx=+=(44)13758xxx+=+=(45)(1):512:303xx-==(46)4:(3)2:915xx+==(47)13:91(21):493xx=+=(48)5:855:(412)25xx=-=(49)(32):(23)4:72x xx-+==(50)(4):5(32):9233x xx+=-=比例应用题(51)小白的身高1.4米,他的影长是2.8米。
比和比例练习题及答案比和比例练习题及答案比和比例是数学中常见的概念,它们在我们日常生活中也有着广泛的应用。
无论是购物打折、做菜的配料比例,还是计算机的屏幕分辨率,都离不开比和比例的运算。
本文将给大家提供一些比和比例的练习题,并附上详细的答案解析,希望能帮助大家更好地理解和运用比和比例。
1. 某班级男生和女生的比例为3:5,如果男生有36人,那么女生有多少人?解析:根据题目可知,男生和女生的比例为3:5,即男生数/女生数 = 3/5。
已知男生数为36人,代入公式得 36/女生数 = 3/5。
通过交叉相乘法可得女生数 = (36 * 5) / 3 = 60人。
所以女生有60人。
2. 一辆汽车每小时行驶90公里,行驶8小时后,行驶的总里程是多少?解析:汽车每小时行驶90公里,行驶8小时,所以总里程为 90 * 8 = 720公里。
所以行驶的总里程是720公里。
3. 甲、乙两个人合伙做生意,甲出资5万元,乙出资3万元,他们的利润为30万元,根据出资比例,他们应该分别得到多少利润?解析:甲和乙的出资比例为5:3,利润为30万元,所以甲应得利润为 (5 / 8) *30 = 18.75万元,乙应得利润为 (3 / 8) * 30 = 11.25万元。
所以甲应得利润为18.75万元,乙应得利润为11.25万元。
4. 一桶液体中,水和酒精的比例为5:3,如果有60升液体,其中水的升数是多少?解析:水和酒精的比例为5:3,总液体量为60升,所以水的升数为 (5 / 8) * 60= 37.5升。
所以水的升数是37.5升。
5. 一根木棍的长短比例为2:3,如果长木棍的长度是45厘米,短木棍的长度是多少?解析:长木棍和短木棍的比例为2:3,已知长木棍的长度为45厘米,所以短木棍的长度为 (2 / 3) * 45 = 30厘米。
所以短木棍的长度是30厘米。
通过以上的练习题,我们可以看到比和比例在解决实际问题中的应用。
无论是计算人数、里程、利润还是长度,比和比例都能帮助我们准确地计算和推断。
比例练习题带答案十道1、张大妈家上个月用了8吨水,水费是12.8元。
李奶奶家用了10吨水,李奶奶家的水费是多少钱?2、有一批书,这批书如果每包20本,要捆18包。
如果每包30本,要捆多少包?3、一根木料,锯3段需要9分钟,如果锯6段,需要多少分钟?4、一辆汽车2小时行了140km,照这样的速度,甲地到乙地的距离是400km,需要行驶多少小时?5、“万达”修路队修筑一条公路,原计划每天修400m,15天可以修完。
结果12天就完成了任务,实际每天修多少米?6、学校用同样的方砖铺地,铺5㎡需要方砖120块,照这样计算,再铺32㎡,一共需要这种方砖多少块?7、发电厂运来一批煤,计划每天用30吨,12天用完,实际每天节约5吨煤,实际比计划多用了多少天?8、装修一间客厅,用边长5dm的方砖铺地,需要80块,用边长4dm的方砖铺地,需要多少块?需要X块5*5:4*4=X:8016X=2000X=2000/16X=125需要125块9、制作一批零件,甲单独完成要8小时,已知甲、乙的工作效率比是4:3,那么乙单独完成要多长时间?已知甲单独完成需要8小时,可以设甲的效率为每小时完成1/8批零件。
甲乙效率比4:3,。
设乙的效率为x。
则:x=4:3可求得x=*3/4=3/32则乙单独工作需要时间为2/3小时也就是10小时40分钟10、王明在100m赛跑冲到终点时领先李明10m,领先王亮15m。
如果李明和王亮按原来的速度继续冲向终点,那么当李明到达终点时,王亮还差多少米到达终点?X5=1200-150x=304x=1201200/120=10比和比例练习题一、填空: 1.甲乙两数的比是11:9,甲数占甲、乙两数和的,乙数占甲、乙两数和的。
甲、乙两数的比。
是3:2,甲数是乙数的倍,乙数是甲数的2. 某班男生人数与女生人数的比是34,女生人数与男生人数的比是,男生人数和女生人数的比是。
女生人数是总人数的比是。
.一本书,小明计划每天看27,这本书计划看完。
4. 一根绳长2米,把它平均剪成5段,每段长是米,每段是这根绳子的。
5. 王老师用180张纸订5本本子,用纸的张数和所订的本子数的比是,这个比的比值的意义是。
6...一个正方形的周长是8米,它的面积是平方米。
91吨大豆可榨油吨,1吨大豆可榨油吨,要榨1吨油需大豆吨。
322甲数的等于乙数的,甲数与乙数的比是。
35把甲数的9.17给乙,甲、乙两数相等,甲数是乙数的,甲数比乙数多。
10. 甲数比乙数多14,甲数与乙数比是。
乙数比甲数少11. 在:= 1.2中,6是比的,5是比的,1.2是比的。
在:=4:84中,4和84是比例的,7和48是比例的。
12. :=4÷= :15 13. 一种盐水是由盐和水按 1 :30 的重量配制而成的。
其中,盐的重量占盐水的,水的重量占盐水的。
图上距离3厘米表示实际距离180千米,这幅图的比例尺是。
一幅地图的比例尺是图上6厘米表示实际距离千米。
实际距离150千米在图上要画厘米。
14. 12的约数有,选择其中的四个约数,把它们组成一个比例是。
写出两个比值是8的比、。
15. 加工零件的总个数一定,每小时加工的零件个数的加工的时间比例;订数学书的本数与所需要的钱数比例;加工零件的总个数一定,已经加工的零件和没有加工的零件个数比例。
16. 如果x÷y = 1×2,那么x和y成比例;如果x:4=5:y,那么x和y成比例。
二、判断1.由两个比组成的式子叫做比例。
2.正方形的面积一定,它的边长和边长不成比例。
.如果8A =B那么B :A = :4.15:16和:5能组成比例三、选择 1.图上6厘米表示表示实际距离240千米,这幅图的比例尺是。
A、1:40000B、1:400000C、1:40000002.小正方形和大正方形边长的比是2:7小正方形和大正方形面积的比是 A、2:B、6:21 C、4:14.下面第组的两个比不能组成比例。
A、8:7和14:16B、0.6:0.2和3:1C、19: 110 和10:94.三角形的高一定,它的面积和底A、成正比例B、成反比例C、不成比例5.6.11:能组成比例的是。
6111A、:B、:C、:D、6:56561在盐水中,盐占盐水的,盐和水的比是。
10与A、1:B、1:9C、 1:10D、1:11 如果X=7.34Y,那么Y:X=。
A 、1:8..34B、34:1C、3: D、4:3圆的半径与圆周长。
A、成正比例B、成反比例C、不成比例D、没有关系在一幅地图上,量得AB两城市距离是7厘米,而AB 两城市之间的实际距离是350千米,这幅地图的比例尺是。
A、150 B 、15000 C、150000 D、 150000010. 把4.5、7.5、12、3这四个数组成比例,其内项的积是。
10A、1.3B、3.7C、33.7D、2.2511. 小明从家里去学校,所需时间与所行速度。
A、成正比例B、成反比例C、不成比例12. 一件工作,甲单独做12天完成,乙单独做18天完成。
甲乙效率的最简比是。
A、:9B、:C、:D、:613. 一个三角形三个内角度数的比是6:2:1,这个三角形是。
A、直角三角形B、锐角三角形C、钝角三角形D、无法确定14. 甲与乙的工作效率比是6:5,两人合做一批零件共计880个,乙比甲少做。
A、80个B、400个C、80个D、40个四、计算 1、求比值。
1425:0.7247:117312:212、化简比。
11:0.12.6:0.20:115五、解比例25:7=X:3514:5=7:x3:X= 12: 112:0.4=237:X .8:45=0.7:X1.25X= 0.251.6六、根据下面的条件列出比例,并且解比例 1.6和X的比等于16和5的比。
.和X的比等于25和8的比3.两个外项是24和18,两个内项是X和36。
七、应用题 1..建筑工人用水泥、沙子、石子按2:3:5配制成96吨的混凝土,需要水泥、沙子、石子各多少吨?一个县共有拖拉机550台,其中大型拖拉机台数和手扶拖拉机台数的比是3:8,这两种拖拉机各有多少台?.用84厘米长的铜丝围成一个三角形,这个三角形三条边长度的比是3:4:5。
这个三角形的三条边各是多少厘米?.....甲、乙、丙三个数的平均数是84,甲、乙、丙三个数的比是3:4:5,甲、乙、丙三个数各是多少?乙两个数的平均数是25,甲数与乙数的比是3:4,甲、乙两数各是多少?一个直角三角形的两个锐角的度数比是1:5,这两个锐角各是多少度?一块长方形试验田的周长是120米,已知长与宽的比是2:1,这块试验田的面积是多少平方米?一种药水是用药物和水按3:400配制成的。
要配制这种药水1612千克,需要药粉多少千克?用水60千克,需要药粉多少千克?用48千克药粉,可配制成多少千克的药水?.商店运来一批电冰箱,卖了18台,卖出的台数与剩下的台数比是3:2,求运来电冰箱多少台?10. 纸箱里有红绿黄三色球,红色球的个数是绿色球的34,绿色球的个数与黄色球个数的比是4:5,已知绿色球与黄色球共81个,问三色球各有多少个?11. 一幅地图,图上20厘米表示实际距离10千米,求这幅地图的比例尺?12. 甲地到乙地的实际距离是120千米,在一幅比例尺是1:6000000的地图上,应画多少厘米? 13. 在一幅比例尺是1:300的地图上,量得东、西两村的距离是12.3厘米,东、西两村的实际距离是多少米?14. 朝阳小学的操场是一个长方形,长120米,宽75米,用少厘米?13000的比例尺画成平面图,长和宽各是多15. 在比例尺是1:6000000的地图上,量得两地之间的距离是3厘米,这两地之间的实际距离是多少千米?16. 右图是一个梯形地平面图,求它的实际面积17. 修一条路,如果每天修120米,8天可以修完;如果每天修150米,几天可以修完? 18. 同学们做操,每行站20人,正好站18行。
如果每行站24人,可以站多少行? 19. 飞机每小时飞行480千米,汽车每小时行60千米。
飞机行4比例方法解)20. 修一条公路,每天修0.5千米,36天完成。
如果每天修0.6千米,多少天可修完?1. 一个晒盐场用500千克海水可以晒15千克盐;照这样的计算,用100吨海水可以晒多少吨盐?22. 一个车间装配一批电视机,如果每天装50台,60天完成任务,如果要用40天完成任务,每天应装多少台?23. 生产一批零件,计划每天生产160个,15天可以完成,实际每天超产80个,可以提前几天完成?24. 小明买4本同样的练习本用了4.8元,3.6元可以买多少本这样的练习本? 5. 配制一种农药,药粉和水的比是1:500现有水6000千克,配制这种农药需要药粉多少千克? 现有药粉3.6千克,配制这种农药需要水多少千克?26. 两个底面积相等的长方体,第一个长方体与第二个长方体高的比是7:11,第二个长方体的体积是144立方分米,第一个长方体的体积是多少立方分米?27. 园林绿化队要栽一批树苗,第一天栽了总数的1,第二天栽了136棵,这时剩下的与已栽的棵数的比是3:5。
这批树苗一共有多少棵?12小时的路程,汽车要行多少小时?(用比例的应用一、填空:=比例尺,图上距离=○,实际距离=○。
常用的比例尺有和两种。
在比例尺是1∶300的图上,1厘米代表实际距离厘米,就是图上距离是实际距离的倍。
线段比例尺表示图上1厘米的距离代表实际距离千米,转化成数字比例尺是。
图上5厘米的距离,表示实际距离150千米。
这幅图的比例尺是。
二、判断把实际长度扩大500倍以后,画在图纸上,比例尺是500∶1。
1有一幅平面图,用5厘米表示400米,这幅平面图的比例尺是80学校操场长200米,画在平面图上是20厘米,那么这幅平面图的比例尺是1∶400。
任何图纸上的图上距离都小于实际距离。
0.8∶4和5∶25可以组成比例。
三、填表四、在比例尺是9∶1的精密零件图上,量得零件的长是36毫米,零件的实际长度是多少毫米?12、在,量得一间教室长cm,宽cm,这间教室的面积是多少100平方米?一、填空科学课中用到的显微镜是将物体。
建楼房时所设计的图纸上将物体。
分别举出生活中一个将物体放大的例子和缩小的例子。
放大的:;缩小的:。
将图形放大或缩小时,图形的形状,图形的大小。
将一个五边形按3∶1放大时,就将它的条边同时到原来的倍。
二、应用正确的比例关系解决实际问题。
一辆汽车从工厂到工地,每小时行驶35千米,2小时可以到达。
如果要4小时到达,每小时需要行驶多少千米?如果10千克菜籽可以榨6.5千克菜油,那么用这种菜籽360千克,可以榨油多少千克?用一批纸装订作业本,计划每本50页,可以装订120本,实际每本30页,实际装订了多少本?用面积是36平方分米的方砖铺地,138块正好铺完,如果改用边长是3分米的方砖铺,需要多少块?15填一填。