湖北省孝感市文昌中学2018-2019学年九年级上学期期末考试数学试题
- 格式:doc
- 大小:383.00 KB
- 文档页数:5
2018-2019学年九年级(上)期末数学试卷一、选择题.(每题只有一个正确答案,每题4分,共40分)1.已知(m﹣2)x n﹣3nx+2=0是关于x的一元二次方程,则()A.m≠0,n=2B.m≠2,n=2C.m≠0,n=3D.m≠2,n≠02.下列图形中,可以看作是中心对称图形的是()A.B.C.D.3.如图,AB是⊙O的直径,==,∠COD=34°,则∠AEO的度数是()A.51°B.56°C.68°D.78°4.分别写有数字0,﹣3,﹣4,2,5的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到非负数的概率是()A.B.C.D.5.下列运动属于旋转的是()A.足球在草地上滚动B.火箭升空的运动C.汽车在急刹车时向前滑行D.钟表的钟摆动的过程6.抛物线y=ax2+bx+c(a≠0)过(2,8)和(﹣6,8)两点,则此抛物线的对称轴为()A.直线x=0B.直线x=1C.直线x=﹣2D.直线x=﹣17.兴义市2014年财政总收入为60亿元,2016年财政总收入达80亿元,若平均每年的增长率为x,则可以列出方程为()A.60(1+x)2=80B.(60+x%)2=80C.60(1+x)(1+2x)2=80D.60(1+x%)2=808.如图,四边形ABCD是⊙O的内接四边形,∠B=70°,则∠D的度数是()A.110°B.90°C.70°D.50°9.为了响应“足球进校国”的目标,兴义市某学校开展了多场足球比赛在某场比赛中,一个足球被从地面向上踢出,它距地面的高度h(m)可以用公式h=﹣5t2+v0t表示,其中t(s)表示足球被踢出后经过的时间,v0(m/s)是足球被踢出时的速度,如果要求足球的最大高度达到20m,那么足球被踢出时的速度应该达到()A.5m/s B.10m/s C.20m/s D.40m/s10.如图,AB,CD是⊙O的直径,⊙O的半径为R,AB⊥CD,以B为圆心,以BC为半径作CED,则CED与CAD围成的新月形ACED的面积为()平方单位.A.(π﹣1)R2B.R2C.(π+1)R2D.πR2二.填空题.(每小题3分,共30分)11.“任意打开一本154页的九年级数学书,正好翻到第127页”这是(填“随机“或“必然”)事件.12.如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的解析式为.13.点A(﹣2,3)关于原点对称的点的坐标是.14.如图,正六边形ABCDEF内接于⊙O.若直线PA与⊙O相切于点A,则∠PAB=.15.已知点A(x1,y1)、B(x2,y2)在二次函数y=(x﹣1)2+1的图象上,若x1>x2>1,则y1y2(填“>”、“<”或“=”).16.为了弘扬中华传统文化,营造书香校园文化氛围,2017年12月11日,兴义市新电学校举行中华传统文化知识大赛活动该学校从三名男生和两名女生中选出两名同学担任本次活动的主持人,则选出的恰为一男一女的概率是17.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则弧BC的长为(结果保留π).18.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为度.19.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是.20.如图,矩形ABCD中,AB=5,AD=12,将矩形ABCD按如图所示的方式在直线上进行两次旋转,则点B在两次旋转过程中经过的路径的长是.三.(本大题12分)21.(12分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(﹣1,3).(1)请按下列要求画图:①将△ABC先向右平移4个单位长度、再向上平移2个单位长度,得到△A1B1C1,画出△A1B1C1;②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2.(2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请直接写出对称中心M点的坐标.四.(本大题12分)22.(12分)如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°(1)求∠B的大小;(2)已知AD=6,求圆心O到BD的距离.五.(本大题14分)23.(14分)兴义街心花园是位于兴义老城区的商业文化购物步行街,是贵州最长最大的步行街,在贵州乃至西南都相当有名.街心花园某商场经营某种品牌童装,购进时的单价是60元,根据市场调查,在一段时间内,销售单价是80元时,销售量是200件销售单价每降低1元,就可多售出20件.(1)求出销售量y(件)与销售单价x(元)之间的函数关系式;(2)求出销售该品牌童装获得的利润w(元)与销售单价x(元)之间的函数关系式;(3)若童装厂规定该品牌童装的销售单价不低于76元且不高于80元则商场销售该品牌童装获得的最大利润是多少?六.(本大题14分)24.(14分)如图,AB是⊙O的直径,BC⊥AB于点B,连接OC交⊙O于点E,弦AD∥OC.(1)求证:;(2)求证:CD是⊙O的切线.七.(本大题16分)26.(16分)如图,在直角坐标系中,抛物线y=﹣(x+1)2+4与x轴交于点A、B,与y 轴交于点C.(1)写出抛物线顶点D的坐标;(2)点D1是点D关于y轴的对称点,判断点D1是否在直线AC上,并说明理由;(3)若点E是抛物线上的点,且在直线AC的上方,过点E作EF⊥x轴交线段AC于点F,求线段EF的最大值.八.(本大题12分)25.(12分)铁一中分校初二年级要组织一次学生的数学解题能力大赛.(1)现要从每班随机选出一名学生负责协调老师工作,小明所在的六班共有54名同学,请求出小明被选中的概率;(2)经过第一轮在班内的比赛,有六名同学小帆、小恒、小丽、小颖、小茹、小斌(分别依次记为A、B、C、D、E、F)成绩优秀,先要从这六名学生中随机选出两人代表本班参加年级的解题大赛,请求出小丽和小颖作为本班代表参赛的概率.2017-2018学年贵州省黔西南州兴义市九年级(上)期末数学试卷参考答案与试题解析一、选择题.(每题只有一个正确答案,每题4分,共40分)1.已知(m﹣2)x n﹣3nx+2=0是关于x的一元二次方程,则()A.m≠0,n=2B.m≠2,n=2C.m≠0,n=3D.m≠2,n≠0【分析】根据一元二次方程的定义列出关于m,n的方程,求出m,n的值即可.【解答】解:∵(m﹣2)x n﹣3nx+2=0是关于x的一元二次方程,∴m﹣2≠0,n=2,解得m≠2,n=2.故选:B.【点评】本题考查的是一元二次方程的定义,熟知只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程是解答此题的关键.2.下列图形中,可以看作是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;D、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误.故选:B.【点评】此题主要考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.如图,AB是⊙O的直径,==,∠COD=34°,则∠AEO的度数是()A.51°B.56°C.68°D.78°【分析】由==,可求得∠BOC=∠EOD=∠COD=34°,继而可求得∠AOE的度数;然后再根据等腰三角形的性质和三角形内角和定理来求∠AEO的度数.【解答】解:如图,∵==,∠COD=34°,∴∠BOC=∠EOD=∠COD=34°,∴∠AOE=180°﹣∠EOD﹣∠COD﹣∠BOC=78°.又∵OA=OE,∴∠AEO=∠OAE,∴∠AEO=×(180°﹣78°)=51°.故选:A.【点评】此题考查了弧与圆心角的关系.此题比较简单,注意掌握数形结合思想的应用.4.分别写有数字0,﹣3,﹣4,2,5的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到非负数的概率是()A.B.C.D.【分析】先求出非负数的个数,再根据概率公式计算可得.【解答】解:∵0,﹣3,﹣4,2,5这5个数中,非负数有0,2,5这3个,∴从中随机抽取一张,抽到写有非负数的卡片的概率是,故选:C.【点评】本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,本题找到非负数的个数是关键.5.下列运动属于旋转的是()A.足球在草地上滚动B.火箭升空的运动C.汽车在急刹车时向前滑行D.钟表的钟摆动的过程【分析】根据旋转的定义:在平面内,把一个图形绕着某一个点O旋转一个角度的图形变换叫做旋转进行分析即可.【解答】解:A、足球在草地上滚动,不是旋转,故此选项错误;B、火箭升空的运动,是平移,故此选项错误;C、汽车在急刹车时向前滑行,是平移,故此选项错误;D、钟表的钟摆动的过程,是旋转,故此选项正确;故选:D.【点评】此题主要考查了生活中的旋转,关键是掌握旋转定义.6.抛物线y=ax2+bx+c(a≠0)过(2,8)和(﹣6,8)两点,则此抛物线的对称轴为()A.直线x=0B.直线x=1C.直线x=﹣2D.直线x=﹣1【分析】由二次函数的对称性可求得抛物线的对称轴【解答】解:∵抛物线y=ax2+bx+c(a≠0)过(2,8)和(﹣6,8)两点,∴抛物线的对称轴为x==﹣2,故选:C.【点评】本题主要考查二次函数的性质,掌握二次函数图象上关于对称轴对称的点所对应的函数值相等是解题的关键.7.兴义市2014年财政总收入为60亿元,2016年财政总收入达80亿元,若平均每年的增长率为x,则可以列出方程为()A.60(1+x)2=80B.(60+x%)2=80C.60(1+x)(1+2x)2=80D.60(1+x%)2=80【分析】2016年财政总收入=2014年财政总收入×(1+增长率)2,把相关数值代入即可.【解答】解:2015年财政总收入为60×(1+x),2016年财政总收入为60×(1+x)×(1+x)=60×(1+x)2,可列方程为60(1+x)2=80,故选:A.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.8.如图,四边形ABCD是⊙O的内接四边形,∠B=70°,则∠D的度数是()A.110°B.90°C.70°D.50°【分析】先根据圆内接四边形的对角互补得出∠D+∠B=180°,即可解答.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠D+∠B=180°,∴∠D=180°﹣70°=110°,故选:A.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形对角互补的性质是解答此题的关键.9.为了响应“足球进校国”的目标,兴义市某学校开展了多场足球比赛在某场比赛中,一个足球被从地面向上踢出,它距地面的高度h(m)可以用公式h=﹣5t2+v0t表示,其中t(s)表示足球被踢出后经过的时间,v0(m/s)是足球被踢出时的速度,如果要求足球的最大高度达到20m,那么足球被踢出时的速度应该达到()A.5m/s B.10m/s C.20m/s D.40m/s【分析】因为﹣5<0,抛物线开口向下,有最大值,根据顶点坐标公式表示函数的最大值,根据题目对最大值的要求,求待定系数v0.【解答】解:h=﹣5t2+v0•t,其对称轴为t=,5×()2+v0•=20,当t=时,h最大=﹣解得:v0=20,v0=﹣20(不合题意舍去),故选:C.【点评】本题考查的是二次函数的应用,关键是利用当对称轴为t=﹣时h将取到最大值.10.如图,AB,CD是⊙O的直径,⊙O的半径为R,AB⊥CD,以B为圆心,以BC为半径作CED,则CED与CAD围成的新月形ACED的面积为()平方单位.A.(π﹣1)R2B.R2C.(π+1)R2D.πR2【分析】从图中可以看出新月形ACED的面积是圆O半圆的面积﹣弓形CED的面积,弓形CED的面积又=扇形BCD面积﹣三角形BCD的面积,然后依面积公式计算即可.【解答】解:新月形ACED的面积==R2.故选:B.【点评】本题的关键是看出:新月形ACED的面积是圆O半圆的面积﹣弓形CED的面积,然后逐一求面积即可.二.填空题.(每小题3分,共30分)11.“任意打开一本154页的九年级数学书,正好翻到第127页”这是随机(填“随机“或“必然”)事件.【分析】直接利用随机事件的定义分析得出答案.【解答】解:任意打开一本154页的九年级数学书,正好翻到第127页”这是随机事件.故答案为:随机.【点评】此题主要考查了随机事件,正确把握随机事件的定义是解题关键.12.如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的解析式为y=x2+1.【分析】直接利用二次函数的平移规律得出答案.【解答】解:将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的解析式为:y=x2+1.故答案为:y=x2+1.【点评】此题主要考查了二次函数的平移变换,正确掌握平移规律是解题关键.13.点A(﹣2,3)关于原点对称的点的坐标是(2,﹣3).【分析】根据两个点关于原点对称时,它们的坐标符号相反,即点P(﹣2,3)关于原点O的对称点是P′(2,﹣3)【解答】解:根据两个点关于原点对称,∴点P(﹣2,3)关于原点对称的点的坐标是(2,﹣3);故答案为(2,﹣3).【点评】本题考查了关于原点对称的点的坐标,运用时要熟练掌握,可以不用图画和结合坐标系,只根据符号变化直接写出对应点的坐标.14.如图,正六边形ABCDEF内接于⊙O.若直线PA与⊙O相切于点A,则∠PAB=30°.【分析】连接OB,AD,BD,由多边形是正六边形可求出∠AOB的度数,再根据圆周角定理即可求出∠ADB的度数,利用弦切角定理求出∠PAB即可.【解答】解:连接OB,AD,BD,∵多边形ABCDEF是正多边形,∴AD为外接圆的直径,∠AOB==60°,∴∠ADB=∠AOB=×60°=30°.∵直线PA与⊙O相切于点A,∴∠PAB=∠ADB=30°.故答案为:30°.【点评】本题主要考查了正多边形和圆、圆周角定理、弦切角定理;作出适当的辅助线,利用弦切角定理是解答此题的关键.15.已知点A(x1,y1)、B(x2,y2)在二次函数y=(x﹣1)2+1的图象上,若x1>x2>1,则y1>y2(填“>”、“<”或“=”).【分析】先根据二次函数的解析式得出函数图象的对称轴,再判断出两点的位置及函数的增减性,进而可得出结论.【解答】解:∵a=1>0,∴二次函数的图象开口向上,由二次函数y=(x﹣1)2+1可知,其对称轴为x=1,∵x1>x2>1,∴两点均在对称轴的右侧,∵此函数图象开口向上,∴在对称轴的右侧y随x的增大而增大,∵x1>x2>1,∴y1>y2.故答案为:>.【点评】本题考查的是二次函数图象上点的坐标特点,根据题意判断出A、B两点的位置是解答此题的关键.16.为了弘扬中华传统文化,营造书香校园文化氛围,2017年12月11日,兴义市新电学校举行中华传统文化知识大赛活动该学校从三名男生和两名女生中选出两名同学担任本次活动的主持人,则选出的恰为一男一女的概率是【分析】画出树状图,再根据概率公式列式进行计算即可得解.【解答】解:画树状图如下:共有20种机会均等的结果,其中一男一女占12种,则恰好抽中一男一女的概率是=,故答案为:.【点评】本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.17.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则弧BC的长为2π(结果保留π).【分析】根据切线的性质得到∠OBA=90°,求出∠OBC,根据三角形内角和定理求出∠BOC=120°,根据弧长公式计算即可.【解答】解:连接OB,∵AB与⊙O相切于点B,∴∠OBA=90°,∴∠OBC=∠ABC﹣∠ABO=30°,∵OB=OC,∴∠C=∠B=30°,∴∠BOC=120°,∴弧BC的长==2π,故答案为:2π.【点评】本题考查的是切线的性质、弧长的计算,掌握圆的切线垂直于经过切点的半径、弧长的计算公式是解题的关键..18.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为15度.【分析】此题只需根据旋转的性质发现等腰直角三角形CEF,进行求解.【解答】解:∵△DCF是△BCE旋转以后得到的图形,∴∠BEC=∠DFC=60°,∠ECF=∠BCE=90°,CF=CE.又∵∠ECF=90°,∴∠EFC=∠FEC=(180°﹣∠ECF)=(180°﹣90°)=45°,故∠EFD=∠DFC﹣∠EFC=60°﹣45°=15°.故答案为:15°【点评】本题考查了图形的旋转变化,学生主要要看清是顺时针还是逆时针旋转,旋转多少度.难度不大,但易错.19.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是20.【分析】根据利用频率估计概率得到摸到黄球的概率为30%,然后根据概率公式计算n 的值.【解答】解:根据题意得=30%,解得n=20,所以这个不透明的盒子里大约有20个除颜色外其他完全相同的小球.故答案为20.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.20.如图,矩形ABCD中,AB=5,AD=12,将矩形ABCD按如图所示的方式在直线上进行两次旋转,则点B在两次旋转过程中经过的路径的长是.【分析】首先根据勾股定理计算出BD长,再根据弧长计算公式计算出,的长,然后再求和计算出点B在两次旋转过程中经过的路径的长即可.【解答】解:∵AB=5,AD=12,∴BD==13,∴==,==6π,∴点B在两次旋转过程中经过的路径的长是: +6π=,故答案为.【点评】此题主要考查了弧长计算,以及勾股定理的应用,关键是掌握弧长计算公式l=,是基础题目,解答时要注意旋转中心以及半径的变化.三.(本大题12分)21.(12分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(﹣1,3).(1)请按下列要求画图:①将△ABC先向右平移4个单位长度、再向上平移2个单位长度,得到△A1B1C1,画出△A1B1C1;②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2.(2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请直接写出对称中心M点的坐标.【分析】(1)①根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;②根据网格结构找出A、B、C关于原点O的中心对称点A2、B2、C2的位置,然后顺次连接即可;(2)连接B1B2,C1C2,交点就是对称中心M.【解答】解:(1)①△A1B1C1如图所示;②△A2B2C2如图所示;(2)连接B1B2,C1C2,得到对称中心M的坐标为(2,1).【点评】本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.另外要求掌握对称中心的定义.四.(本大题12分)22.(12分)如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°(1)求∠B的大小;(2)已知AD=6,求圆心O到BD的距离.【分析】(1)先依据三角形的外角的性质求得∠C的度数,然后再根据圆周定理求解即可;(2)利用三角形中位线的性质得出EO=AD,即可得出答案.【解答】解:(1)∵∠APD=∠C+∠CAB,∴∠C=65°﹣40°=25°,∴∠B=∠C=25°;(2)作OE⊥BD于E,则DE=BE,又∵AO=BO,∴OE=AD,∴圆心O到BD的距离为3.【点评】此题主要考查了圆周角定理以及三角形中位线定理,根据已知得出EO=AD是解题关键.五.(本大题14分)23.(14分)兴义街心花园是位于兴义老城区的商业文化购物步行街,是贵州最长最大的步行街,在贵州乃至西南都相当有名.街心花园某商场经营某种品牌童装,购进时的单价是60元,根据市场调查,在一段时间内,销售单价是80元时,销售量是200件销售单价每降低1元,就可多售出20件.(1)求出销售量y(件)与销售单价x(元)之间的函数关系式;(2)求出销售该品牌童装获得的利润w(元)与销售单价x(元)之间的函数关系式;(3)若童装厂规定该品牌童装的销售单价不低于76元且不高于80元则商场销售该品牌童装获得的最大利润是多少?【分析】(1)销售量y件为200件加增加的件数(80﹣x)×20;(2)利润w等于单件利润×销售量y件,即W=(x﹣60)(﹣20x+1800),整理即可;(3)先利用二次函数的性质得到w=﹣20x2+3000x﹣108000的对称轴为x=﹣=75,而76≤x≤80,根据二次函数的性质得到当76≤x≤80时,W随x的增大而减小,把x=76代入计算即可得到商场销售该品牌童装获得的最大利润.【解答】解:(1)根据题意得,y=200+(80﹣x)×20=﹣20x+1800,所以销售量y件与销售单价x元之间的函数关系式为y=﹣20x+1800(60≤x≤80);(2)W=(x﹣60)y=(x﹣60)(﹣20x+1800)=﹣20x2+3000x﹣108000,所以销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式W=﹣20x2+3000x﹣108000;(3)根据题意得76≤x≤80,w=﹣20x2+3000x﹣108000的对称轴为x=﹣=75,∵a=﹣20<0,∴抛物线开口向下,∴当76≤x≤80时,W随x的增大而减小,∴x=76时,W有最大值,最大值=(76﹣60)(﹣20×76+1800)=4480(元).所以商场销售该品牌童装获得的最大利润是4480元.【点评】本题考查了二次函数的应用:根据实际问题列出二次函数关系式,然后利用二次函数的性质,特别是二次函数的最值问题解决实际中的最大或最小值问题.六.(本大题14分)24.(14分)如图,AB是⊙O的直径,BC⊥AB于点B,连接OC交⊙O于点E,弦AD∥OC.(1)求证:;(2)求证:CD是⊙O的切线.【分析】(1)连接OD,由平行可得∠DAO=∠COB,∠ADO=∠DOC;再由OA=OD,可得出,∠DAO=∠ADO,则∠COB=∠COD,从而证出=;(2)由(1)得,△COD≌△COB,则∠CDO=∠B.又BC⊥AB,则∠CDO=∠B=90°,从而得出CD是⊙O的切线.【解答】证明:(1)连接OD.∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠DOC,又∵OA=OD,∴∠DAO=∠ADO,∴∠COB=∠COD,∴=;(2)由(1)知∠DOE=∠BOE,在△COD和△COB中,CO=CO,∠DOC=∠BOC,OD=OB,∴△COD≌△COB,∴∠CDO=∠B.又∵BC⊥AB,∴∠CDO=∠B=90°,即OD⊥CD.即CD是⊙O的切线.【点评】本题考查了切线的判定和圆周角定理以及圆心角、弧、弦之间的关系,注:在同圆或等圆中,圆心角、圆周角、弧、弦中有一组量相等,其余各组量也相等.七.(本大题16分)26.(16分)如图,在直角坐标系中,抛物线y=﹣(x+1)2+4与x轴交于点A、B,与y 轴交于点C.(1)写出抛物线顶点D的坐标(﹣1,4);(2)点D1是点D关于y轴的对称点,判断点D1是否在直线AC上,并说明理由;(3)若点E是抛物线上的点,且在直线AC的上方,过点E作EF⊥x轴交线段AC于点F,求线段EF的最大值.【分析】(1)根据抛物线的顶点解析式y=﹣(x+1)2+4,即可求出抛物线顶点D的坐标是(﹣1,4);(2)先根据抛物线的解析式y=﹣(x+1)2+4,求出A、C两点的坐标,再利用待定系数法求出直线AC的解析式,根据关于y轴对称的点的坐标特征得出D1(1,4),然后代入直线AC的解析式即可判断点D1在直线AC上;(3)设点E(x,﹣x2﹣2x+3),则F(x,x+3),求出EF=(﹣x2﹣2x+3)﹣(x+3)=﹣x2﹣3x,利用配方法化成顶点式,根据二次函数的性质即可求出最大值.【解答】解:(1)∵y=﹣(x+1)2+4,∴抛物线顶点D的坐标是(﹣1,4).故答案为(﹣1,4);(2)点D1在直线AC上,理由如下:∵抛物线y=﹣(x+1)2+4与x轴交于点A、B,与y轴交于点C,∴当y=0时,﹣(x+1)2+4=0,解得x=1或﹣3,A(﹣3,0),B(1,0),当x=0时,y=﹣1+4=3,C(0,3).设直线AC的解析式为y=kx+b,由题意得,解得,∴直线AC的解析式为y=x+3.∵点D1是点D关于y轴的对称点,D(﹣1,4).∴D1(1,4),∵x=1时,y=1+3=4,∴点D1在直线AC上;(3)设点E(x,﹣x2﹣2x+3),则F(x,x+3),∵EF=(﹣x2﹣2x+3)﹣(x+3)=﹣x2﹣3x=﹣(x+1.5)2+2.25,∴线段EF的最大值是2.25.【点评】本题是二次函数的综合题,其中涉及到二次函数的性质,利用待定系数法求直线的解析式,函数图象上点的坐标特征等知识,难度适中.八.(本大题12分)25.(12分)铁一中分校初二年级要组织一次学生的数学解题能力大赛.(1)现要从每班随机选出一名学生负责协调老师工作,小明所在的六班共有54名同学,请求出小明被选中的概率;(2)经过第一轮在班内的比赛,有六名同学小帆、小恒、小丽、小颖、小茹、小斌(分别依次记为A、B、C、D、E、F)成绩优秀,先要从这六名学生中随机选出两人代表本班参加年级的解题大赛,请求出小丽和小颖作为本班代表参赛的概率.【分析】(1)直接利用概率公式求解;(2)画树状图展示所有30种等可能的结果数,再找出小丽和小颖作为本班代表参赛的结果数,然后根据概率公式求解.【解答】解:(1)小明被选中的概率=;(2)画树状图为:共有30种等可能的结果数,其中小丽和小颖作为本班代表参赛的结果数为2,所以小丽和小颖作为本班代表参赛的概率==.。
湖北省鄂州市2018-2019学年度人教版九年级上期末数学试题及答案一、选择题(每小题3分,共30分) 1.下列式子是最简二次根式的是( )A .21B .313C .51D .82.在平面直角坐标系中,点A (1,3)关于原点O对称的点A′的坐标为( )A .(-1,3)B .(1,-3)C .(3,1)D .(-1,-3)3. 下列函数中,当x >0时,y 的值随x 的值增大而增大的是( )A .y =-x 2B .y =x -1C .y =-x +1D .y =x14.商场举行摸奖促销活动,对于“抽到一等奖的概率为0.1”,下列说法正确的是( )A .抽10次必有一次抽到一等奖B .抽一次不可能抽到一等奖C .抽10次也可能没有抽到一等奖D .抽了9次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖 5.若式子12x -x +有意义,则x 的取值范围是( ) A .x ≥-2B .x >-2且x ≠1C .x ≤-2D .x ≥-2且x ≠16.将等腰Rt △ABC 绕点A 逆时针旋转15°得到△AB′C′,若AC =1,则图中阴影部分面积为( ) A .33 B .63C .3D .337.如图,直线AB 、AD 分别与⊙O相切于点B 、D ,C 为⊙O上一点,且∠BCD =140°,则∠A 的度数是( ) A .70°B .105°C .100°D .110°8.已知21,x x 是方程0152=+-x x 的两根,则2221x x +的值为 A .3 B .5 C .7 D .59.如图,在⊙O 内有折线OABC ,点B 、C 在圆上,点A 在⊙O 内,其中OA =4cm ,BC =10cm ,∠’第6题图A =∠B =60°,则AB 的长为( )A .5cmB .6cmC .7cmD .8cm10.已知二次函数y =ax 2+bx +c 的图象如图,其对称轴x =-1,给出下列结果:①b 2>4ac ;②abc >0;③2a +b =0;④a +b +c >0;⑤a-b +c <0;则正确的结论是( )A .①②③④B .②④⑤C .②③④D .①④⑤二、填空题(每小题3分,共18分) 11.计算=÷6482 .12.一个扇形的弧长是20πcm ,面积是240πcm 2,则扇形的圆心角是 .13.某校准备组织师生观看北京奥运会球类比赛,在不同时间段里有3场比赛,其中2场是乒乓球赛,1场是羽毛球赛,从中任意选看2场,则选看的2场恰好都是乒乓球比赛的概率是 .14.已知整数k <5,若△ABC 的边长均满足关于x 的方程280x -+=,则△ABC 的周长是 .15.如图,直线434+-=x y 与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点A 顺时针旋转90°后得到△AO ′B ′,则点B ′的坐标是 . 16.如图,在平面直角坐标系中,抛物线y =221x 经过平移得到抛物线y =x x 2212-,其对称轴与两段抛物线所围成的阴影部分的面积为 . 三、解答题(共72分) 17.(9分)先化简,再求值 (b a +1-b a -1)÷222b ab -a b+,其中a =1-2,b =1+2.A D C ·OB 第7题图 第16题图第15题图18.(8分)已知关于x 的方程x 2-2(k -1)x +k 2=0有两个实数根x 1,x 2. ⑴求k 的取值范围;(4分)⑵若|x 1+x 2|=x 1x 2-1,求k 的值.(4分)19.(8分)如图,在四边形ABCD 中,∠BAD =∠C =90°,AB =AD ,AE ⊥BC 于E ,AF ⊥DF 于F ,△BEA 旋转后能与△DFA 重叠.⑴△BEA 绕_______点________时针方向旋转_______度能与△DFA 重合;(4分)⑵若AE =6cm ,求四边形AECF 的面积.(4分)20.(9分)为丰富学生的学习生活,某校九年级1班组织学生参加春游活动,所联系的旅行社收费标准如下:春游活动结束后,该班共支付给该旅行社活动费用2018元,请问该班共有多少人参加这次春游活动?B如果人数不超过25人,人均活动费用为100元。
孝感市数学九年级上册期末试卷(解析版)一、选择题1.已知二次函数y=ax2+bx+c(a<0<b)的图像与x轴只有一个交点,下列结论:①x <0时,y随x增大而增大;②a+b+c<0;③关于x的方程ax2+bx+c+2=0有两个不相等的实数根.其中所有正确结论的序号是()A.①②B.②③C.①③D.①②③2.在平面直角坐标系中,如图是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③方程ax2+bx+c=0的两根分别为﹣3和1;④b2﹣4ac>0,其中正确的命题有()A.1个B.2个C.3个D.4个3.已知Rt△ABC中,∠C=900,AC=2,BC=3,则下列各式中,正确的是()A.2sin3B=;B.2cos3B=;C.2tan3B=;D.以上都不对;4.已知⊙O的半径为1,点P到圆心的距离为d,若关于x的方程x2-2x+d=0有实数根,则点P ( )A.在⊙O的内部B.在⊙O的外部C.在⊙O上D.在⊙O上或⊙O内部5.已知圆内接正六边形的边长是1,则该圆的内接正三角形的面积为()A.43B.23C.33D.3226.在六张卡片上分别写有13,π,1.5,5,0,2六个数,从中任意抽取一张,卡片上的数为无理数的概率是()A.16B.13C.12D.567.如图,点A、B、C均在⊙O上,若∠AOC=80°,则∠ABC的大小是()A.30°B.35°C.40°D.50°8.一个扇形的半径为4,弧长为2π,其圆心角度数是()A.45B.60C.90D.1809.如图1,在菱形ABCD中,∠A=120°,点E是BC边的中点,点P是对角线BD上一动点,设PD的长度为x,PE与PC的长度和为y,图2是y关于x的函数图象,其中H是图象上的最低点,则a+b的值为()A.73B.234+C.1433D.223310.学校“校园之声”广播站要选拔一名英语主持人,小莹参加选拔的各项成绩如下:姓名读听写小莹928090若把读、听、写的成绩按5:3:2的比例计入个人的总分,则小莹的个人总分为()A.86 B.87 C.88 D.8911.如图,∠1=∠2,要使△ABC∽△ADE,只需要添加一个条件即可,这个条件不可能是()A.∠B=∠D B.∠C=∠E C.AD ABAE AC=D.AC BCAE DE=12.如图,△ABC中,∠C=90°,∠B=30°,AC=7,D、E分别在边AC、BC上,CD =1,DE∥AB,将△CDE绕点C旋转,旋转后点D、E对应的点分别为D′、E′,当点E′落在线段AD′上时,连接BE′,此时BE′的长为()A.3B.3C.7D.713.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,下列结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若B(﹣5,y1)、C(﹣1,y2)为函数图象上的两点,则y1<y2.其中正确结论是()A .②④B .①③④C .①④D .②③ 14.一组数据10,9,10,12,9的平均数是( )A .11B .12C .9D .1015.如图,AB 为O 的直径,C 为O 上一点,弦AD 平分BAC ∠,交BC 于点E ,6AB =,5AD =,则AE 的长为( )A .2.5B .2.8C .3D .3.2二、填空题16.小亮测得一圆锥模型的底面直径为10cm ,母线长为7cm ,那么它的侧面展开图的面积是_____cm 2.17.已知一组数据:4,4,m ,6,6的平均数是5,则这组数据的方差是______. 18.如图,一个可以自由转动的转盘,任意转动转盘一次,当转盘停止时,指针落在红色区域的概率为____.19.如图,四边形ABCD 内接于⊙O ,AD ∥BC ,直线EF 是⊙O 的切线,B 是切点.若∠C =80°,∠ADB =54°,则∠CBF =____°.20.已知,二次函数2(0)y ax bx c a =++≠的图象如图所示,当y <0时,x 的取值范围是________.21.如图,D、E分别是△ABC的边AB,AC上的点,ADAB=AEAC,AE=2,EC=6,AB=12,则AD的长为_____.22.某厂一月份的总产量为500吨,通过技术更新,产量逐月提高,三月份的总产量达到720吨.若平均每月增长率是,则可列方程为__.23.某一时刻,一棵树高15m,影长为18m.此时,高为50m的旗杆的影长为_____m.24.在▱ABCD中,∠ABC的平分线BF交对角线AC于点E,交AD于点F.若ABBC=35,则EFBF的值为_____.25.如图,∠C=∠E=90°,AC=3,BC=4,AE=2,则AD=_________.26.如图,△ABC的顶点A、B、C都在边长为1的正方形网格的格点上,则sinA的值为________.27.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是“上升数”的概率是_________ .28.如图,在△ABC 中,AD 是BC 上的高,tan B =cos ∠DAC ,若sin C =1213,BC =12,则AD 的长_____.29.如图,123////l l l ,直线a 、b 与1l 、2l 、3l 分别相交于点A 、B 、C 和点D 、E 、F .若AB=3,BC=5,DE=4,则EF 的长为______.30.如图,在△ABC 中,AC :BC :AB =3:4:5,⊙O 沿着△ABC 的内部边缘滚动一圈,若⊙O 的半径为1,且圆心O 运动的路径长为18,则△ABC 的周长为_____.三、解答题31.画图并回答问题:(1)在网格图中,画出函数2y x x 2=--与1y x =+的图像; (2)直接写出不等式221x x x -->+的解集.32.为了从小华和小亮两人中选拔一人参加射击比赛,现对他们的射击水平进行测试,两人在相同条件下各射击6次,命中的环数如下(单位:环): 小华:7,8,7,8,9,9; 小亮:5,8,7,8,10,10. (1)填写下表:平均数(环) 中位数(环) 方差(环2) 小华 8 小亮83(2)根据以上信息,你认为教练会选择谁参加比赛,理由是什么?(3)若小亮再射击2次,分别命中7环和9环,则小亮这8次射击成绩的方差 .(填“变大”、“变小”、“不变”)33.如图,矩形ABCD 中,AB =6cm ,AD =8cm ,点P 从点A 出发,以每秒一个单位的速度沿A→B→C 的方向运动;同时点Q 从点B 出发,以每秒2个单位的速度沿B→C→D 的方向运动,当其中一点到达终点后两点都停止运动.设两点运动的时间为t 秒.(1)当t = 时,两点停止运动; (2)设△BPQ 的面积面积为S (平方单位) ①求S 与t 之间的函数关系式;②求t 为何值时,△BPQ 面积最大,最大面积是多少?34.如图,在Rt ABC ∆中,90C =∠,矩形DEFG 的顶点G 、F 分别在边AC 、BC 上,D 、E 在边AB 上.(1)求证:ADG ∆∽FEB ∆;(2)若2AD GD =,则ADG ∆面积与BEF ∆面积的比为 .35.(如图 1,若抛物线 l 1 的顶点 A 在抛物线 l 2 上,抛物线 l 2 的顶点 B 也在抛物线 l 1 上(点 A 与点 B 不重合).我们称抛物线 l 1,l 2 互为“友好”抛物线,一条抛物线的“友 好”抛物线可以有多条.(1)如图2,抛物线 l 3:21(2)12y x =-- 与y 轴交于点C ,点D 与点C 关于抛物线的对称轴对称,则点 D 的坐标为 ;(2)求以点 D 为顶点的 l 3 的“友好”抛物线 l 4 的表达式,并指出 l 3 与 l 4 中y 同时随x 增大而增大的自变量的取值范围;(3)若抛物线 y =a 1(x -m)2+n 的任意一条“友好”抛物线的表达式为 y =a 2(x -h)2+k , 写出 a 1 与a 2的关系式,并说明理由.四、压轴题36.如图1,△ABC 中,AB=AC=4,∠BAC=100,D 是BC 的中点.小明对图1进行了如下探究:在线段AD 上任取一点E ,连接EB .将线段EB 绕点E 逆时针旋转80°,点B 的对应点是点F ,连接BF ,小明发现:随着点E 在线段AD 上位置的变化,点F 的位置也在变化,点F 可能在直线AD 的左侧,也可能在直线AD 上,还可能在直线AD 的右侧.请你帮助小明继续探究,并解答下列问题:(1)如图2,当点F 在直线AD 上时,连接CF ,猜想直线CF 与直线AB 的位置关系,并说明理由.(2)若点F 落在直线AD 的右侧,请在备用图中画出相应的图形,此时(1)中的结论是否仍然成立,为什么?(3)当点E 在线段AD 上运动时,直接写出AF 的最小值.37.如图1,Rt △ABC 两直角边的边长为AC =3,BC =4.(1)如图2,⊙O 与Rt △ABC 的边AB 相切于点X ,与边BC 相切于点Y .请你在图2中作出并标明⊙O 的圆心(用尺规作图,保留作图痕迹,不写作法和证明)(2)P 是这个Rt △ABC 上和其内部的动点,以P 为圆心的⊙P 与Rt △ABC 的两条边相切.设⊙P 的面积为S ,你认为能否确定S 的最大值?若能,请你求出S 的最大值;若不能,请你说明不能确定S 的最大值的理由.38.研究发现:当四边形的对角线互相垂直时,该四边形的面积等于对角线乘积的一半,如图1,已知四边形ABCD 内接于O ,对角线AC BD =,且AC BD ⊥.(1)求证:AB CD =; (2)若O 的半径为8,弧BD 的度数为120︒,求四边形ABCD 的面积;(3)如图2,作OM BC ⊥于M ,请猜测OM 与AD 的数量关系,并证明你的结论.39.我们知道,如图1,AB 是⊙O 的弦,点F 是AFB 的中点,过点F 作EF ⊥AB 于点E ,易得点E 是AB 的中点,即AE =EB .⊙O 上一点C (AC >BC ),则折线ACB 称为⊙O 的一条“折弦”.(1)当点C 在弦AB 的上方时(如图2),过点F 作EF ⊥AC 于点E ,求证:点E 是“折弦ACB ”的中点,即AE =EC+CB .(2)当点C 在弦AB 的下方时(如图3),其他条件不变,则上述结论是否仍然成立?若成立说明理由;若不成立,那么AE 、EC 、CB 满足怎样的数量关系?直接写出,不必证明.(3)如图4,已知Rt △ABC 中,∠C =90°,∠BAC =30°,Rt △ABC 的外接圆⊙O 的半径为2,过⊙O 上一点P 作PH ⊥AC 于点H ,交AB 于点M ,当∠PAB =45°时,求AH 的长.40.()1尺规作图1:已知:如图,线段AB 和直线且点B 在直线上求作:点C ,使点C 在直线上并且使ABC 为等腰三角形. 作图要求:保留作图痕迹,不写作法,做出所有符合条件的点C .()2特例思考:如图一,当190∠=时,符合()1中条件的点C 有______个;如图二,当160∠=时,符合()1中条件的点C 有______个.()3拓展应用:如图,AOB 45∠=,点M ,N 在射线OA 上,OM x =,ON x 2=+,点P 是射线OB 上的点.若使点P ,M ,N 构成等腰三角形的点P 有且只有三个,求x 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】①根据对称轴及增减性进行判断; ②根据函数在x=1处的函数值判断;③利用抛物线与直线y=-2有两个交点进行判断. 【详解】解:∵a <0<b ,∴二次函数的对称轴为x=2ba->0,在y 轴右边,且开口向下, ∴x <0时,y 随x 增大而增大; 故①正确;根据二次函数的系数,可得图像大致如下, 由于对称轴x=2ba-的值未知, ∴当x=1时,y=a+b+c 的值无法判断, 故②不正确;由图像可知,y==ax 2+bx +c ≤0,∴二次函数与直线y=-2有两个不同的交点, ∴方程ax 2+bx +c =-2有两个不相等的实数根. 故③正确.【点睛】本题考查了二次函数的图像的性质,二次函数的图像与系数的关系,二次函数与方程的关系,借助图像解决问题是关键. 2.C解析:C【解析】【分析】 根据二次函数的图象可知抛物线开口向上,对称轴为x =﹣1,且过点(1,0),根据对称轴可得抛物线与x 轴的另一个交点为(﹣3,0),把(1,0)代入可对①做出判断;由对称轴为x =﹣1,可对②做出判断;根据二次函数与一元二次方程的关系,可对③做出判断,根据根的判别式解答即可.【详解】由图象可知:抛物线开口向上,对称轴为直线x =﹣1,过(1,0)点,把(1,0)代入y =ax 2+bx +c 得,a +b +c =0,因此①正确;对称轴为直线x =﹣1,即:﹣2b a=﹣1,整理得,b =2a ,因此②不正确; 由抛物线的对称性,可知抛物线与x 轴的两个交点为(1,0)(﹣3,0),因此方程ax 2+bx +c =0的两根分别为﹣3和1;故③是正确的;由图可得,抛物线有两个交点,所以b 2﹣4ac >0,故④正确;故选C .【点睛】考查二次函数的图象和性质,抛物线通常从开口方向、对称轴、顶点坐标、与x 轴,y 轴的交点,以及增减性上寻找其性质.3.C解析:C【解析】【分析】根据勾股定理求出AB ,根据锐角三角函数的定义求出各个三角函数值,即可得出答案.【详解】如图:由勾股定理得:22222133AC BC ++==,所以cosB=313BC AB =,sinB=21233AC AC tanB AB BC === ,所以只有选项C 正确; 故选:C .此题考查锐角三角函数的定义的应用,能熟记锐角三角函数的定义是解此题的关键.4.D解析:D【解析】【分析】先根据条件x 2 -2x+d=0有实根得出判别式大于或等于0,求出d的范围,进而得出d与r 的数量关系,即可判断点P和⊙O的关系..【详解】解:∵关于x的方程x 2 -2x+d=0有实根,∴根的判别式△=(-2) 2 -4×d≥0,解得d≤1,∵⊙O的半径为r=1,∴d≤r∴点P在圆内或在圆上.故选:D.【点睛】本题考查了点和圆的位置关系,由点到圆心的距离和半径的数量关系对点和圆的位置关系作出判断是解答此题的重要途径,即当d>r时,点在圆外,当d=r时,点在圆上,当d<r 时,点在圆内.5.C解析:C【解析】【分析】根据圆内接正六边形的边长是1可得出圆的半径为1,利用勾股定理可求出该内接正三角形的边长为3,高为32,从而可得出面积.【详解】解:由题意可得出圆的半径为1,∵△ABC为正三角形,AO=1,AD BC⊥,BD=CD,AO=BO,∴1DO2=,32AD=,∴223BD OB OD=-=,∴BC =∴13224ABC S =⨯=. 故选:C .【点睛】本题考查的知识点是正多边形的性质以及解直角三角形,根据圆内接正多边形的边长求出圆的半径是解此题的关键.6.B解析:B【解析】【分析】无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率.【详解】∵这组数中无理数有π共2个, ∴卡片上的数为无理数的概率是21=63.故选B.【点睛】本题考查了无理数的定义及概率的计算. 7.C解析:C【解析】【分析】根据圆周角与圆心角的关键即可解答.【详解】∵∠AOC =80°, ∴102ABCAOC 4. 故选:C.【点睛】此题考查圆周角定理:同弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 8.C解析:C【解析】【分析】根据弧长公式即可求出圆心角的度数.【详解】解:∵扇形的半径为4,弧长为2π, ∴42180n ππ⨯=解得:90n =,即其圆心角度数是90︒故选C .【点睛】 此题考查的是根据弧长和半径求圆心角的度数,掌握弧长公式是解决此题的关键.9.C解析:C【解析】【分析】由A 、C 关于BD 对称,推出PA =PC ,推出PC +PE =PA +PE ,推出当A 、P 、E 共线时,PE +PC 的值最小,观察图象可知,当点P 与B 重合时,PE +PC =6,推出BE =CE =2,AB =BC =4,分别求出PE +PC 的最小值,PD 的长即可解决问题.【详解】解:∵在菱形ABCD 中,∠A =120°,点E 是BC 边的中点,∴易证AE ⊥BC ,∵A 、C 关于BD 对称,∴PA =PC ,∴PC +PE =PA +PE ,∴当A 、P 、E 共线时,PE +PC 的值最小,即AE 的长.观察图象可知,当点P 与B 重合时,PE +PC =6,∴BE =CE =2,AB =BC =4,∴在Rt △AEB 中,BE =∴PC +PE 的最小值为∴点H 的纵坐标a =∵BC ∥AD , ∴AD PD BE PB= =2,∵BD =∴PD =233⨯=∴点H 的横坐标b ,∴a +b ==;【点睛】本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.10.C解析:C【解析】【分析】利用加权平均数按照比例进一步计算出个人总分即可.【详解】根据题意得:92580390288532⨯+⨯+⨯=++(分), ∴小莹的个人总分为88分;故选:C .【点睛】本题主要考查了加权平均数的求取,熟练掌握相关公式是解题关键.11.D解析:D【解析】【分析】先求出∠DAE =∠BAC ,再根据相似三角形的判定方法分析判断即可.【详解】∵∠1=∠2,∴∠1+∠BAE =∠2+∠BAE ,∴∠DAE =∠BAC ,A 、添加∠B =∠D 可利用两角法:有两组角对应相等的两个三角形相似可得△ABC ∽△ADE ,故此选项不合题意;B 、添加∠C =∠E 可利用两角法:有两组角对应相等的两个三角形相似可得△ABC ∽△ADE ,故此选项不合题意;C 、添加AD AB AE AC=可利用两边及其夹角法:两组边对应成比例且夹角相等的两个三角形相似,故此选项不合题意; D 、添加AC BC AE DE=不能证明△ABC ∽△ADE ,故此选项符合题意; 故选:D .【点睛】 本题考查相似三角形的判定,解题的关键是掌握相似三角形判定方法:两角法、两边及其夹角法、三边法、平行线法.解析:B【解析】【分析】如图,作CH ⊥BE ′于H ,设AC 交BE ′于O .首先证明∠CE ′B =∠D ′=60°,解直角三角形求出HE ′,BH 即可解决问题.【详解】解:如图,作CH ⊥BE ′于H ,设AC 交BE ′于O .∵∠ACB =90°,∠ABC =30°,∴∠CAB =60°,∵DE ∥AB , ∴CD CA =CE CB ,∠CDE =∠CAB =∠D ′=60° ∴'CD CA ='CE CB, ∵∠ACB =∠D ′CE ′,∴∠ACD ′=∠BCE ′,∴△ACD ′∽△BCE ′,∴∠D ′=∠CE ′B =∠CAB ,在Rt △ACB 中,∵∠ACB =90°,AC ,∠ABC =30°,∴AB =2AC =,BC AC ,∵DE ∥AB , ∴CD CA =CE CB ,,∴CE∵∠CHE ′=90°,∠CE ′H =∠CAB =60°,CE ′=CE∴E ′H =12CE CH HE ′=32,∴BH∴BE ′=HE ′+BH =故选:B .【点睛】本题考查了相似三角形的综合应用题,涉及了旋转的性质、平行线分线段成比例、相似三角形的性质与判定等知识点,解题的关键是灵活运用上述知识点进行推理求导.13.C解析:C【解析】【分析】根据抛物线与x 轴有两个交点可得△=b 2﹣4ac>0,可对①进行判断;由抛物线的对称轴可得﹣2b a=﹣1,可对②进行判断;根据对称轴方程及点A 坐标可求出抛物线与x 轴的另一个交点坐标,可对③进行判断;根据对称轴及二次函数的增减性可对④进行判断;综上即可得答案.【详解】∵抛物线与x 轴有两个交点,∴b 2﹣4ac >0,即:b 2>4ac ,故①正确,∵二次函数y =ax 2+bx+c 的对称轴为直线x =﹣1,∴﹣2b a=﹣1, ∴2a =b ,即:2a ﹣b =0,故②错误.∵二次函数y =ax 2+bx+c 图象的一部分,图象过点A (﹣3,0),对称轴为直线x =﹣1, ∴二次函数与x 轴的另一个交点的坐标为(1,0),∴当x =1时,有a+b+c =0,故结论③错误;④∵抛物线的开口向下,对称轴x =﹣1,∴当x <﹣1时,函数值y 随着x 的增大而增大,∵﹣5<﹣1则y 1<y 2,则结论④正确故选:C .【点睛】本题主要考查二次函数图象与系数的关系,对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左侧;当a 与b 异号时(即ab <0),对称轴在y 轴右侧;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△=b 2-4ac 决定:△>0时,抛物线与x 轴有2个交点;△= 0时,抛物线与x 轴有1个交点;△<0时,抛物线与x轴没有交点.14.D解析:D【解析】【分析】利用平均数的求法求解即可.【详解】这组数据10,9,10,12,9的平均数是1(10910129)10 5++++=故选:D.【点睛】本题主要考查平均数,掌握平均数的求法是解题的关键.15.B解析:B【解析】【分析】连接BD,CD,由勾股定理求出BD的长,再利用ABD BED,得出DE DBDB AD=,从而求出DE的长,最后利用AE AD DE=-即可得出答案.【详解】连接BD,CD∵AB为O的直径90ADB∴∠=︒22226511BD AB AD∴=-=-∵弦AD平分BAC∠11CD BD∴==CBD DAB∴∠=∠ADB BDE∠=∠ABD BED∴DE DBDB AD∴=5 =解得115DE=115 2.85AE AD DE∴=-=-=故选:B.【点睛】本题主要考查圆周角定理的推论及相似三角形的判定及性质,掌握圆周角定理的推论及相似三角形的性质是解题的关键.二、填空题16.35π.【解析】【分析】首先求得圆锥的底面周长,然后利用扇形的面积公式S=lr即可求解.【详解】底面周长是:10π,则侧面展开图的面积是:×10π×7=35πcm2.故答案是:35π.解析:35π.【解析】【分析】首先求得圆锥的底面周长,然后利用扇形的面积公式S=12lr即可求解.【详解】底面周长是:10π,则侧面展开图的面积是:12×10π×7=35πcm2.故答案是:35π.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.17.8【解析】【分析】根据平均数是5,求m值,再根据方差公式计算,方差公式为:(表示样本的平均数,n 表示样本数据的个数,S2表示方差.)【详解】解:∵4,4,,6,6的平均数是5,∴4+4解析:8【解析】【分析】根据平均数是5,求m 值,再根据方差公式计算,方差公式为:2222121n S x x x x x x n (x 表示样本的平均数,n 表示样本数据的个数,S 2表示方差.)【详解】解:∵4,4,m ,6,6的平均数是5,∴4+4+m+6+6=5×5,∴m=5,∴这组数据为4,4,m ,6,6,∴22222214545556565=0.85S ,即这组数据的方差是0.8.故答案为:0.8.【点睛】本题考查样本的平均数和方差的定义,掌握定义是解答此题的关键.18.【解析】【分析】用红色区域的圆心角度数除以圆的周角的度数可得到指针落在红色区域的概率. 【详解】解:因为蓝色区域的圆心角的度数为120°,所以指针落在红色区域内的概率是=,故答案为.【解析:23【解析】【分析】用红色区域的圆心角度数除以圆的周角的度数可得到指针落在红色区域的概率.【详解】解:因为蓝色区域的圆心角的度数为120°,所以指针落在红色区域内的概率是360120360-=23,故答案为2 3 .【点睛】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是利用长度比,面积比,体积比等.19.46°【解析】【分析】连接OB,OC,根据切线的性质可知∠OBF=90°,根据AD∥BC,可得∠DBC=∠ADB=54°,然后利用三角形内角和求得∠BDC=46°,然后利用同弧所对的圆心角是圆解析:46°【解析】【分析】连接OB,OC,根据切线的性质可知∠OBF=90°,根据AD∥BC,可得∠DBC=∠ADB=54°,然后利用三角形内角和求得∠BDC=46°,然后利用同弧所对的圆心角是圆周角的2倍,求得∠BOC=92°,然后利用等腰三角形的性质求得∠OBC的度数,从而使问题得解.【详解】解:连接OB,OC,∵直线EF是⊙O的切线,B是切点∴∠OBF=90°∵AD∥BC∴∠DBC=∠ADB=54°又∵∠D CB=80°∴∠BDC=180°-∠DBC -∠D C B=46°∴∠BOC=2∠BDC =92°又∵OB=OC∴∠OBC=1(18092)44 2-=∴∠CBF=∠OBF-∠OBC=90-44=46°故答案为:46°【点睛】本题考查切线的性质,三角形内角和定理,等腰三角形的性质,根据题意添加辅助线正确推理论证是本题的解题关键.20.【解析】【分析】直接利用函数图象与x轴的交点再结合函数图象得出答案.【详解】解:如图所示,图象与x轴交于(-1,0),(3,0),故当y<0时,x的取值范围是:-1<x<3.故答案为:x解析:13【解析】【分析】直接利用函数图象与x轴的交点再结合函数图象得出答案.【详解】解:如图所示,图象与x轴交于(-1,0),(3,0),故当y<0时,x的取值范围是:-1<x<3.故答案为:-1<x<3.【点睛】此题主要考查了抛物线与x轴的交点,正确数形结合分析是解题关键.21.3【解析】【分析】把AE=2,EC=6,AB=12代入已知比例式,即可求出答案.【详解】解:∵=,AE=2,EC=6,AB=12,∴=,解得:AD=3,故答案为:3.【点睛】本题解析:3【解析】【分析】把AE =2,EC =6,AB =12代入已知比例式,即可求出答案.【详解】 解:∵AD AB =AE AC,AE =2,EC =6,AB =12, ∴12AD =226+, 解得:AD =3,故答案为:3.【点睛】 本题考查了成比例线段,灵活的将已知线段的长度代入比例式是解题的关键.22.【解析】【分析】根据增长率的定义列方程即可,二月份的产量为:,三月份的产量为:.【详解】二月份的产量为:,三月份的产量为:.【点睛】本题考查了一元二次方程的增长率问题,解题关键是熟解析:2500(1)720x +=【解析】【分析】根据增长率的定义列方程即可,二月份的产量为:500(1)x +,三月份的产量为:2500(1)720x +=.【详解】二月份的产量为:500(1)x +,三月份的产量为:2500(1)720x +=.【点睛】本题考查了一元二次方程的增长率问题,解题关键是熟练理解增长率的表示方法,一般用增长后的量=增长前的量×(1+增长率). 23.60【解析】【分析】设旗杆的影长为xm,然后利用同一时刻物高与影长成正比例列方程求解即可.【详解】解:设旗杆的影长BE为xm,如图:∵AB∥CD∴△ABE∽△DCE∴,由题意知AB解析:60【解析】【分析】设旗杆的影长为xm,然后利用同一时刻物高与影长成正比例列方程求解即可.【详解】解:设旗杆的影长BE为xm,如图:∵AB∥CD∴△ABE∽△DCE∴AB DCBE CE=,由题意知AB=50,CD=15,CE=18,即,501518x=,解得x=60,经检验,x=60是原方程的解,即高为50m的旗杆的影长为60m.故答案为:60.【点睛】此题主要考查比例的性质,解题的关键是熟知同一时刻物高与影长成正比例.24..【解析】【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【详解】解:∵四边形ABCD是平行四边形,∴AD ∥BC ,∴∠AFB =∠EBC ,∵B 解析:38. 【解析】【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AFB =∠EBC ,∵BF 是∠ABC 的角平分线,∴∠EBC =∠ABE =∠AFB ,∴AB =AF , ∴35AB AF BC BC ==, ∵AD ∥BC ,∴△AFE ∽△CBE , ∴35AF EF BC BE ==, ∴38EF BF =; 故答案为:38.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知平行四边形的性质、角平分线的性质及相似三角形的判定定理.25..【解析】试题分析:由∠C=∠E=90°,∠BAC=∠DAE 可得△ABC ∽△ADE ,根据相似三角形的对应边的比相等就可求出AD 的长.试题解析:∵∠C=∠E=90°,∠BAC=∠DAE∴△AB 解析:103. 【解析】 试题分析:由∠C=∠E=90°,∠BAC=∠DAE 可得△ABC ∽△ADE ,根据相似三角形的对应边的比相等就可求出AD 的长. 试题解析:∵∠C=∠E=90°,∠BAC=∠DAE∴△ABC ∽△ADE∴AC :AE=BC :DE∴DE=83∴2210=3AD AE DE =+ 考点: 1.相似三角形的判定与性质;2.勾股定理.26.【解析】如图,由题意可知∠ADB=90°,BD=,AB=,∴sinA=.解析:5 【解析】如图,由题意可知∠ADB=90°,BD=221+1=2,AB=223+1=10,∴sinA=2510BD AB ==.27.4【解析】【分析】先列举出所有上升数,再根据概率公式解答即可.【详解】解:两位数一共有99-10+1=90个,上升数为:共8+7+6+5+4+3+2+1=36个.概率为36÷90=解析:4【解析】【分析】先列举出所有上升数,再根据概率公式解答即可.【详解】解:两位数一共有99-10+1=90个,上升数为:共8+7+6+5+4+3+2+1=36个.概率为36÷90=0.4.故答案为:0.4.28.8【解析】【分析】在Rt△ADC中,利用正弦的定义得sinC==,则可设AD=12x,所以AC=13x,利用勾股定理计算出DC=5x,由于cos∠DAC=sinC得到tanB=,接着在Rt△A解析:8【解析】【分析】在Rt△ADC中,利用正弦的定义得sin C=ADAC=1213,则可设AD=12x,所以AC=13x,利用勾股定理计算出DC=5x,由于cos∠DAC=sin C得到tan B=1213,接着在Rt△ABD中利用正切的定义得到BD=13x,所以13x+5x=12,解得x=23,然后利用AD=12x进行计算.【详解】在Rt△ADC中,sin C=ADAC=1213,设AD=12x,则AC=13x,∴DC22AC AD=5x,∵cos∠DAC=sin C=12 13,∴tan B=12 13,在Rt △ABD 中,∵tan B =AD BD =1213, 而AD =12x ,∴BD =13x ,∴13x +5x =12,解得x =23, ∴AD =12x =8.故答案为8.【点睛】 本题主要考查解直角三角形,熟练掌握锐角三角函数的定义,是解题的关键.29.【解析】【分析】直接根据平行线分线段成比例定理即可得.【详解】,,,,解得,故答案为:.【点睛】本题考查了平行线分线段成比例定理,熟记平行线分线段成比例定理是解题关键. 解析:203【解析】【分析】直接根据平行线分线段成比例定理即可得.【详解】123////l l l ,AB DE BC EF∴=, 3,5,4AB BC DE ===,345EF∴=, 解得203EF =,故答案为:203. 【点睛】 本题考查了平行线分线段成比例定理,熟记平行线分线段成比例定理是解题关键. 30.30【解析】【分析】如图,首先利用勾股定理判定△ABC 是直角三角形,由题意得圆心O 所能达到的区域是△DEG,且与△ABC 三边相切,设切点分别为G 、H 、P 、Q 、M 、N ,连接DH 、DG 、EP 、EQ解析:30【解析】【分析】如图,首先利用勾股定理判定△ABC 是直角三角形,由题意得圆心O 所能达到的区域是△DEG ,且与△ABC 三边相切,设切点分别为G 、H 、P 、Q 、M 、N ,连接DH 、DG 、EP 、EQ 、FM 、FN ,根据切线性质可得:AG =AH ,PC =CQ ,BN =BM ,DG 、EP 分别垂直于AC ,EQ 、FN 分别垂直于BC ,FM 、DH 分别垂直于AB ,继而则有矩形DEPG 、矩形EQNF 、矩形DFMH ,从而可知DE =GP ,EF =QN ,DF =HM ,DE ∥GP ,DF ∥HM ,EF ∥QN ,∠PEF =90°,根据题意可知四边形CPEQ 是边长为1的正方形,根据相似三角形的判定可得△DEF ∽△ACB ,根据相似三角形的性质可知:DE ∶EF ∶FD =AC ∶CB ∶BA =3∶4∶5,进而根据圆心O 运动的路径长列出方程,求解算出DE 、EF 、FD 的长,根据矩形的性质可得:GP 、QN 、MH 的长,根据切线长定理可设:AG =AH =x ,BN =BM =y ,根据线段的和差表示出AC 、BC 、AB 的长,进而根据AC ∶CB ∶BA =3∶4∶5列出比例式,继而求出x 、y 的值,进而即可求解△ABC 的周长.【详解】∵AC ∶CB ∶BA =3∶4∶5,设AC =3a ,CB =4a ,BA =5a (a >0)∴()()()222222=345AC CB a a a BA ++==∴△ABC 是直角三角形,设⊙O 沿着△ABC 的内部边缘滚动一圈,如图所示,连接DE 、EF 、DF ,设切点分别为G 、H 、P 、Q 、M 、N ,连接DH 、DG 、EP 、EQ 、FM 、FN ,根据切线性质可得:AG =AH ,PC =CQ ,BN =BMDG 、EP 分别垂直于AC ,EQ 、FN 分别垂直于BC ,FM 、DH 分别垂直于AB ,∴DG ∥EP ,EQ ∥FN ,FM ∥DH ,∵⊙O 的半径为1。
孝感市2018-2019学年度上学期九年级期末学业水平测试语文试卷温馨提示:1.答题前,考生务必将自己所在的县市区、学校、姓名、考号填写在试卷上指定的位置。
2.选择题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;非选择题的答案必须写在答题卡的指定位置,在本卷上答题无效。
3.本试卷满分120分,考试时间150分钟。
一.阅读理解(60分)(一)现代文阅读理解(30分)老邱上网记(15分)①这年头,女强人女汉子女达人,比比皆是,要说服谁,我最服“九〇后”老邱。
老邱真名已很少有人知道。
最近,微信群里倒有很多人突然记起她的名字,还衍化成很多昵称。
每次我们用昵称喊她,她都笑弯眉眼,嗔怪我们不正经。
②自从当上“九〇后”,老邱的生活突然丰富多彩起来,只因她上了网。
③老邱有一片菜地,都是她从路边、屋前屋后、犄角旮旯新挖掘出来的。
破脸盆、泡沫盒、旧木箱、豁口罐装了土,也成为菜地主力军。
屋前有一堆石头,很多很多年了。
一个春天的清晨,没地可种的老农民老邱被春花春草撩拨得手脚痒痒,对着这堆石头,突然兴起愚公精神。
半个月后,这些石头就筑成菜地的围墙,垒成鸡窝,砌成洗衣台。
老邱翻出锄头,扒拉扒拉,一块黑黝黝的菜地从天而降般地生长出来。
种田能手老邱摩拳擦掌,跃跃欲试。
④可种子呢?孙子看她愁眉不展,笑了:网上买啊,网上啥都有,还包邮!老邱以为自己听错了,啥?网?她嫁给渔民施艮,这一生不知道织过补过多少渔网。
她也抬头低头见过不少蜘蛛网。
能出种子的网?她是不信的。
孙子但笑不语,拍拍她的肩让她少安毋躁,等个两三天,保她有种子可种。
两天后,老邱在家听着越剧折着纸钱。
“邱真,邱真,有快递!”老邱过了半晌才想起这是叫她呢。
接二连三,丝瓜冬瓜花菜芹菜秋葵种子,大包小包,都经快递小哥的手,到达老邱的手里。
老邱边扒拉着菜地,边嘀咕,这啥网啊,长啥样?⑤种田能手老邱果然出手不凡,瓜果蔬菜吃错药似地猛长,又胖又俊。
儿子来了拿一袋,女儿来了装一箩。
2018-2019 学年湖北省孝感市孝昌县九年级(上)期末数学模拟试卷一.选择题(共8 小题,满分32 分,每小题4 分)1.已知2x=3y,则下列比例式成立的是()A.=B.=C.=D.=2.已知∠A+∠B=90°,且cos A=,则cos B 的值为()A.B.C.D.3.不透明的袋子中装有红球1 个、绿球1 个、白球2 个,除颜色外无其他差别.随机摸出一个小球后不放回,再摸出一个球,则两次都摸到白球的概率是()A.B.C.D.4.点M(a,2a)在反比例函数y=的图象上,那么a 的值是()A.4 B.﹣4 C.2 D.±25.如图,在直角坐标系中,以原点为圆心,半径为5的圆内有一点P(0,﹣3),那么经过点P 的所有弦中,最短的弦的长为()A.4 B.5 C.8D.10 6.抛物线y=(x﹣2)2+3 的顶点坐标是()A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)7.如图,小正方形的边长均为1,下面A,B,C,D 四个图中的格点三角形(顶点在正方形的顶点上的三角形)与△ABC 相似的是()A.B.C.D.8.如图,矩形ABCD 中,AB=1,BC=2,点P 从点B 出发,沿B→C→D 向终点D 匀速运动,设点P 走过的路程为x,△ABP 的面积为S,能正确反映S 与x 之间函数关系的图象是()A.B.C.D.二.填空题(共4 小题,满分16 分,每小题 4 分)9.计算;sin30°•tan30°+cos60°•tan60°=.10.如图,AB 是⊙O 的直径,点P 在BA 的延长线上,PD 与⊙O 相切与点D,过点B 作PD的垂线,与PD的延长线相交于点C,若⊙O的半径为4,BC=6,则PA的长为.11.给出下列说法及函数y=x,y=x2 和y=.①如果>a>a2,那么0<a<1;②如果a2>a>,那么a>1;③如果>a2>a,那么﹣1<a<0;④如果a2>>a 时,那么a<﹣1.以上说法正确的是.12.如图,在△ABC 中,∠ACB=90°,∠A=60°,AC=a,作斜边AB 上中线CD,得到第1 个三角形ACD;DE⊥BC 于点E,作Rt△BDE 斜边DB 上中线EF,得到第2 个三角形DEF;依次作下去…则第1 个三角形的面积等于,第n 个三角形的面积等于.三.解答题(共6 小题,满分30 分,每小题5 分)13.计算:2cos30°﹣tan60°+sin30°+ tan45°.14.已知:点E 在线段AB 上,.(1)如图1,AB 是△ABC 的边,作EF∥BC 交边AC 于点F,连接BF.求的值.(2)如图2,AB 是梯形ABCD 的一腰,AD∥BC,且BC=2AD,作EF∥BC 交边DC 于点F,连接BF.求的值.15.如图,在△ABC 中,∠B 为锐角,AB=3 ,BC=7,sin B=,求AC 的长.16.如图,AE 是⊙O 的直径,半径OD 垂直于弦AB,垂足为C,AB=8cm,CD=2cm,求BE 的长.17.如图,抛物线y=+bx﹣2与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式;(2)求抛物线与x 轴另一个交点B 的坐标,并观察图象直接写出当x 为何值时y>0?18.将三个除号码外完全相同的小球放入不透明的盒子中,小球上分别标有数字1,2,3,游戏者从中随机摸出一球,记下数字后放回盒中,充分摇匀,再随机摸出一球并记下数字.如果摸得的两球所标数字之积为奇数,那么游戏者获胜;否则,其游戏结果为输.你认为该游戏规则是否公平?请画树状图或列表予以说明.四.解答题(共3 小题,满分15 分,每小题5 分)19.如图,某市郊外景区内一条笔直的公路l 经过A、B 两个景点,景区管委会又开发了风景优美的景点C.经测量,C 位于A 的北偏东60°的方向上,C 位于B 的北偏东30°的方向上,且AB=10km.(1)求景点B 与C 的距离;(2)为了方便游客到景点C 游玩,景区管委会准备由景点C 向公路l 修一条距离最短的公路,不考虑其他因素,求出这条最短公路的长.(结果保留根号)20.在平面直角坐标系中,将一个点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫做这个点的“互换点”,如(﹣3,5)与(5,﹣3)是一对“互换点”.(1)任意一对“互换点”(填“都能”或“都不能”)在一个反比例函数的图象上;(2)M、N是一对“互换点”,若点M的坐标为(2,﹣5),求直线MN的表达式;(3)在抛物线y=x2+bx+c 的图象上有一对“互换点”A、B,其中点A 在反比例函数y =﹣的图象上,直线AB经过点P(,),求此抛物线的表达式.21 .已知四边形ABCD 是平行四边形,以AB 为直径的⊙O 经过点D ,∠ DAB =45°.(Ⅰ)如图①,判断CD 与⊙O 的位置关系,并说明理由;(Ⅱ)如图②,E 是⊙O 上一点,且点E 在AB 的下方,若⊙O 的半径为3cm,AE=5cm,求点E 到AB 的距离.五.解答题(共1 小题,满分 6 分,每小题 6 分)22.如图(1),是一面矩形彩旗完全展开时的尺寸图(单位:cm).其中矩形ABCD是由双层白布缝制的穿旗杆用的旗裤,阴影部分DCEF 为矩形绸锻旗面.(1)用经加工的圆木杆穿入旗裤做旗杆,求旗杆的最大直径.(精确到1cm)(2)在一个无风的天气里,如图(2)那样将旗杆斜插在操场上,旗杆与地面成60°角,如果彩旗下角E恰好垂直地面,求旗杆露在地面以上部分的长度DG的近似值.(此时旗杆的直径忽略不计,精确到1cm)六.解答题(共1 小题,满分 6 分,每小题 6 分)23.已知关于x 的两个一元二次方程:方程①:;方程②:x2+(2k+1)x﹣2k﹣3=0.(1)若方程①有两个相等的实数根,求:k 的值(2)若方程①和②只有一个方程有实数根,请说明此时哪个方程没有实数根.(3)若方程①和②有一个公共根a,求代数式(a2+4a﹣2)k+3a2+5a 的值.七.解答题(共1 小题,满分7 分,每小题7 分)24.如图:已知梯形ABCD 中,AB∥CD,E,F 分别为AD,BC 的中点,连结DF 并延长交AB 的延长线于点G,请解答下列问题:(1)△BFG≌△CFD 吗?为什么?(2)试说明EF=(AB+CD)且EF∥AB,EF∥CD.八.解答题(共1 小题)25.已知抛物线y=﹣x2﹣x+2 与x 轴交于点A,B 两点,交y 轴于C 点,抛物线的对称轴与x 轴交于H 点,分别以OC、OA 为边作矩形AECO.(1)求直线AC 的解析式;(2)如图2,P 为直线AC 上方抛物线上的任意一点,在对称轴上有一动点M,当四边形AOCP 面积最大时,求|PM﹣OM|的最大值.(3)如图3,将△AOC 沿直线AC 翻折得△ACD,再将△ACD 沿着直线AC 平移得△A'C′ D'.使得点A′、C'在直线AC 上,是否存在这样的点D′,使得△A′ED′为直角三角形?若存在,请求出点D′的坐标;若不存在,请说明理由.参考答案一.选择题(共8 小题,满分32 分,每小题4 分)1.【解答】解:A、变成等积式是:xy=6,故错误;B、变成等积式是:3x=2y,故错误;C、变成等积式是:2x=3y,故正确;D、变成等积式是:3x=2y,故错误.故选:C.2.【解答】解:∵∠A+∠B=90°,∴cos B=cos(90°﹣∠A)=sin A,又∵sin2A+cos2A=1,∴cos B==.故选:D.3.【解答】解:画树状图为:共有12 种等可能的结果数,其中两次摸出的球都是的白色的结果共有2种,所以两次都摸到白球的概率是=,故选:B.4.【解答】解:∵点M(a,2a)在反比例函数y=的图象上.∴2a=.∴解得:a=±2,故选:D.5.【解答】解:过P 作弦AB⊥OP,则AB 是过P 点的⊙O 的最短的弦,连接OB,则由垂径定理得:AB=2AP=2BP,在Rt△OPB 中,PO=3,OB=5,由勾股定理得:PB=4,则AB=2PB=8,故选:C.× .6. 【解答】解:y =(x ﹣2)2+3 是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3). 故选:A .7. 【解答】解:∵AC = ,BC =2,AB =A :三边分别为:1, ,2B :三边分别为:1,,, C :三边分别为:,,3 D :三边分别为:2, ,根据如果两个三角形的三组对应边的比相等,那么这两个三角形相似∴B 中的三角形与△ABC 相似. 故选:B .8. 【解答】解:由题意知,点 P 从点 B 出发,沿 B →C →D 向终点 D 匀速运动,则当 0<x ≤2,s =, 当 2<x ≤3,s =1,由以上分析可知,这个分段函数的图象开始直线一部分,最后为水平直线的一部分. 故选:C .二.填空题(共 4 小题,满分 16 分,每小题 4 分)9. 【解答】解:sin30°•tan30°+cos60°•tan60°=+ ×=故答案为:.10.【解答】解:连接DO解:连接DO,∵PD 与⊙O 相切于点D,∴∠PDO=90°,∵∠C=90°,∴DO∥BC,∴△PDO∽△PCB,∴∴∴PA=4 故答案为 41.【解答】解:联立,解得,,所以,两交点坐标分别为(﹣1,﹣1),(1,1),由图可知,>a>a2 时,0<a<1,故①正确;a2>a>时,a>1 或﹣1<a<0,故②错误;>a2>a 时,a 值不存在,故③错误;a2>>a 时,a<﹣1,故④正确;综上所述,说法正确的是①④.故答案为:①④.12.【解答】解:∵∠ACB=90°,CD 是斜边AB 上的中线,∴CD=AD,∵∠A=60°,∴△ACD 是等边三角形,同理可得,被分成的第二个、第三个…第n 个三角形都是等边三角形,∵CD 是AB 的中线,EF 是DB 的中线,…,∴第一个等边三角形的边长CD=DB=AB=AC=a,∴第一个三角形的面积为a2,第二个等边三角形的边长EF=DB=a,…第n 个等边三角形的边长为a,所以,第n 个三角形的面积=×a×(•a)=.故答案为a2,.三.解答题(共6 小题,满分30 分,每小题 5 分)13.【解答】解:原式=2×﹣+ +=1.14.【解答】解:(1)如图1,∵,∴,∵EF∥BC,∴△AEF∽△ABC,∴,==,设S△AEF=a,则S△ABC=9a,∴S 四边形EBCF=9a﹣a=8a,∵,∴=,∴S△BEF=2a,∴= = ;(2)如图 2,设 AD =x ,则 BC =2x , 连接 AC ,交 EF 于 G ,连接 AF , ∵EF ∥BC ,∴△AEG ∽△ABC , ∴ ,∴,EG = x ,∵AD ∥EF ∥BC , ∴ , 同理可得 ,∴,FG = x ,∴EF = x +x = x ,∵ = = ,设 S △AEF =S ,则 S △BEF =2S , ∴= == ,∴S △ADF = S ,= , ,∴S △BFC =3S ,∴== .∵ = =15.【解答】解:作AD⊥BC 于点D,∴∠ADB=∠ADC=90°,∵sin B=,∴∠B=∠BAD=45°,∵AB=,∴AD=BD=AB=3,∵BC=7,∴DC=4,∴在Rt△ACD 中,AC==5.16.【解答】解:∵半径OD 垂直于弦AB,垂足为C,AB=8cm,∴AC=4cm,设CO=xcm,则DO=AO=(x+2)cm,在Rt△AOC 中:AO2=CO2+AC2,∴(x+2)2=42+x2,解得:x=3,∵AO=EO,AC=CB,17.【解答】解:(1)把A(﹣1,0)代入y=x2+bx﹣2得﹣b﹣2=0,解得b=﹣,所以抛物线解析式为y=x2﹣x﹣2.(2)当y=0 时,x2﹣x﹣2=0,整理得x2﹣3x﹣4=0,解得x1=﹣1,x2=4,所以B点坐标为(4,0),当x<﹣1 或x>4 时,y>0.18.【解答】解:不公平.因为根据题意从列表可以看出所有可能结果共有9 种,且每种结果发生的可能性相同,其中结果为奇数的有 4 种,结果为偶数的有 5 种,即结果为奇数的概率为,而结果为偶数的概率为,所以游戏规则不公平.四.解答题(共3 小题,满分15 分,每小题 5 分)19.【解答】解:(1)如图,由题意得∠CAB=30°,∠ABC=90°+30°=120°,∴∠C=180°﹣∠CAB﹣∠ABC=30°,∴∠CAB=∠C=30°,∴BC=AB=10km,即景点B、C 相距的路程为10km.(2)过点C 作CE⊥AB 于点E,∵BC=10km,C 位于B 的北偏东30°的方向上,在Rt△CBE 中,CE=km.20.【解答】解:(1)任意一对“互换点”都能在一个反比例函数的图象上.理由如下:设A(a,b)在反比例函数y=的图象上,则k=ab.根据“互换点”的意义,可知A(a,b)的“互换点”是(b,a).∵ba=ab=k,∴(b,a)也在反比例函数y=的图象上.故答案为:都能;(2)∵M、N是一对“互换点”,点M的坐标为(2,﹣5),∴N(﹣5,2).设直线MN 的表达式为:y=kx+b,∴,解得:,∴直线MN 的表达式为y=﹣x﹣3;(3)∵点A 在反比例函数y=﹣的图象上,∴设A(k,﹣),∵A,B是一对“互换点”,∴B(﹣,k),设直线AB 的解析式为y=mx+n,∵直线AB经过点P(,),∴,解得,∴A(2,﹣1),B(﹣1,2),或A(﹣1,2),B(2,﹣1).∴ =∴EF =.将 A 、B 两点的坐标代入 y =x 2+bx +c , 得 ,解得,∴此抛物线的表达式为 y =x 2﹣2x ﹣1.21. 【解答】解:(1)CD 与圆 O 相切.证明:如图①,连接 OD ,则∠AOD =2∠DAB =2×45°=90°, ∵四边形 ABCD 是平行四边形,∴AB ∥DC .∴∠CDO =∠AOD =90°.∴OD ⊥CD .∴CD 与圆 O 相切.(2)如图②,作 EF ⊥AB 于 F ,连接 BE , ∵AB 是圆 O 的直径,∴∠AEB =90°,AB =2×3=6.∵AE =5,∴BE = = ,∵sin ∠BAE = = .五.解答题(共1 小题,满分 6 分,每小题 6 分)2.【解答】解:(1)根据题意得,12=2πR,∴2R=≈4(cm),所以旗杆的最大直径为4cm.(2)在图(1),连接DE,如图,∵阴影部分DCEF 为矩形绸锻旗面,∴DE===150(cm),在图(2)中,连DE,彩旗下角E 恰好垂直地面,则DE⊥GE,∵∠DEG=60°,∴∠GDE=30°,∴DE=GE,即GE=DE=×150=50 ,∴DG=2GE=100 ≈173cm.六.解答题(共1 小题,满分 6 分,每小题 6 分)23.【解答】解:(1)∵方程①有两个相等的实数根,∴,则k≠﹣2,△1=b2﹣4ac=(k+2)2﹣4(1+)×(﹣1)=k2+4k+4+4+2k=k2+6k+8,则(k+2)(k+4)=0,∴k=﹣2,k=﹣4,∵k≠﹣2,∴k=﹣4;(2)∵△2=(2k+1)2﹣4×1×(﹣2k﹣3)=4k2+4k+1+8k+12=4k2+12k+13=(2k+3)2+4>0,∴无论k 为何值时,方程②总有实数根,∵方程①、②只有一个方程有实数根,∴此时方程①没有实数根.(3)根据a 是方程①和②的公共根,∴③,a2+(2k+1)a﹣2k﹣3=0④,∴③×2得:(2+k)a2+(2k+4)a﹣2=0⑤,⑤+④得:(3+k)a2+(4k+5)a﹣2k=5,代数式=(a2+4a﹣2)k+3a2+5a=(3+k)a2+(4k+5)a﹣2k=5.故代数式的值为5.七.解答题(共1 小题,满分7 分,每小题7 分)24.【解答】解:(1)△BFG≌△CFD,∵AB∥CD,∴∠CDF=∠G,∠C=∠FBG,在△BFG 和△CFD 中,,∴△BFG≌△CFD;(2)∵△BFG≌△CFD,∴BG=CD,∵E,F 分别为AD,BC 的中点,∴EF=AG,EF∥AB,又AB∥CD,∴EF∥CD,∴EF=(AB+CD)且EF∥AB,EF∥CD.八.解答题(共1 小题)25.【解答】解:(1)令x=0,则y=2,令y=0,则x=2或﹣6,则:点A、B、C坐标分别为(﹣6,0)、(2,0)、(0,2),函数对称轴为:x=﹣2,顶点坐标为(﹣2,),C点坐标为(0,2),则过点C的直线表达式为:y=kx+2,将点A 坐标代入上式,解得:k=,则:直线AC 的表达式为:y=x+2;(2)如图,过点P 作x 轴的垂线交AC 于点H,四边形AOCP 面积=△AOC 的面积+△ACP 的面积,四边形AOCP 面积最大时,只需要△ACP 的面积最大即可,设:点P坐标为(m,﹣m2﹣m+2),则点G坐标为(m,m+2),S△ACP=PG•OA=•(﹣m2﹣m+2﹣m﹣2)•6=﹣m2﹣3m,当m=﹣3时,上式取得最大值,则点P坐标为(﹣3,),连接OP 交对称轴于点M,此时,|PM﹣OM|有最大值,直线OP 的表达式为:y=﹣x,当x=﹣2 时,y=,即:点M坐标为(﹣2,);(3)存在;, ), , +∵AE =CD ,∠AEC =∠ADC =90°,∠EMA =∠DMC ,∴△EAM ≌△DCM (AAS ),∴EM =DM ,AM =MC ,设:EM =a ,则:MC =6﹣a ,在 Rt △DCM 中,由勾股定理得:MC 2=DC 2+MD 2, 即:(6﹣a )2=22+a 2,解得:a =,则:MC = ,过点 D 作 x 轴的垂线交 x 轴于点 N ,交 EC 于点 H ,在 Rt △DMC 中,DH •MC = MD •DC ,即:DH ×=×2, 则:DH = ,HC == , 即:点 D 的坐标为(﹣,); 设:△ACD 沿着直线 AC 平移了 m 个单位, 则:点 A ′坐标(﹣6+点 D ′坐标为(﹣ + ),而点 E 坐标为(﹣6,2),则:直线 A ′D ′表达式的 k 值为: ,则:直线 A ′E 表达式的 k 值为: ,则:直线 E ′D 表达式的 k 值为: ,根据两条直线垂直,其表达式中 k 值的乘值为﹣1,可知:当A′D′⊥A′E 时,=﹣,解得:m=,D坐标为:(0,4),当A′D′⊥ED′时,=﹣,解得:m=﹣,D坐标为:(﹣6,2)同理,当ED′⊥A′E时,点D的坐标为:(﹣0.6,3.8),则:D坐标为:(0,4)或(﹣6,2)或(﹣0.6,3.8).。
湖北省孝感市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共10分)1. (1分) (2017八下·射阳期末) 下列四个图案中既是轴对称图形,又是中心对称图形的是()A .B .C .D .2. (1分)(2017·祁阳模拟) 已知反比例函数y= ,当1<x<2时,y的取值范围是()A . y>10B . 5<y<10C . 1<y<2D . 0<y<53. (1分)小明、小雪、丁丁和东东在公园玩飞行棋,四人轮流掷骰子,小明掷骰子7次就掷出了4次6,则小明掷到数字6的概率是()A .B .C .D . 不能确定4. (1分)(2018·莱芜模拟) 如图.在△ABC中,∠ABC=90°,∠BAC=30°,AC=2,将△ABC绕点A逆时针旋转至△AB1C1 ,使AC1⊥AB,则BC扫过的面积为()A .B .C .D .5. (1分)鸡瘟是一种传播速度很强的传染病,一轮传染为一天时间,红发养鸡场于某日发现一例,两天后发现共有169只鸡患有这种病.若每例病鸡传染健康鸡的只数均相同,则每只病鸡传染健康鸡的只数为()A . 10只B . 11只C . 12只D . 13只6. (1分)(2016·平房模拟) 在平面直角坐标系中,点O是坐标原点,点A是x轴正半轴上的一个动点,过A点作y轴的平行线交反比例函数y= (x>0)的图象于B点,当点A的横坐标逐渐增大时,△OAB的面积将会()A . 逐渐增大B . 逐渐减小C . 不变D . 先增大后减小7. (1分)在一个不透明的口袋里装着只有颜色不同的黑、白两种颜色的球共20只,某学习小组作摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表示活动进行中的一组统计数据:摸球的次数n1001502005008001000摸到白球的次数m5896116295484601摸到白球的频率0.580.640.580.590.6050.601请估算口袋中白球约是()只.A . 8B . 9C . 12D . 138. (1分)如图,⊙O内切于△ABC,切点为D、E、F,∠B=45°,∠C=55°,连接OE、OF、OE、OF,则∠EDF 等于()A . 45°B . 55°C . 50°D . 70°9. (1分)小明从如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,观察得出了下面五条信息:①ab>0;②a+b+c<0;③b+2c>0;④a﹣2b+4c>0;⑤.你认为其中正确信息的个数有()A . 2个B . 3个C . 4个D . 5个10. (1分)如图,在⊙O中,点C在优弧AB上,将弧BC沿BC折叠后刚好经过AB的中点D. 若⊙O的半径为,AB=8,则BC的长是()A .B .C .D .二、填空题 (共6题;共6分)11. (1分)如图所示,①中多边形(边数为12)是由正三角形“扩展”而来的,②中多边形是由正方形“扩展”而来的,…,依此类推,则由正n边形“扩展”而来的多边形的边数为________.12. (1分)如图所示,该图形是________对称图形.13. (1分) (2017九上·上城期中) 如图,的顶点都在方格线的交点(格点)上,若将绕原点旋转,点走过的路程是________.14. (1分) (2018九上·鄞州期中) 如图,点A是抛物线y=x2-4x对称轴上的一点,连接OA,以A为旋转中心将AO逆时针旋转90°得到AO′,当O′恰好落在抛物线上时,点A的坐标为________.15. (1分) (2019八下·北京期中) 两个反比例函数在第一象限内的图象如图所示,点,…,在反比例函数图象上,它们的横坐标分别是,…,,纵坐标分别是1,3,5,…,共2019个连续奇数,过点,…,分别作y轴的平行线,与的图象交点依次是,…,,则=________,三角形的面积为________.16. (1分) (2019九上·大丰月考) 如图,已知等边三角形的边长为,点为平面内一动点,且,将点绕点按逆时针方向转转,得到点,连接,则的最大值________.三、解答题 (共8题;共18分)17. (1分)已知,a=﹣+1(1)求a、c的值;(2)若一元二次方程ax2+bx+c=0有一个根是1,求b的值和方程的另一个根.18. (2分) (2016九上·临河期中) 如图,在正方形网格中,△AB C各顶点都在格点上,点A,C的坐标分别为(﹣5,1)、(﹣1,4),结合所给的平面直角坐标系解答下列问题:(1)①画出△ABC关于y轴对称的△A1B1C1;②画出△ABC关于原点O对称的△A2B2C2;(2)点C1的坐标是________;点C2的坐标是________;(3)试判断:△A1B1C1与△A2B2C2是否关于x轴对称?(只需写出判断结果)________.19. (3分)(2016·镇江模拟) 为强化安全意识,某校拟在周一至周五的五天中随机选择2天进行紧急疏散演练,请完成下列问题:(1)周三没有被选择的概率;(2)选择2天恰好为连续两天的概率.20. (2分) (2017九上·乐昌期末) 如图,抛物线y=x2+bx+c与x轴交于A(﹣2,0),B(6,0)两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;(3)点P为y轴右侧抛物线上一个动点,若S△PAB=32,求出此时P点的坐标.21. (2分)(2017·市北区模拟) 如图,在平面直角坐标系xOy中,一次函数y1=ax+b(a,b为常数,且a≠0)与反比例函数y2= (m为常数,且m≠0)的图象交于点A(﹣2,1)、B(1,n)(1)求反比例函数与一次函数的解析式;(2)连接OA、OB,求△AOB的面积;(3)直接写出当y1<y2时,自变量x的取值范围.22. (2分)(2017·奉贤模拟) 已知:如图,选段AB=4,以AB为直径作半圆O,点C为弧AB的中点,点P 为直径AB上一点,联结PC,过点C作CD∥AB,且CD=PC,过点D作DE∥PC,交射线PB于点E,PD与CE相交于点Q.(1)若点P与点A重合,求BE的长;(2)设PC=x, =y,当点P在线段AO上时,求y与x的函数关系式及定义域;(3)当点Q在半圆O上时,求PC的长.23. (3分) (2017九下·无锡期中) 如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,﹣3)(1)求抛物线的解析式;(2)点P在抛物线位于第四象限的部分上运动,当△BCP的面积最大时,求点P的坐标和△BCP的最大面积.(3)当△BCP的面积最大时,在抛物线上是否点Q(异于点P),使△BCQ的面积等于△BCP,若存在,求出点Q的坐标,若不存在,请说明理由.24. (3分) (2019九上·椒江期末)(1)尺规作图:已知:如图,线段AB和直线且点B在直线上求作:点C,使点C在直线上并且使△ABC为等腰三角形.作图要求:保留作图痕迹,不写作法,做出所有符合条件的点C.(2)特例思考:如图一,当∠1=90°时,符合(1)中条件的点C有________个;如图二,当∠1=60°时,符合(1)中条件的点C有________个.(3)拓展应用:如图,∠AOB=45°,点M,N在射线OA上,OM=x,ON=x+2,点P是射线OB上的点.若使点P,M,N构成等腰三角形的点P有且只有三个,求x的值。
每日一学:湖北省孝感市2018届九年级上学期数学期末考试试卷_压轴题解答答案湖北省孝感市2018届九年级上学期数学期末考试试卷_压轴题~~第1题 ~~(2018孝感.九上期末) 抛物线 与 轴交于A(4,0),B(6,0)两点,与 轴交于点C(0,3).(1) 求抛物线的解析式;(2) 点P 从点O 出发,以每秒2个单位长度的速度向点B 运动,同时点E 也从点O 出发,以每秒1个单位长度的速度向点C 运动,设点P 的运动时间为t 秒(0<t<3).①过点E 作x 轴的平行线,与BC 相交于点D (如图所示),当t 为何值时,△PDE 的面积最大,并求出这个最大值;②当t =2时,抛物线的对称轴上是否存在点F ,使△EFP 为直角三角形?若存在,请你求出点F 的坐标;若不存在,请说明理由.考点: 待定系数法求二次函数解析式;二次函数的实际应用-几何问题;几何图形的动态问题;~~第2题 ~~(2018孝感.九上期末) 如图,正△ABC 的边长为4,将正△ABC 绕点B 顺时针旋转120°得到△C'A'B ,若点D 为直线A'B 上的一动点,则AD+CD 的最小值是________.~~ 第3题 ~~(2018孝感.九上期末) 如图,抛物线的顶点为B(1,3),与轴的交点A 在点 (2,0)和(3,0)之间.以下结论:①;②;③;④ ≥ ;⑤若 ,且 ,则 .其中正确的结论有( )A . 4个B . 3个C . 2个D . 1个湖北省孝感市2018届九年级上学期数学期末考试试卷_压轴题解答~~ 第1题 ~~答案:解析:~~ 第2题 ~~答案:解析:~~ 第3题 ~~答案:A解析:。
2018-2019学年人教版九年级(上)期末数学试卷含解析一、选择题(本大题共12个小题,每小题3分,满分36分)1.如图所示的几何体,上下部分均为圆柱体,其左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】从侧面看圆柱的视图为矩形,据此求解即可.【解答】解:∵该几何体上下部分均为圆柱体,∴其左视图为矩形,故选:C.2.下列说法:(1)直径是弦;(2)弦是直径;(3)半圆是弧,但弧不一定是半圆;(4)半径相等的两个圆是等圆;(5)长度相等的两条弧是等弧.其中错误的个数是()A.1个B.2个C.3个D.4个【考点】M1:圆的认识.【专题】67:推理能力.【分析】(1)直径的两个端点在圆上,符合弦的概念.(2)弦是连接圆上两点间的线段,只有过圆心的弦才是直径.(3)半圆是弧,但弧不一定是半圆.比半圆大的弧是优弧,比半圆小的弧是劣弧.(4)(5)等弧是能完全重合的两条弧,长度相等的两条弧不一定能重合.【解答】解:(1)根据弦的概念,直径是一条线段,且两个端点在圆上,满足弦是连接圆上两点的线段这一概念,所以(1)正确;(2)弦是连接圆上两点的线段,只有过圆心的弦才是直径,其它的弦不是直径,所以(2)错误;(3)圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫半圆,所以半圆是弧.但比半圆大的弧是优弧,比半圆小的弧是劣弧,不是所有的弧都是半圆.所以(3)正确;(4)由等圆的定义可知,半径相等的两个圆面积相等、周长相等,所以为等圆,所以(4)正确;(5)等弧是能完全重合的弧,只有长度相等的两条弧不一定能重合.所以(5)错误.故选:B.3.暑假快到了,父母打算带兄妹俩去某个景点旅游一,长长见识,可哥哥坚持去黄山,妹妹坚持去泰山,争执不下,父母为了公平起见,决定设计一款游戏,若哥哥赢了就去黄山,妹妹赢了就去泰山.下列游戏中,不能选用的是()A.掷一枚硬币,正面向上哥哥赢,反面向上妹妹赢B.同时掷两枚硬币,两枚都正面向上,哥哥赢,一正一反向上妹妹赢C.掷一枚骰子,向上的一面是奇数则哥哥赢,反之妹妹赢D.在不透明的袋子中装有两黑两红四个球,除颜色外,其余均相同,随机摸出一个是黑球则哥哥赢,是红球则妹妹赢【考点】X7:游戏公平性.【分析】判断游戏的公平性,首先要计算出游戏双方赢的概率,概率相等则公平,否则不公平,由此逐项分析即可.【解答】解:A、掷一枚硬币,正面向上的概率为,反面向上的概率为,概率相等可选,故此选项不符合题意;B、画出树形图可知:两枚都正面向上的概率为,一正一反向上的概率为,概率不相等可选,故此选项符合题意;C、掷一枚骰子,向上的一面是奇数和偶数的概率都为,概率相等,故此选项不符合题意;D、在不透明的袋子中装有两黑两红四个球,除颜色外,其余均相同,随机摸出一个是黑球的概率为,是红球的概率为,概率相等,故此选项不符合题意,故选:B.4.如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为()A.100°B.110°C.115°D.120°【考点】M5:圆周角定理.【分析】连接AC,根据圆周角定理,可分别求出∠ACB=90°,∠ACD=20°,即可求∠BCD的度数.【解答】解:连接AC,∵AB为⊙O的直径,∴∠ACB=90°,∵∠AED=20°,∴∠ACD=20°,∴∠BCD=∠ACB+∠ACD=110°,故选:B.5.“奔跑吧,兄弟!”节目组,预设计一个新的游戏:“奔跑”路线需经A、B、C、D四地.如图,其中A、B、C三地在同一直线上,D地在A地北偏东30°方向、在C地北偏西45°方向.C地在A地北偏东75°方向.且BD=BC=30m.从A地到D地的距离是()A.30m B.20m C.30m D.15m【考点】TB:解直角三角形的应用﹣方向角问题.【分析】过点D作DH垂直于AC,垂足为H,求出∠DAC的度数,判断出△BCD是等边三角形,再利用三角函数求出AB的长,从而得到AB+BC+CD的长.【解答】解:过点D作DH垂直于AC,垂足为H,由题意可知∠DAC=75°﹣30°=45°,∵△BCD是等边三角形,∴∠DBC=60°,BD=BC=CD=30m,∴DH=×30=15,∴AD=DH=15m.答:从A地到D地的距离是15m.故选:D.6.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两个数字都是正数的情况数,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两个数字都是正数的有4种情况,∴两个数字都是正数的概率是:=.故选:C.7.如图,半圆的直径BC恰与等腰直角三角形ABC的一条直角边完全重合.若BC=4,则图中阴影部分的面积是()A.2+πB.2+2πC.4+πD.2+4π【考点】KW:等腰直角三角形;MO:扇形面积的计算.【分析】如图,连接CD,OD,根据已知条件得到OB=2,∠B=45°,根据三角形和扇形的面积公式即可得到结论.【解答】解:如图,连接CD,OD,∵BC=4,∴OB=2,∵∠B=45°,∴∠COD=90°,∴图中阴影部分的面积=S△BOD+S扇形COD=2×2+=2+π,故选:A.8.下列关于二次函数的说法错误的是()A.抛物线y=﹣2x2+3x+1的对称轴是直线B.函数y=2x2+4x﹣3的图象的最低点在(﹣1,﹣5)C.二次函数y=(x+2)2+2的顶点坐标是(﹣2,2)D.点A(3,0)不在抛物线y=x2﹣2x﹣3上【考点】H3:二次函数的性质.【分析】利用二次函数的性质对四个选项逐一判断即可得到答案.【解答】解:A、抛物线y=﹣2x2+3x+1的对称轴是直线x=﹣=,正确,选项不符合要求;B、函数y=2x2+4x﹣3=(x+1)2﹣5的最低点是(﹣1,﹣5),正确,选项不符合要求;C、二次函数y=(x+2)2+2的顶点坐标是(﹣2,2),正确,选项不符合要求;D、当x=3时y=x2﹣2x﹣3≠0,错误,选项符合要求.故选:D.9.如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC为()A.B.2C.D.【考点】M5:圆周角定理;T1:锐角三角函数的定义.【分析】作直径CD,根据勾股定理求出OD,根据正切的定义求出tan∠CDO,根据圆周角定理得到∠OBC =∠CDO,等量代换即可.【解答】解:作直径CD,在Rt△OCD中,CD=6,OC=2,则OD==4,tan∠CDO==,由圆周角定理得,∠OBC=∠CDO,则tan∠OBC=,故选:C.10.几个相同的小正方体所搭成的几何体的俯视图和左视图如图所示,则小正方体的个数最多是()A.5个B.7个C.8个D.9个【考点】U3:由三视图判断几何体.【专题】1:常规题型;55F:投影与视图.【分析】根据俯视图知几何体的底层有4个小正方形组成,而左视图是由3个小正方形组成,故这个几何体的后排最有1个小正方体,前排最多有2×3=6个小正方体,即可解答.【解答】解:由俯视图及左视图知,构成该几何体的小正方形体个数最多的情况如下:故选:B.11.如图,路灯距地面8米,身高1.6米的小明从距离灯的底部(点O)20米的点A处,沿OA所在的直线行走14米到点B时,人影的长度()A.增大1.5米B.减小1.5米C.增大3.5米D.减小3.5米【考点】SA:相似三角形的应用.【分析】小明在不同的位置时,均可构成两个相似三角形,可利用相似比求人影长度的变化.【解答】解:设小明在A处时影长为x,B处时影长为y.∵AC∥OP,BD∥OP,∴△ACM∽△OPM,△BDN∽△OPN,∴,,则,∴x=5,,∴y=1.5,∴x﹣y=3.5,减少了3.5米.故选:D.12.如图,⊙O的半径为2,点A的坐标为(2,2),直线AB为⊙O的切线,B为切点.则B点的坐标为()A.(﹣,)B.(﹣,1)C.(﹣,)D.(﹣1,)【考点】D5:坐标与图形性质;MC:切线的性质.【专题】16:压轴题.【分析】先利用切线AC求出OC=2=OA,从而∠BOD=∠AOC=60°,则B点的坐标即可求出.【解答】解:过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,∵⊙O的半径为2,点A的坐标为(2,2),即OC=2,∴AC是圆的切线.∵点A的坐标为(2,2),∴OA==4,∵BO=2,AO=4,∠ABO=90°,∴∠AOB=60°,∵OA=4,OC=2,∴sin∠OAC=,∴∠OAC=30°,∴∠AOC=60°,∠AOB=∠AOC=60°,∴∠BOD=180°﹣∠AOB﹣∠AOC=60°,∴OD=1,BD=,即B点的坐标为(﹣1,).故选D.二、填空题(本大题共6个小题,每小题4分,满分24分)13.如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a﹣2b+c的值为0.【考点】HA:抛物线与x轴的交点.【专题】31:数形结合.【分析】依据抛物线的对称性求得与x轴的另一个交点,代入解析式即可.【解答】解:设抛物线与x轴的另一个交点是Q,∵抛物线的对称轴是过点(1,0),与x轴的一个交点是P(4,0),∴与x轴的另一个交点Q(﹣2,0),把(﹣2,0)代入解析式得:0=4a﹣2b+c,∴4a﹣2b+c=0,故答案为:0.14.如图,已知在△ABC中,AB=AC.以AB为直径作半圆O,交BC于点D.若∠BAC=40°,则的度数是140度.【考点】KH:等腰三角形的性质;M5:圆周角定理.【分析】首先连接AD,由等腰△ABC中,AB=AC,以AB为直径的半圆交BC于点D,可得∠BAD=∠CAD=20°,即可得∠ABD=70°,继而求得∠AOD的度数,则可求得的度数.【解答】解:连接AD、OD,∵AB为直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴∠BAD=∠CAD=∠BAC=20°,BD=DC,∴∠ABD=70°,∴∠AOD=140°∴的度数为140°;故答案为140.15.如图,在△ABC中,AC=4,将△ABC绕点C按逆时针旋转30°得到△FGC,则图中阴影部分的面积为.【考点】MO:扇形面积的计算;R2:旋转的性质.【专题】11:计算题;558:平移、旋转与对称.【分析】根据旋转的性质得到△CAB的面积=△CFG的面积,得到阴影部分的面积=扇形CAF的面积,根据扇形面积公式计算即可.【解答】解:由题意得,△CAB的面积=△CFG的面积,由图形可知,阴影部分的面积=△CFG的面积+扇形CAF的面积﹣△CBA的面积,∴阴影部分的面积=扇形CAF的面积==π,故答案为:.16.在⊙O中,圆心角∠AOB=100°,则弦AB所对的圆周角=50°或130°.【考点】M5:圆周角定理.【分析】此题要分情况考虑:弦对了两条弧,则两条弧所对的圆周角有两类.再根据一条弧所对的圆周角等于它所对的圆心角的一半,进行计算.【解答】解:根据圆周角定理,得弦AB所对的圆周角=100°÷2=50°或180°﹣50°=130°.17.如图,在平面直角坐标系中,矩形OABC顶点A、C分别在x轴、y轴的正半轴上,顶点B在反比例函数y=(x>0)的图象上,点P是矩形OABC内的一点,连接PO、P A、PB、PC,若图中阴影部分的面积10,则k为20.【考点】G5:反比例函数系数k的几何意义;G6:反比例函数图象上点的坐标特征;LB:矩形的性质.【专题】534:反比例函数及其应用;66:运算能力;67:推理能力.【分析】作PE⊥OC于E,EP的延长线交AB于F,由题意得到S阴=•OC•PE+•AB•PF=•CO•EF ==S矩形ABCO=10,进一步得到S矩形ABCO=20,根据反比例函数系数k的几何意义即可求得k =20.【解答】解:作PE⊥OC于E,EP的延长线交AB于F.∵S阴=•OC•PE+•AB•PF=•CO•EF==S矩形ABCO=10,∴S矩形ABCO=20,∴k=20.故答案为20.18.如图,直角三角形ABC中,∠ACB=90°,AC=6,BC=4,在△ABC内部以AC为斜边任意作Rt△ACD,连接BD,则线段BD长的最小值是2.【考点】KQ:勾股定理;M5:圆周角定理;M8:点与圆的位置关系.【专题】11:计算题.【分析】取AC的中点O,根据圆周角定理得到点D在以AC为直径的圆上,根据勾股定理可计算出OB =5,当D点在OB上时,BD的值最小,最小值为5﹣3=2.【解答】解:取AC的中点O,∵在△ABC内部以AC为斜边任意作Rt△ACD,∴点D在以AC为直径的圆上,∴当D点在OB上时,BD的值最小,在Rt△BOC中,OC=AC=3,BC=4,∴OB==5,∴BD的值最小为5﹣3=2.故答案为2.三、解答题(第19题4分,第20、21题各7分,第22题8分,第23、24题各9分,第25题11分)19.计算:tan45°﹣sin260°﹣+2cos30°.【考点】T5:特殊角的三角函数值.【专题】511:实数;62:符号意识.【分析】直接利用特殊角的三角函数值进而计算得出答案.【解答】解:原式=1﹣()2﹣(﹣1)+2×=1﹣﹣+1+=.20.如图,一个工件是由大长方体上面中间部位挖去一个小长方体后形成,主视图是凹字形的轴对称图形.(1)请在答题卷指定的位置补画该工件的俯视图;(2)若该工件的前侧面(即主视图部位)需涂油漆,根据图中尺寸(单位:cm),计算需涂油漆部位的面积.【考点】U4:作图﹣三视图.【分析】(1)俯视图为左右相邻的3个长方形,并且两边的长方形的宽度相同,小于中间的长方形的宽度;(2)主视图的面积为两边长为11,7的长方形的面积减去两边长为5,4的长方形的面积.【解答】解:(1)俯视图(看形状、大小基本正确)(2)需涂油漆(主视图)面积:11×7﹣5×4=57(cm2)21.一个不透明的口袋中装有4个完全相同的小球,分别标有数字1、2、3、4,另有一个可以自由旋转的圆盘.被分成面积相等的3个扇形区,分别标有数字1、2、3(如图所示).小颖和小亮想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一人从口袋中摸出一个小球,另一个人转动圆盘,如果所摸球上的数字与圆盘上转出数字之和小于4,那么小颖去;否则小亮去.(1)用树状图或列表法求出小颖参加比赛的概率;(2)你认为该游戏公平吗?请说明理由;若不公平,请修改该游戏规则,使游戏公平.【考点】X7:游戏公平性.【专题】16:压轴题.【分析】(1)首先根据题意画出树状图,由树状图求得所有等可能的结果与两指针所指数字之和和小于4的情况,则可求得小颖参加比赛的概率;(2)根据小颖获胜与小亮获胜的概率,比较概率是否相等,即可判定游戏是否公平;使游戏公平,只要概率相等即可.【解答】解:(1)画树状图得:∵共有12种等可能的结果,所指数字之和小于4的有3种情况,∴P(和小于4)==,∴小颖参加比赛的概率为:;(2)不公平,∵P(小颖)=,P(小亮)=.∴P(和小于4)≠P(和大于等于4),∴游戏不公平;可改为:若两个数字之和小于5,则小颖去参赛;否则,小亮去参赛.22.根据对某市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的甲种蔬菜的销售利润y1(千元)与进货量x(吨)之间的函数y1=kx的图象如图①所示,乙种蔬菜的销售利润y2(千元)与进货量x(吨)之间的函数y2=ax2+bx的图象如图②所示.(1)分别求出y1、y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种蔬菜共10吨,设乙种蔬菜的进货量为t吨,写出这两种蔬菜所获得的利润之和W(千元)与t(吨)之间的函数关系式,并求出这两种蔬菜各进多少吨时获得的利润之和最大,最大利润是多少?【考点】FH:一次函数的应用;HE:二次函数的应用.【分析】(1)把(5,3)代入正比例函数即可求得k的值也就求得了y1的关系式;把原点及(1,2),(5,6)代入即可求得y2的关系式;(2)销售利润之和W=甲种蔬菜的利润+乙种蔬菜的利润,利用配方法求得二次函数的最值即可.【解答】解:(1)由题意得:5k=3,解得k=0.6,∴y1=0.6x;由,解得:.∴y2=﹣0.2x2+2.2x;(2)W=0.6(10﹣t)+(﹣0.2t2+2.2t)=﹣0.2t2+1.6t+6=﹣0.2(t﹣4)2+9.2.所以甲种蔬菜进货量为6吨,乙种蔬菜进货量为4吨时,获得的销售利润之和最大,最大利润是9200元.23.图1是一个小朋友玩“滚铁环”的游戏,铁环是圆形的,铁环向前滚动时,铁环钩保持与铁环相切.将这个游戏抽象为数学问题,如图2.已知铁环的半径为25cm,设铁环中心为O,铁环钩与铁环相切点为M,铁环与地面接触点为A,∠MOA=α,且sinα=.(1)求点M离地面AC的高度BM;(2)设人站立点C与点A的水平距离AC=55cm,求铁环钩MF的长度.【考点】T8:解直角三角形的应用.【分析】(1)过M作与AC平行的直线,与OA、FC分别相交于H、N.那么求BM的长就转化为求HA 的长,而要求出HA,必须先求出OH,在直角三角形OHM中,sinα的值,且铁环的半径为5个单位即OM=5,可求得HM的值,从而求得HA的值;(2)因为∠MOH+∠OMH=∠OMH+∠FMN=90°,∠FMN=∠MOH,又因为sin∠MOA=,所以可得出FN和FM之间的数量关系,即FN=FM,再根据MN=11﹣3=8,利用勾股定理即可求出FM=10个单位.【解答】解:(1)过点M作MD⊥OA交OA于点D,在RT△ODM中,sinα=,∴DM=15cm∴OD=20 cm,∴AD=BM=5cm;(2)延长DM交CF于点E,易得:∠FME=∠AOM=α,∵ME=AC﹣DM=55﹣15=40cm,∴cosα=∴MF=50cm.24.已知△ABC内接于⊙O,过点A作直线EF.(1)如图①所示,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(至少说出两种):∠BAE=90°或者∠EAC=∠ABC.(2)如图②所示,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的判断.【考点】MD:切线的判定.【专题】16:压轴题.【分析】(1)求出∠BAE=90°,再根据切线的判定定理推出即可;(2)作直径AM,连接CM,根据圆周角定理求出∠M=∠B,∠ACM=90°,求出∠MAC+∠CAE=90°,再根据切线的判定推出即可.【解答】解:(1)①∠BAE=90°,②∠EAC=∠ABC,理由是:①∵∠BAE=90°,∴AE⊥AB,∵AB是直径,∴EF是⊙O的切线;②∵AB是直径,∴∠ACB=90°,∴∠ABC+∠BAC=90°,∵∠EAC=∠ABC,∴∠BAE=∠BAC+∠EAC=∠BAC+∠ABC=90°,即AE⊥AB,∵AB是直径,∴EF是⊙O的切线;(2)EF是⊙O的切线.证明:作直径AM,连接CM,则∠ACM=90°,∠M=∠B,∴∠M+∠CAM=∠B+∠CAM=90°,∵∠CAE=∠B,∴∠CAM+∠CAE=90°,∴AE⊥AM,∵AM为直径,∴EF是⊙O的切线.25.如图,已知抛物线过点A(3,0),B(﹣1,0),C(0,3),连接AC,点M是抛物线AC段上的一点,且CM∥x轴.(1)求抛物线的解析式;(2)求∠CAM的正切值;(3)点Q在抛物线上,且∠BAQ=∠CAM,求点Q的坐标.【考点】HF:二次函数综合题.【专题】15:综合题.【分析】(1)设抛物线的解析式为y=a(x﹣3)(x+1),将点C的坐标代入求得a的值即可;(2)过点M作MD⊥AC,垂足为D,先求得点M的坐标,然后利用勾股定理求得DM和CD的长,再依据勾股定理求得AC的长,进而求得AD的长,最后,依据锐角三角函数的定义求解即可;(3)设点Q(x,﹣x2+2x+3),然后∠BAQ=∠CAM且tan∠BAQ=,列方程求解即可.【解答】解:(1)设抛物线的解析式为y=a(x﹣3)(x+1),将点C的坐标代入得:﹣3a=3,解得:a=﹣1,∴抛物线的解析式为y=﹣x2+2x+3.(2)作MD⊥AC于D,∵CM∥AB,由抛物线y=﹣x2+2x+3可知M点的坐标为(2,3),∵C(0,3),A(3,0)∴AO=OC=3,∵∠MDC=90°∴∠OAC=∠ACO=45°,∴∠ACM=45°,∴CD=DM,∵CM=2,∴DM=CM=,∴CD=,∵AC2=OA2+OC2∴AC=3.∴AD=AC﹣CD=2,∴tan∠CAM===;③设点Q(x,﹣x2+2x+3).∵∠BAQ=∠CAM且tan∠CAM=,∴=±,整理得:x+1=±,解得:x=﹣或x=﹣.当x=﹣时,y=,∴Q(﹣,).当x=﹣时,y=﹣.∴Q(﹣,﹣).综上所述,点Q的坐标为(﹣,)或(﹣,﹣).。
2018-2019学年湖北省孝感市九年级(上)期末数学试卷副标题得分1.计算(−3)2的结果正确的是()A. −3B. −9C. 3D. 92.下列说法中,正确的是()A. 对载人航天器“神舟十号”的零部件的检查适合采用抽样调查的方式B. 某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的地区降雨C. 第一枚硬币,正面朝上的概率为12D. 若甲组数据的方差S甲2=0.1,乙组数据的方差S乙2=0.01,则甲组数据比乙组数据稳定3.已知圆锥的底面直径为60cm,母线长为90cm,其侧面展开图的圆心角为()A. 160°B. 120°C. 100°D. 80°4.一司机驾驶汽车从甲地去乙地,他以80km/ℎ的平均速度用2h到达目的地,当他按原路匀速返回时,汽车的速度v与时间t的函数关系是()A. v=160t B. v=120tC. v=100tD. v=80t5.从边长为a的正方形内去掉一个边长为b的小正方形(如图1),然后将剩余部分剪拼成一个长方形(如图2),上述操作所能验证的等式是()A. (a−b)2=a2−2ab+b2B. a2−b2=(a+b)(a−b)C. (a+b)2=a2+2ab+b2D. a2+ab=a(a+b)6.如图,AB是⊙O的直径,CD为弦,CD⊥AB于E,则下列结论中不成立的是()A. ∠A=∠DB. CE=DEC. ∠ACB=90°D. CE=BD7.如图,直线y=−2x−2与双曲线y=k交于点A,与xx轴,y轴分别交于B,C,AD⊥x轴于点D,若S△ADB=S△OCB,那么k的值是()A. −5B. −4C. −3D. −28.不等式组{1+x≥−12−x>1的整数解共有()A. 3个B. 4个C. 5个D. 6个9.如图四边形ABCD是菱形,且∠ABC=60,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM,则下列五个结论中正确的有()①若菱形ABCD的边长为1,则AM+CM的最小值1;②△AMB≌△ENB;③S四边形AMBE=S四边形ADCM;④连接AN,则AN⊥BE;⑤当AM+BM+CM的最小值为2√3时,菱形AB的边长为2.A. 2 个B. 3 个C. 4 个D. 5 个10.如图所示,二次函数y=ax2+bx+c(a≠0)的图象经过点(−1,2),且与x轴交点的横坐标分别为x1,x2,其中−2<x1<−1,0<x2<1,下列结论:①abc>0;②4a−2b+c<0;③2a−b<0;④b2+8a>4ac.其中正确的有()A. 1个B. 2个C. 3个D. 4个11.如图,在矩形ABCD中,对角线AC与BD相交于点O,AE⊥BD,垂足为E,∠AOB=60°,AC=12,则BE的长为______.12.第一盒中有2个白球,1个黄球,第二盒中有1个白球,1个黄球,这些球除颜色外无其他差别.分别从每个盒子中任取1个球,则取出的2个球都是黄球的概率为______.13.某学校八年级组织了一次乒乓球比赛,每班派一名同学代表班级进行比赛,参赛的每个队之间都要比赛一场,共比赛28场,该校八年级共有______个班级.14.如图,正方形ABCD的边长是4,E是AB上一点,F是AD延长线上的一点,BE=DF.四边形AEGF是矩形,矩形AEGF的面积y与BE的长x的函数关系是______.15.如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A′B′C′,其中点B的运动⏜,则图中阴影部分的面积为______.路径为BB′16.如图,直线y=x+m与双曲线y=3相交于A,B两点,xBC//x轴,AC//y轴,则△ABC面积的最小值为______.17.用适当的方法解下列方程:(1)2x2+1=3x(2)x2+6x+4=018.拿破仑曾经是法国的一位皇帝,同时他非常喜欢研究数学问题,他进行了如下探究:如图,已知半径为r的⊙O上有一点A.①从点A开始,以r为半径,在⊙O上依次连续截取,顺次得到点B、C、D;②连接AC、OD;③分别以A、D为圆心,以AC为半径画弧,两弧相交于点E,连接OE,AE.(1)线段OE与OA的位置关系是______;(2)线段OE与OA有什么数量关系?并证明你的结论.19.在不透明的箱子里放有4个乒乓球,每个乒乓球上分别写有数字1、2、3、4,从箱中摸出一个球记下数字后放回箱中,摇匀后再摸出一个记下数字.若将第一次摸出的球上的数字记为点的横坐标,第二次摸出球上的数字记为点的纵坐标.(1)请用列表法或树状图法写出两次摸球后所有可能的结果.(2)求这样的点落在如图所示的圆内的概率(注:图中圆心在直角坐标系中的第一象限内,并且分别于x轴、y轴切于点(2,0)和(0,2)两点).20.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形?(直接写出答案)21.如图,已知A(−4,a),B(−2,1)是一次函数y1=kx+b与(m<0)图象的两个交点,AC⊥x轴反比例函数y2=mx于C.(1)则k=______,b=______,m=______,在第二象限内,当y1>y2时,x的取值范围是______;(2)若P是线段AB上的一点,连接PC,若△PCA的面积等于1,求点P坐标.222.已知关于x的方程x2+(2m−1)x+m2=0有实数根,(1)求m的取值范围;(2)若方程的一个根为1,求m的值;(3)设α、β是方程的两个实数根,是否存在实数m使得α2+β2−αβ=6成立?如果存在,请求出来,若不存在,请说明理由.23.如图,AH是⊙O的直径,点E,F分别在矩形ABCD的边BC和CD上,B为直径OH上一点,AE平分∠FAH交⊙O于点E,过点E的直线FG⊥AF,垂足为F.(1)求证:直线FG是⊙O的切线;(2)若AD=8,EB=5,求⊙O的直径.24.如图,抛物线y=ax2+bx(a≠0)与x轴交于原点及点A,且经过点B(4,8),对称轴为直线x=−2,顶点为D.(1)填空:抛物线的解析式为______,顶点D的坐标为______,直线AB的解析式为______;(2)在直线AB左侧抛物线上存在点E,使得∠EBA=∠ABD,求E的坐标;(3)连接OB,点P为x轴下方抛物线上一动点,过点P作OB的平行线交直线AB 于点Q,当S△POQ:S△BOQ=1:2时,求出点P的坐标.答案和解析1.【答案】D【解析】解:(−3)2=9,故选:D.根据有理数的乘方,可得答案.本题考查了有理数的乘方,利用有理数的乘方正确计算是解题的关键.2.【答案】C【解析】解:A、对载人航天器“神舟十号”的零部件的检查,因为意义重大,适合采用全面调查的方式,故此选项错误;B、某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的可能降水,故此选项错误;C、一枚硬币,正面朝上的概率为1,故此选项正确;2D、若甲组数据的方差S甲2=0.1,乙组数据的方差S乙2=0.01,则乙组数据比甲组数据稳定,故此选项错误;故选:C.根据普查和抽样调查的意义可判断出A的正误;根据概率的意义可判断出B、C的正误;根据方差的意义,方差大则数据不稳定可判断出D的正误.此题主要考查了方差、概率、全面调查和抽样调查,关键是掌握概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现;方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.3.【答案】B【解析】解:设圆心角为n°.由题意:圆锥的底面的周长=展开图扇形的弧长,∴60π=nπ⋅90,180解得n=120°,故选:B.设圆心角为n°.根据圆锥的底面的周长=展开图扇形的弧长,构建方程求出n即可.本题考查圆锥的计算,弧长公式等知识,解题的关键是灵活运用所学知识,学会利用参数构建方程解决问题.4.【答案】A【解析】解:∵以80km/ℎ的平均速度用2h,∴甲乙两地距离为80×2=160km,∴返回的速度v=160,t故选:A.求出两地的距离80×2=160km,根据速度、时间、路程的关系可求解.本题考查函数的关系式;掌握速度、时间、路程三者之间的关系是解题的关键.5.【答案】B【解析】【分析】本题考查了平方差公式的运用,解此题的关键是用代数式表示图形的面积,运用了转化思想,把实际问题转化成数学问题,并用数学式子表示出来.分别求出从边长为a的正方形内去掉一个边长为b的小正方形后剩余部分的面积和拼成的长方形的面积,根据剩余部分的面积相等即可得出算式,即可选出选项.【解答】解:因为从边长为a的正方形内去掉一个边长为b的小正方形,剩余部分的面积是:a2−b2,且拼成的长方形的面积是:(a+b)(a−b),∴根据剩余部分的面积相等得:a2−b2=(a+b)(a−b),故选B.6.【答案】D【解析】解:∵AB是⊙O的直径,CD为弦,CD⊥AB于E.∴CE=DE.故B成立;A、根据同弧所对的圆周角相等,得到∠A=∠D,故该选项正确;C、根据直径所对的圆周角是直角即可得到,故该选项正确;D、CE=DE,而△BED是直角三角形,则DE<BD,则该项不成立.故选:D.根据垂径定理,直径所对的角是直角,以及同弧所对的圆周角相等,即可判断.本题主要考查了垂径定理的基本内容,以及直径所对的圆周角是直角.7.【答案】B【解析】解:∵直线y=−2x−2与x轴、y轴分别交于点B、C,∴令y=0,则x=−1;令x=0,则y=−2,∴B、C的坐标是(−1,0),(0,−2),则OB=1,OC=2,∵AD//OC,∴△ADB∽△COB,∵S△ADB=S△COB,∴AD=OC=2,BD=OB=1,∴OD=2,∴A(−2,2),又∵直线y=−2x−2与双曲线y=k交于点A,x∴k=−2×2=−4.故选:B.首先求出两点B、C的坐标,证得S△ADB=S△COB,求得A点的坐标,然后根据待定系数法即可求得.本题考查了反比例函数与一次函数的交点,属于基础题,关键是正确求得A点的坐标.8.【答案】A【解析】解:解不等式1+x≥−1,得:x≥−2,解不等式2−x>1,得:x<1,则不等式组的解集为−2≤x<1,所以不等式组的整数解为−2、−1、0,故选:A.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,从而得出答案.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.【答案】B【解析】解:①连接AC交BD于点O,∵四边形ABCD是菱形,∴AB=BC,BD⊥AC,AO=BO.∴点A和点C关于直线BD对称,∴M点与O点重合时,AM+CM的值最小为AC的值.∵∠ABC=60°,∴△ABC是等边三角形,∴AC=1.即AM+CM的值最小为1,本答案正确;②∵△ABE是等边三角形,∴BA=BE,∠ABE=60°.∵∠MBN=60°,∴∠MBN−∠ABN=∠ABE−∠ABN.即∠MBA=∠NBE.又∵MB=MB,∴△AMB≌△ENB(SAS),故本答案正确;③∵S四边形AMBE =S△ABE+S△ABM,S四边形ADCM=S△ACD+S△AMC,∵S△AMB≠S△AMC,∴S△ABE+S△ABM≠S△ACD+S△AMC,∴S四边形AMBE ≠S四边形ADCM,故本答案错误;④假设AN⊥BE,且AE=AB,∴AN是BE的垂直平分线.∴EN=BN=BM=MN,∴M点与O点重合.条件没有明确M点与O点重合,故本答案错误;⑤连接MN,由①知△AMB≌△ENB,∴AM=EN,∵∠MBN=60°,MB=NB,∴△BMN是等边三角形.∴BM=MN.∴AM+BM+CM=EN+MN+CM.根据“两点之间线段最短”,得EN+MN+CM=EC最短.∴当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长.过E点作EF⊥BC,交CB的延长线于F,则∠EBF=180°−120°=60°,设菱形的边长为a,∴BF=12a,EF=√32a.在Rt△EFC中,(√32x)2+(12x+x)2=(2√3)2,解得x=2.故本答案正确.综上所述①②⑤正确.故选:B.①根据菱形性质A与C对称可知AM+CM最小为AC长;②用“SAS”证明即可;③分析组成四边形的三角形面积之间关系即可判断;④先假设AN⊥BE,而后逆推即可判断;⑤根据图形特征得出当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长,过E点作EF⊥BC,交CB的延长线于F,在Rt△EFC中利用勾股定理求解.本题主要考查了旋转的性质、全等三角形的判定和性质、等边三角形的性质、菱形的性质、轴对称求最值以及勾股定理,综合性较强.10.【答案】D【解析】解:①∵该函数图象的开口向下,∴a<0;<0,又对称轴x=−b2a∴b<0;而该函数图象与y轴交于正半轴,故c>0,∴abc>0,正确;②当x=−2时,y<0,即4a−2b+c<0;正确;<0,∴2a−b<0,正确;③根据题意得,对称轴−1<x=−b2a>2,a<0,④∵4ac−b24a∴4ac−b2<8a,即b2+8a>4ac,正确.故选D.由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.本题考查二次函数y=ax2+bx+c系数符号的确定由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.11.【答案】3【解析】解:在矩形ABCD中,对角线AC与BD相交于点O,∴AC=BD=12,OA=12AC=6,OB=12BD,∴OA=OB=6,∵∠AOB=60°,∴△ABO是等边三角形,∵AE⊥BD,∴BE=12OB=3;故答案为:3.由矩形的性质得出OA=OB=6,证出△ABO是等边三角形,由等边三角形的性质即可得出答案.此题考查了矩形的性质、等边三角形的判定与性质;熟练掌握矩形的性质,证明△ABO 为等边三角形是解题的关键.12.【答案】16【解析】解:画树状图为:共有6种等可能的结果数,其中2个球都是黄球占1种,所以取出的2个球都是黄球的概率16;故答案为:16.先画出树状图展示所有6种等可能的结果数,再找出2个球都是黄球所占结果数,然后根据概率公式求解.本题考查了列表法与树状图法:运用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.13.【答案】8【解析】【分析】比赛场次=人数×(人数−1)÷2,根据这个公式求出人数×(人数−1)的积,再由此求解.本题考查了一元二次方程的应用,本题可以看成握手问题:根据握手总次数的计算方法来求解握手的人数,握手次数的公式要记住,并灵活运用.【解答】解:设一共有x个班级,x(x−1)÷2=28,x(x−1)=56,解得x=8,或x=−7(舍去)故答案是:8.14.【答案】y=16−x2【解析】解:设BE的长度为x(0≤x<4),则AE=4−x,AF=4+x,∴y=AE⋅AF=(4−x)(4+x)=16−x2.故答案为:y=16−x2.设BE的长度为x(0≤x<4),则AE=4−x,AF=4+x,根据矩形的面积即可得出y 关于x的函数关系式,此题得解.本题考查了根据实际问题列二次函数关系式,根据矩形的面积找出y关于x的函数关系式是解题的关键.15.【答案】54π−32【解析】解:△ABC绕AC的中点D逆时针旋转90°得到△A′B′C′,此时点A′在斜边AB上,CA′⊥AB,DB′=√12+22=√5,A′B′=√22+22=2√2,∴S阴=90π×5360−1×2÷2−(2√2−√2)×√22÷2=54π−32.故答案为54π−32.先利用勾股定理求出DB′=√12+22=√5,A′B′=√22+22=2√2,再根据S阴=S扇形BDB′−S△DBC−S△DB′C,计算即可.本题考查旋转变换、弧长公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16.【答案】6【解析】解:设A(a,3a ),B(b,3b),则C(a,3b).将y=x+m代入y=3x ,得x+m=3x,整理,得x2+mx−3=0,则a+b=−m,ab=−3,∴(a−b)2=(a+b)2−4ab=m2+12.∵S△ABC=12AC⋅BC=12(3a−3b)(a−b)=12⋅3(b−a)ab⋅(a−b)=1(a−b)2=12(m2+12)=12m2+6,∴当m=0时,△ABC的面积有最小值6.故答案为6.根据双曲线y=3x 过A,B两点,可设A(a,3a),B(b,3b),则C(a,3b).将y=x+m代入y=3x,整理得x2+mx−3=0,由于直线y=x+m与双曲线y=3x相交于A,B两点,所以a、b是方程x2+mx−3=0的两个根,根据根与系数的关系得出a+b=−m,ab=−3,那么(a−b)2=(a+b)2−4ab=m2+12.再根据三角形的面积公式得出S△ABC=12AC⋅BC=12m2+6,利用二次函数的性质即可求出当m=0时,△ABC的面积有最小值6.本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了函数图象上点的坐标特征,根与系数的关系,三角形的面积,二次函数的性质.17.【答案】解:(1)∵2x2+1=3x,∴(2x−1)(x−1)=0,∴x=12或x=1;(2)∵x2+6x+4=0,∴a=1,b=6,c=4,∴△=36−16=20,∴x=−6±√202=−3±√5【解析】(1)根据因式分解法即可求出答案;(2)根据公式法即可求出答案;本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.18.【答案】OE⊥OA【解析】解:(1)结论:OE⊥OA.理由:连接DE.由作图可知,AE=ED,∵OA=OD,∴OE⊥OA.故答案为OE⊥OA(2)结论:OE=√2OA.理由:如图,连接OB交AC于F.∵AB⏜=BC⏜,∴OF⊥BC,AF=FC,∵∠AOF=60°,∴∠OAF=30°,OF=12r,∴AF=√OA2−OF2=√32r,∴AE=AC=√3r,∴OE=√AE2−OA2=√(√3r)2−r2=√2r,∴OE=√2OA.(1)连接ED,利用等腰三角形的性质可得结论.(2)连接OB交AC于F,解直角三角形求出AC,AE,OE即可判断.本题考查作图−复杂作图,解直角三角形,垂径定理,等腰三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.19.【答案】解:列表得:则共有16种等可能的结果;(2)∵这样的点落在如图所示的圆内的有:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),∴这样的点落在如图所示的圆内的概率为:9.16【解析】(1)首先根据题意列出表格,然后由表格即可求得所有等可能的结果;(2)根据(1)中的表格求得这样的点落在如图所示的圆内的情况,然后利用概率公式求解即可求得答案.此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.20.【答案】(1)证明:∵将△BOC绕点C按顺时针方向旋转60°得△ADC,∴CO=CD,∠OCD=60°,∴△COD是等边三角形.(2)解:当α=150°时,△AOD是直角三角形.理由是:∵将△BOC绕点C按顺时针方向旋转60°得△ADC,∴△BOC≌△ADC,∴∠ADC=∠BOC=150°,又∵△COD是等边三角形,∴∠ODC=60°,∴∠ADO=∠ADC−∠ODC=90°,∵∠α=150°∠AOB=110°,∠COD=60°,∴∠AOD=360°−∠α−∠AOB−∠COD=360°−150°−110°−60°=40°,∴△AOD不是等腰直角三角形,即△AOD是直角三角形.(3)解:①要使AO=AD,需∠AOD=∠ADO,∵∠AOD=360°−110°−60°−α=190°−α,∠ADO=α−60°,∴190°−α=α−60°,∴α=125°;②要使OA=OD,需∠OAD=∠ADO.∵∠OAD=180°−(∠AOD+∠ADO)=180°−(190°−α+α−60°)=50°,∴α−60°=50°,∴α=110°;③要使OD=AD,需∠OAD=∠AOD.∵∠AOD=360°−110°−60°−α=190°−α,∠OAD=180°−(α−60°)2=120°−α2,∴190°−α=120°−α2,解得α=140°.综上所述:当α的度数为125°或110°或140°时,△AOD是等腰三角形.【解析】(1)根据旋转的性质可得出OC=OD,结合题意即可证得结论;(2)结合(1)的结论可作出判断;(3)找到变化中的不变量,然后利用旋转及全等的性质即可做出解答.本题考查了几何变换综合题,此题以“空间与图形”中的核心知识(如等边三角形的性质、全等三角形的性质与证明、直角三角形的判定、多边形内角和等)为载体,内容由浅入深,层层递进.试题中几何演绎推理的难度适宜,蕴含着丰富的思想方法(如运动变化、数形结合、分类讨论、方程思想等),能较好地考查学生的推理、探究及解决问题的能力.21.【答案】1432−2−4<x<−2【解析】解:(1)把B(−2,1)代入反比例函数y 2=m x(m <0)得m =−2×1=−2,把A(−4,a)代入y =−2x 得a =−2−4=12, 把A(−4,12),B(−2,1)代入y 1=kx +b ,得{−4k +b =12−2k +b =1,解得:{k =14b =32,结合图象可得:在第二象限内,当y 1>y 2时,x 的取值范围是−4<x <−2, 故答案为14,32,−2,−4<x <−2;(2)设点P 的横坐标为x P , ∵AC ⊥x 轴,点A(−4,12), ∴AC =12.∵△PCA 的面积等于12, ∴12×12×[x P −(−4)]=12, 解得x P =−2,∵P 是线段AB 上的一点, ∴y P =14×(−2)+32=1,∴点P 的坐标为(−2,1). (1)把点B 的坐标代入y 2=m x(m <0)即可求出m 的值,把点A 的坐标代入反比例函数的解析式就可求出a ,然后把A 、B 的坐标代入一次函数的解析式就可求得k 、b ,运用数形结合的思想,结合图象即可得到y 1>y 2时,x 的取值范围;(2)设点P 的横坐标为x P ,根据点A 的坐标可得到AC 的长,然后根据条件即可求出x P ,然后将x P 代入一次函数的解析式就可求出点P 的坐标.本题考查的是有关反比例函数与一次函数交点问题,在解决问题的过程中,用到待定系数法、数形结合的思想,突出了对数学思想方法的考查.22.【答案】解:(1)根据题意得△=(2m −1)2−4m 2≥0,解得m ≤14;(2)把x =1代入方程得1+2m −1+m 2=0, 解得m 1=0,m 2=−2,即m的值为0或−2;(3)存在.根据题意得α+β=−(2m−1),αβ=m2,∵α2+β2−αβ=6,∴(α+β)2−3αβ=6,即(2m−1)2−3m2=6,整理得m2−4m−5=0,解得m1=5,m2=−1,∵m≤14;∴m的值为−1.【解析】(1)根据判别式的意义得到△=(2m−1)2−4m2≥0,然后解不等式即可;(2)把x=1代入原方程可得到关于m的一元二次方程,然后解此一元二次方程即可;(3)根据根与系数的关系得到α+β=−(2m−1),αβ=m2,利用α2+β2−αβ=6得到(α+β)2−3αβ=6,则(2m−1)2−3m2=6,然后解方程后利用(1)中m的范围确定m的值.本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba ,x1x2=ca,反过来也成立.也考查了根的判别式.23.【答案】解:(1)如图,连接OE,∵OA=OE,∴∠OAE=∠OEA,∵AE平分∠FAH,∴∠OAE=∠FAE,∴∠OEA=∠FAE,∴OE//AF,∴∠AFE+∠OEF∠=180°,∵AF⊥GF,∴∠AFE=90°,∴∠OEF=90°,∴OE⊥GF,∵点E在圆上,OE是半径,∴GF是⊙O的切线;(2)设AB=x,∵四边形ABCD是矩形,∴AB=CD=x,BC=AD=8,∴CE=BC−BE=3,∵AE是∠BAF的角平分线,BE⊥AB,EF⊥AF,∴EF=BE=5,在Rt△CEF中,根据勾股定理,得CF=4,∴DF=CD−CF=x−4,AE=AE,∴Rt△ABE≌Rt△AFE(HL),∴AF=AB=x,在Rt△ADF中,x2−(x−4)2=64,∴x=10,∴AB=10,设⊙O的半径为r,∴OB=10−r,在Rt△BOE中,r2=(10−r)2+25,∴r=25,4.答:⊙O的直径为252【解析】(1)根据角平分线和半径相等,得∠OEA=∠EAF,推得OE//AF,进而根据切线的判定即可证明;(2)先证明Rt△ABE≌Rt△AFE,得AF=AB,再根据勾股定理即可求得半径的长,进而求得直径的长.本题主要考查了切线的判定和性质,与角平分线、勾股定理、矩形等知识综合,解题的关键是作辅助线.24.【答案】y=14x2+x(−2,−1)y=x+4【解析】解:(1)对称轴为直线x=−2,则点A(−4,0),将点A、B的坐标代入抛物线表达式并解得:a=14,b=1,故抛物线的表达式为:y=14x2+x…①,顶点D的坐标为:(−2,−1),将点A、B的坐标代入一次函数表达式并解得:直线AB的表达式为:y=x+4…②,故答案为:y=14x2+x;(−2,−1);y=x+4;(2)作点D关于AB的对称点D′,分别过点D、D′作x轴的平行线交直线AB与点G、H,则四边形GDHD′为正方形,点D(−2,−1),则点G(−5,−1),则正方形的边长为3,则点D′(−5,2),将B、D′的坐标代入一次函数表达式并解得:直线BD′的表达式为:y=23x+163…③;联立①③并解得:x=−163或4(舍去),故点P(−163,169);(3)取OB的中点H(2,4),则S△OQH=12S△OBQ,而S△POQ:S△BOQ=1:2,故S△OQH=S△POQ,∵PQ//OH,故PQ=OH(四边形PQHO为平行四边形),则x Q−x P=x H−x O,m2+m),设点P(m,14直线OB的表达式为:y=2x,则直线PQ的表达式为:y=2x+b,将点P的坐标代入上式并解得:m2−m…④,直线PQ的表达式为:y=2x+14m2+m+4,联立②④并解得:x Q=−14而x Q−x P=x H−x O,m2+m+4−m=2,即−14解得:m=±2√2(舍去正值),故点P(−2√2,2−2√2).(1)对称轴为直线x=−2,则点A(−4,0),将点A、B的坐标代入抛物线表达式并解得:a=1,b=1,即可求解;4(2)证明四边形GDHD′为正方形,点D(−2,−1),则点G(−5,−1),则正方形的边长为3,则点D′(−5,2),即可求解;(3)证明四边形PQHO为平行四边形,则x Q−x P=x H−x O,即可求解.本题考查的是二次函数综合运用,涉及到一次函数的性质、正方形的性质、平行四边形的性质、面积的计算等,其中(3),证明四边形PQHO为平行四边形,是本题解题的关键.。
2018-2019学年九年级上期末数学试卷(含答案解析)一、选择题(本大题共16个小题,1-10题每小题3分,11-16每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面的图形是天气预报使用的图标,其中是中心对称图形的是()A.B.C.D.2.图中的两个三角形相似,且AB=2,A′B′=1,则△A′B′C′与△ABC的相似比是()A.1:2B.2:1C.3:1D.1:33.抛物线y=﹣2(x+3)2+1对称轴是()A.直线x=3B.直线x=1C.直线x=﹣1D.直线x=﹣34.在下图中,反比例函数的图象大致是()A.B.C.D.5.连续四次抛掷一枚硬币都是正面朝上,则“第五次抛掷正面朝上”是()A.必然事件B.不可能事件C.随机事件D.概率为1的事件6.如图,在正三角形网格中,菱形M经过旋转变换能得到菱形N,下列四个点中能作为旋转中心的是()A.点A B.点B C.点C D.点D7.已知A(﹣1,y1),B(2,y2)是抛物线y=﹣(x+2)2+3上的两点,则y1,y2的大小关系为()A.y1>y2B.y1<y2C.y1≥y2D.y1≤y8.如果圆O是△ABC的外接圆,AC=BC,那么下列四个选项中,直线l必过圆心O的是()A.l⊥AC B.l平分AB C.l平分∠C D.l平分9.当k=﹣2时,下列双曲线中,在每一个象限内,y随x增大而减小的是()A.y=﹣B.y=C.y=D.y=10.起重机的滑轮装置如图所示,已知滑轮半径是10cm,当物体向上提升3πcm时,滑轮的一条半径OA绕轴心旋转的角度为()A.108°B.60°C.54°D.27°11.(2分)将方程x2﹣6x+3=0左边配成完全平方式,得到的方程是()A.(x﹣3)2=﹣3B.(x﹣3)2=6C.(x﹣3)2=3D.(x﹣3)2=1212.(2分)如图,⊙O中,弦AB⊥AC,OE⊥AB,垂足为E,OF⊥AC,垂足为F,若AB+AC=10,则四边形OEAF的周长为()A.10.B.9C.8D.713.(2分)在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:根据以上数据,估算袋中的白棋子数量为()A.60枚B.50枚C.40枚D.30枚14.(2分)如图,已知△ABC在平面直角坐标系中,点A的坐标为(0,3),若以点B 为位似中心,在平面直角坐标系内画出△A′BC′,使得△A′BC′与△ABC位似,且相似比为2:1,则点C′的坐标为()A.(0,0)B.(0,1)C.(1,﹣1)D.(1,0)15.(2分)在正六边形ABCDEF的中,若BE=10,则这个正六边形外接圆半径是()A.B.5C.D.516.(2分)如图,取一张长为a,宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a、b应满足的条件是()A.a=b B.a=2b C.a=2b D.a=4b二、填空题(本大题共3个小题,19小题4分,17、18每小题3分,共计10分.)17.若3是一元二次方程x2+bx+3=0的一个根,则常数b的值为.18.抛物线y=ax2经过点(3,5),则a=.19.(4分)参加一次足球联赛的每两队之间都进行一场比赛,共要比赛28场,设有x 个队参赛,根据题意列出的方程是.三、解答题(本大题共7个小题,共68分.解答应写出文字说明、证明过程或演算步骤) 20.(9分)若点A(a﹣2,3)和点B(﹣1,2b+2)关于原点对称,求a,b的值.21.(9分)小明到眼镜店调查了近视眼镜镜片的度数和镜片焦距的关系,发现镜片的度数y(度)是镜片焦距x(厘米)(x>0)的反比例函数,调查数据如表:(1)求y与x的函数表达式;(2)若小明所戴近视眼镜镜片的度数为500度,求该镜片的焦距.22.(9分)在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别.(1)随机从箱子里取出1个球,则取出黄球的概率是多少?(2)随机从箱子里取出1个球,放回搅匀再取第二个球,请你用画树状图或列表的方法表示出所有可能出现的结果,并求两次取出的都是白色球的概率.23.(9分)已知关于x的一元二次方程x2﹣6x+k+3=0有两个不相等的实数根(1)求k的取值范围;(2)若k为大于3的整数,且该方程的根都是整数,求k的值.24.(10分)如图,CD是Rt△ABC斜边AB上的中线,过点D垂直于AB的直线交BC于E,交AC延长线于F.求证:(1)△ADF∽△EDB;(2)CD2=DE•DF.25.(10分)如图,P是⊙O的切线FA上的点,点A为切点,连接OP,OP的垂直平分线FE交OA于点E,连接EP,过点P作PC⊥EP(1)已知OA=8,AP=4,求OE的长(2)求证:PC与⊙O相切.26.(12分)某造纸厂生产甲、乙两种生活用纸的相关信息如下表,其中x(吨)表示甲、乙两种生活用纸的月产量,请根据表中的信息解答后面的问题:(1)设该造纸厂每月生产甲、乙两种生活用纸的利润分别为y1元和y2元,分别求出y1和y2与x的函数关系式(注:利润=总收入﹣总支出);(2)若某月要生产甲、乙两种生活用纸共300吨,求该月生产甲、乙两种生活用纸各多少吨,获得的总利润最大?最大利润是多少?2018-2019学年九年级上期末数学试卷(含答案解析)参考答案与试题解析一、选择题(本大题共16个小题,1-10题每小题3分,11-16每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面的图形是天气预报使用的图标,其中是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.【点评】本题考查了中心对称图形的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.图中的两个三角形相似,且AB=2,A′B′=1,则△A′B′C′与△ABC的相似比是()A.1:2B.2:1C.3:1D.1:3【分析】根据相似三角形相似比等于对应边的比解答.【解答】解:∵AB=2,A′B′=1,∴△A′B′C′与△ABC的相似比=A′B′:AB=1:2.故选:A.【点评】本题考查了相似三角形的性质,求两三角形的相似比时要注意两个相似三角形的先后顺序.3.抛物线y=﹣2(x+3)2+1对称轴是()A.直线x=3B.直线x=1C.直线x=﹣1D.直线x=﹣3【分析】根据抛物线的顶点式方程y=﹣2(x+3)2+1可以直接写出它的对称轴直线方程.【解答】解:∵抛物线y=﹣2(x+3)2+1的对称轴直线是该图象的顶点坐标的横坐标,∴抛物线的对称轴是直线x=﹣3;故选:D.【点评】本题考查了二次函数的性质.抛物线的顶点式方程为y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.4.在下图中,反比例函数的图象大致是()A.B.C.D.【分析】由于y=,比例系数4>0,根据反比例函数的性质,可得图象在第一和第三象限.【解答】解:∵k=4,可根据k>0,反比例函数图象在第一、三象限;∴在每个象限内,y随x的增大而减小.故选:D.【点评】本题考查了反比例函数图象的性质:①k<0,反比例函数图象在第二、四象限,在每个象限内,y随x的增大而增大;②k>0,反比例函数图象在第一、三象限,在每个象限内,y随x的增大而减小.5.连续四次抛掷一枚硬币都是正面朝上,则“第五次抛掷正面朝上”是()A.必然事件B.不可能事件C.随机事件D.概率为1的事件【分析】根据随机事件的定义即可判断.【解答】解:“第五次抛掷正面朝上”是随机事件.故选:C.【点评】本题考查了随机事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.如图,在正三角形网格中,菱形M经过旋转变换能得到菱形N,下列四个点中能作为旋转中心的是()A.点A B.点B C.点C D.点D【分析】直接利用旋转的性质结合等边三角形的性质进而分析得出答案【解答】解:如图所示:菱形M绕点D经过顺时针旋转60°变换能得到菱形N,故选:D.【点评】此题主要考查了旋转的性质以及等边三角形的性质,正确把握旋转的性质是解题关键.7.已知A(﹣1,y1),B(2,y2)是抛物线y=﹣(x+2)2+3上的两点,则y1,y2的大小关系为()A.y1>y2B.y1<y2C.y1≥y2D.y1≤y【分析】抛物线的对称轴为直线x=﹣2,根据二次函数的性质,抛物线开口向下,在对称轴的右侧y随x的增大而减小,即可判定.【解答】解:∵y=﹣(x+2)2+3,∴抛物线的对称轴为直线x=﹣2,抛物线开口向下,∴当x>﹣2,y随x的增大而减小,∵﹣2<﹣1<2,所以y1>y2.故选:A.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.8.如果圆O是△ABC的外接圆,AC=BC,那么下列四个选项中,直线l必过圆心O的是()A.l⊥AC B.l平分AB C.l平分∠C D.l平分【分析】根据等腰三角形三线合一的性质即可得出结论.【解答】解:∵圆O是△ABC的外接圆,∴点O在三边的垂直平分线上.∵AC=BC,∴当l平分∠C时,l也是AB边的垂直平分线.故选:C.【点评】本题考查的是三角形的外接圆与外心,熟知三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心是解答此题的关键.9.当k=﹣2时,下列双曲线中,在每一个象限内,y随x增大而减小的是()A.y=﹣B.y=C.y=D.y=【分析】利用反比例函数的性质可解.【解答】解:当k=﹣2时,y=﹣的图象双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大;当k=﹣2时,y=的图象双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大;当k=﹣2时,y=的图象双曲线的两支分别位于第二、第四象限,在每一象限内y 随x的增大而增大;当k=﹣2时,y=的图象双曲线的两支分别位于第一、第三象限,在每一象限内y 随x的增大而减小;故选:D.【点评】本题考查了反比例函数的性质,熟练掌握反比例函数的性质是本题的关键.10.起重机的滑轮装置如图所示,已知滑轮半径是10cm,当物体向上提升3πcm时,滑轮的一条半径OA绕轴心旋转的角度为()A.108°B.60°C.54°D.27°【分析】本题实质上还是一道利用弧长公式计算的题.【解答】解:,解得n=54度.故选:C.【点评】本题是一道弧长公式的实际应用题,学生平时学习要紧密联系实际,学以致用,不可死学.11.(2分)将方程x2﹣6x+3=0左边配成完全平方式,得到的方程是()A.(x﹣3)2=﹣3B.(x﹣3)2=6C.(x﹣3)2=3D.(x﹣3)2=12【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:移项,得x2﹣6x=﹣3,等式两边同时加上一次项系数一半的平方(﹣3)2,得x2﹣6x+(﹣3)2=﹣3+(﹣3)2,即(x﹣3)2=6.故选:B.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.12.(2分)如图,⊙O中,弦AB⊥AC,OE⊥AB,垂足为E,OF⊥AC,垂足为F,若AB+AC=10,则四边形OEAF的周长为()A.10.B.9C.8D.7【分析】先判断出四边形OEAF的形状,再根据垂径定理得出AF+AE的长,进而可得出结论.【解答】解:∵AB⊥AC,OE⊥AB,OF⊥AC,∴四边形OEAF是矩形,∴四边形OEAF的周长=2(AF+AE)=2×(AB+AC)=10.故选:A.【点评】本题考查的是垂径定理,熟知垂直于弦的直径平分线是解答此题的关键.13.(2分)在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:根据以上数据,估算袋中的白棋子数量为()A.60枚B.50枚C.40枚D.30枚【分析】利用已知提供的数据求出黑棋子的比例,进而假设出白棋子个数,列出方程,解方程即可得出白棋子个数.【解答】解:根据试验提供的数据得出:黑棋子的比例为:(1+3+0+2+3+4+2+1+1+3)÷100=20%,所以白棋子比例为:1﹣20%=80%,设白棋子有x枚,由题意,得=80%,x=0.8(x+10),x=0.8x+8,0.2x=8,所以x=40,经检验,x=40是原方程的解,即袋中的白棋子数量约40颗.故选:C.【点评】此题主要考查了利用频率估计概率,根据试验次数得出黑棋子的比例,从而得出白棋子个数是解决问题的关键.14.(2分)如图,已知△ABC在平面直角坐标系中,点A的坐标为(0,3),若以点B 为位似中心,在平面直角坐标系内画出△A′BC′,使得△A′BC′与△ABC位似,且相似比为2:1,则点C′的坐标为()A.(0,0)B.(0,1)C.(1,﹣1)D.(1,0)【分析】利用位似图形的性质结合位似比得出△BA′C′,进而得出C′点坐标.【解答】解:如图所示:△A′BC′与△ABC位似,相似比为2:1,点C′的坐标为:(1,0).故选:D.【点评】此题主要考查了位似变换以及坐标与图形的性质,正确得出对应点位置是解题关键.15.(2分)在正六边形ABCDEF的中,若BE=10,则这个正六边形外接圆半径是()A.B.5C.D.5【分析】根据正六边形的性质解答即可.【解答】解:因为正六边形ABCDEF的中,BE=10,所以这个正六边形外接圆半径是,故选:B.【点评】此题考查了正六边形的性质.此题难度适中,注意掌握数形结合思想的应用.16.(2分)如图,取一张长为a,宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a、b应满足的条件是()A.a=b B.a=2b C.a=2b D.a=4b【分析】根据对折表示出小长方形的长和宽,再根据相似多边形的对应边成比例列式计算即可得解.【解答】解:对折两次后的小长方形的长为b,宽为a,∵小长方形与原长方形相似,∴=,∴a=2b.故选:B.【点评】本题考查了相似多边形对应边成比例的性质,准确表示出小长方形的长和宽是解题的关键.二、填空题(本大题共3个小题,19小题4分,17、18每小题3分,共计10分.)17.若3是一元二次方程x2+bx+3=0的一个根,则常数b的值为﹣4.【分析】已知了一元二次方程的一个实数根,可将其代入该方程中,即可求出b的值.【解答】解:∵3是一元二次方程x2+bx+3=0的一个根,∴32+3b+3=0,∴b=﹣4.故答案为﹣4.【点评】此题主要考查了一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.将方程的根代入方程即可得到关于b的一元一次方程,解此一元一次方程即可.18.抛物线y=ax2经过点(3,5),则a=.【分析】此题考查了待定系数法,把点代入即可求得.【解答】解:把点(3,5)代入y=ax2中,得:9a=5,解得a=.【点评】本题考查了点与函数的关系,考查了用待定系数法,难度不大.19.(4分)参加一次足球联赛的每两队之间都进行一场比赛,共要比赛28场,设有x个队参赛,根据题意列出的方程是x(x﹣1)=28.【分析】设有x个队参赛,根据参加一次足球联赛的每两队之间都进行一场比赛,共要比赛28场,可列出方程.【解答】解:设有x个队参赛,x(x﹣1)=28.故答案为:x(x﹣1)=28.【点评】本题考查由实际问题抽象出一元二次方程,关键是根据总比赛场数做为等量关系列方程求解.三、解答题(本大题共7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.(9分)若点A(a﹣2,3)和点B(﹣1,2b+2)关于原点对称,求a,b的值.【分析】根据关于原点对称的点的坐标特点进行解答即可.【解答】解:∵点A(a﹣2,3)和点B(﹣1,2b+2)关于原点对称,∴a﹣2=﹣(﹣1),3=﹣(2b+2),解得a=3,b=﹣.【点评】本题考查的是关于原点对称的点的坐标特点,即关于原点对称的点的坐标,横、纵坐标均互为相反数.21.(9分)小明到眼镜店调查了近视眼镜镜片的度数和镜片焦距的关系,发现镜片的度数y(度)是镜片焦距x(厘米)(x>0)的反比例函数,调查数据如表:(1)求y与x的函数表达式;(2)若小明所戴近视眼镜镜片的度数为500度,求该镜片的焦距.【分析】(1)根据图表可以得到眼镜片的度数与焦距的积是一个常数,因而眼镜片度数与镜片焦距成反比例函数关系,即可求解;(2)在解析式中,令y=500,求出x的值即可.【解答】解:(1)根据题意得:与x之积恒为10000,则函数的解析式是y=;(2)令y=500,则500=,解得:x=20.即该镜片的焦距是20cm.【点评】考查了反比例函数的应用,正确理解反比例函数的特点,两个变量的乘积是常数,是解决本题的关键.22.(9分)在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别.(1)随机从箱子里取出1个球,则取出黄球的概率是多少?(2)随机从箱子里取出1个球,放回搅匀再取第二个球,请你用画树状图或列表的方法表示出所有可能出现的结果,并求两次取出的都是白色球的概率.【分析】(1)由在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次取出白颜色球的情况,再利用概率公式即可求得答案.【解答】解:(1)∵在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别,∴随机地从箱子里取出1个球,则取出黄球的概率是:;(2)画树状图得:由树形图可知所有可能的情况有9种,其中两次取出的都是白色球有1种,所以两次取出的都是白色球的概率=.【点评】此题考查的是用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意此题属于放回实验.23.(9分)已知关于x的一元二次方程x2﹣6x+k+3=0有两个不相等的实数根(1)求k的取值范围;(2)若k为大于3的整数,且该方程的根都是整数,求k的值.【分析】(1)根据方程有两个不相等的实数根,得到根的判别式的值大于0列出关于k 的不等式,求出不等式的解集即可得到k的范围;(2)找出k范围中的整数解确定出k的值,再将k的值代入原方程,求出方程的根,经检验即可得到满足题意的k的值.【解答】解:(1)△=(﹣6)2﹣4(k+3)=36﹣4k﹣12=﹣4k+24,∵原方程有两个不相等的实数根,∴﹣4k+24>0.解得k<6;(2)∵k<6且k为大于3的整数,∴k=4或5.①当k=4时,方程x2﹣6x+7=0的根不是整数.∴k=4不符合题意;②当k=5时,方程x2﹣6x+8=0根为x1=2,x2=4均为整数.∴k=5符合题意.综上所述,k的值是5.【点评】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.也考查了一元二次方程的解法.24.(10分)如图,CD是Rt△ABC斜边AB上的中线,过点D垂直于AB的直线交BC于E,交AC延长线于F.求证:(1)△ADF∽△EDB;(2)CD2=DE•DF.【分析】(1)根据题意可得∠B+∠A=90°,∠A+∠F=90°,则∠B=∠F,从而得出△ADF∽△EDB;(2)由(1)得∠B=∠F,再CD是Rt△ABC斜边AB上的中线,得出CD=DB,根据等边对等角得∠DCE=∠F,则可证明△CDE∽△FDC,从而得出=,化为乘积式即可CD2=DF•DE.【解答】证明:(1)在Rt△ABC中,∠B+∠A=90°∵DF⊥AB∴∠BDE=∠ADF=90°∴∠B=∠F,∴△ADF∽△EDB;(2)由(1)可知△ADF∽△EDB ∴∠B=∠F,∵CD是Rt△ABC斜边AB上的中线∴CD=AD=DB,∴∠DCE=∠B,∴∠DCE=∠F,∴△CDE∽△FDC,∴=,∴CD2=DF•DE.【点评】本题考查了相似三角形的判定和性质,以及直角三角形斜边上的中线等于斜边的一半.25.(10分)如图,P是⊙O的切线FA上的点,点A为切点,连接OP,OP的垂直平分线FE交OA于点E,连接EP,过点P作PC⊥EP(1)已知OA=8,AP=4,求OE的长(2)求证:PC与⊙O相切.【分析】(1)由AP是⊙O的切线,得到∠OAP=90°,根据勾股定理列方程即可得到结论;(2)过O作OG⊥PC于G,根据余角的性质得到∠OPE+∠OPC=90°=∠AOP+∠OPA,等量代换得到∠OPC=∠OPA,推出△AOP≌△GOP,根据全等三角形的性质得到OG=OA,即可得到结论.【解答】(1)解:∵AP是⊙O的切线,∴PE2﹣AE2=AP2,∵OA=8,AP=4,∵OP的垂直平分线FE交OA于点E,∴OE=PE,∴OE2﹣(8﹣OE)2=42,∴OE=5;(2)证明:过O作OG⊥PC于G,∵CE垂直平分OP,∴∠AOP=∠OPE,∴∠OPE+∠OPC=90°=∠AOP+∠OPA,∴∠OPC=∠OPA,在△AOP与△POG中,,∴△AOP≌△GOP(AAS),∴OG=OA,∴PC与⊙O相切.【点评】本题考查了切线的判定和性质.全等三角形的判定和性质,线段垂直平分线的性质,正确的作出辅助线构造全等三角形的是解题的关键.26.(12分)某造纸厂生产甲、乙两种生活用纸的相关信息如下表,其中x(吨)表示甲、乙两种生活用纸的月产量,请根据表中的信息解答后面的问题:(1)设该造纸厂每月生产甲、乙两种生活用纸的利润分别为y1元和y2元,分别求出y1和y2与x的函数关系式(注:利润=总收入﹣总支出);(2)若某月要生产甲、乙两种生活用纸共300吨,求该月生产甲、乙两种生活用纸各多少吨,获得的总利润最大?最大利润是多少?【分析】(1)根据:总利润=每吨净利润﹣每月设备管理、维护费,分别列出函数解析式即可;(2)设该月生产乙种生活用纸m吨,则生产甲种生活用纸(300﹣m)吨,总利润为W 元,由(1)中函数关系式将甲、乙两种生活用纸的利润y1+y2列出W关于m的函数关系式,配方可得函数的最值情况.【解答】解:(1)依题意得:y1=(4800﹣2200﹣200)x﹣20000=2400x﹣20000y2=(7000﹣10x﹣1600﹣400)x=﹣10x2+5000x;(2)设该月生产乙种生活用纸m吨,则生产甲种生活用纸(300﹣m)吨,总利润为W 元,依题意得:W=2400(300﹣m)﹣20000﹣10m2+5000m=720000﹣2400 m﹣20000﹣10 m2+5000m=﹣10 m2+2600 m+700000∵W=﹣10(m﹣130)2+869000.∵﹣10<0∴当m=130时,W最大=869000即生产甲、乙生活用纸分别为170吨和130吨时总利润最大,最大利润为869000元.【点评】本题主要考查二次函数的实际应用能力,弄清题意抓住相等关系列出函数关系式是解题的关键.。
2018—2019 学年度上学期期末学业水平测试九年级数学模拟试卷温馨提示:1. 答题前,考生务必将自己所在县(市、区)、学校、姓名、考号填写在试卷上指定的位置, 并将条形码粘贴在答题卡上的指定位置.2. 选择题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题的答案必须写在答题卡的指定位置,在本卷上答题无效.3. 本试卷满分 120 分,考试时间 120 分钟.一、精心选一选,相信自己的判断!(本大题共 10 小题,每小题 3 分,共 30 分.在每小题给出 的四个选项中只有一项是符合题目要求的,不涂、错涂或涂的代号超过一个,一律得 0 分)1. 下列四种标志图案中,不是中心对称图形的是AB C D2. 一元二次方程 4x2- 2x + 1= 0 的根的情况是4A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断3. 一个十字路口的交通信号灯每分钟红灯亮 30 秒,绿灯亮 x 秒,黄灯亮 5 秒,若当你抬头看信号灯时是绿灯的概率是 5,则 x 的值为12A .15B .20C .24D .254..将一抛物线向上平移 2 个单位长度,再向右平移 3 个单位长度后,得到的抛物线的解析式为y = (x - 4)2 + 4 ,则原抛物线的解析式是A. y = x 2 + 2x - 3B. y = x 2 + 2x + 3C. y = x 2 - 2x + 3D. y = x 2 - 2x - 35. 如图,AD 是⊙O 的直径,弦 AB ∥CD ,若∠BAD =35°,则∠AOC =A.35°B.45°C.55°D.70°第 5 题第 6 题5 6. 如图,四边形 OABC 是矩形,ADEF 是正方形,点 A 、D 在 x 轴的正半轴上,点 C 在 y 轴的正半轴上,点 F 在 AB 上,点 B 、E 在反比例函数的图象上,OA =1,OC =6,则正方形ADEF 的边长为 A.1 B.2 C.3 D.47. 前进村 2016 年的人均年收入为 12000 元,2018 年的人均年收入为 14520 元.设人均年收入的平均增长率为 x ,则下列所列的方程中正确的是A.14520(1 - x 2 ) = 12000 C.12000(1 - x )2 = 14520B.12000(1 + x )2 = 14520 D.12000(1 + x 2 ) = 145208. 如图,将线段 AB 绕点 O 顺时针旋转 90°得到线段 A ′B ′,若 AB 的中点 M 的坐标为(a ,b ),则 A ′B ′的中点 M ′的坐标为 A.(a ,-b ) B.(b ,a )C.(b ,-a )D.(-b ,-a )第 8 题第 10 题9. 若抛物线 y = kx 2- 2x - 1 与 x 轴有两个交点,则 k 的取值范围是A .k >-1 B.k ≥-1C.k <-1D.k >-1 且 k ≠010. 如图,二次函数 y = ax 2+ bx + c (a ≠0)的图象与 x 轴交于 A 、B 两点,与 y 轴交于点 C ,且O A =OC ,给出下列结论:①abc <0;②其中正确的结论是 b 2 - 4ac a >0;③ac -b +1=0;④OA +OB = b . aA.①②③B.①②④C.①③④D.②③④二、细心填一填,试试自己的身手!(本大题共 6 小题,每小题 3 分,共 18 分.请将结果直接填写在答题卡相应位置上) 11. 正六边形的周长为 6,则它的面积为 ☆ .12. 从-5, - 10, - ,-1,0,π,2 这 7 个数中随机抽取一个数,抽到的数恰好为负整数的概3率是 ☆ .13. 如图,圆锥的底面半径为 r cm ,母线长 10cm,其侧面展开图是圆心角为 216°的扇形,则 r 的值是 ☆ .第 13 题第 14 题第 5 题第 5 题 15 题 14. 如图,直线 y =kx (k >0)与双曲线 y = 2交于 A 、B 两点,若 A 、B 两点的坐标分别为 A (x 1,xy 1)、B (x 2,y 2),则 x 1y 2+x 2y 1 的值为☆ .15. 如图,半圆的直径 AB =10,P 为 AB 上一点,点 C ,D 为半圆的三等分点,则图中阴影部分的面积等于☆ .16. 在平面直角坐标系中,O 为坐标原点,点 A 坐标(1,0),点 C 坐标(4,0),以 OA 为边在第一象限内作等边△OAB ,连 BC ,以 BC 为边在第一象限内作等边△BCD ,若 P 为 y 轴上一动点,连 BP ,DP ,则 BP +DP 的最小值是☆ .三、用心做一做,显显自己的能力!(本大题共 8 小题,满分 72 分.解答写在答题卡上) 17.(本题满分 6 分,每小题 3 分)用适当的方法解下列方程: (1) x 2 - x - 1 = 0(2) (2x - 3)2 - 8 = 018.(本题满分 8 分)袋中装有大小相同的 2 个红球和 2 个绿球.(1) 先从袋中摸出 1 个球后放回,混合均匀后再摸出 1 个球.①求第一次摸到绿球,第二次摸到红球的概率(直接写出结果); ②求两次摸到的球中有 1 个绿球和 1 个红球的概率(直接写出结果).(2) 先从袋中摸出 1 个球后不放回,再摸出 1 个球,请用画树状图或列表的方法求两次摸到的 球中有 1 个绿球和 1 个红球的概率.16 题如图,已知在△ABC 中,∠A =90°.(1)请用圆规和直尺作出⊙P ,使圆心 P 在 AC 边上,且与 AB ,BC 两边都相切(保留作图痕迹, 不写作法和证明).(2)若∠B =60°,AB =3,求⊙P 的面积.第 19 题20.(本题满分 8 分)如图,一次函数 y =kx +b 与反比例函数 y = 6(x >0)的图象交于 A (m ,6),B (3,n )两点.(1) 求一次函数的解析式;(2) 根据图象直接写出使 kx +b < 6成立的 x 的取值范围;x(3) 求△AOB 的面积.第 20 题21.(本题满分 10 分)已知关于 x 的一元二次方程 x 2-(m -3)x -m =0 (1) 求证:方程有两个不相等的实数根;(2) 如果方程的两实根为 x 1、x 2,且 x 12+x 22-x 1x 2=7,求 m 的值.某大学生利用暑假40 天社会实践参与了一家网店的经营,了解到一种成本为20 元/件的新型商品在第x 天销售的相关信息如下表所示.(1)(2)求该网店第x 天获得的利润y 关于x 的函数关系式;(3)这40 天中该网店第几天获得的利润最大?最大利润是多少?23.(本题满分10 分)已知:如图,直线MN 交⊙O 于A,B 两点,AC 是直径,AD 平分∠CAM 交⊙O 于D,过D 作DE⊥MN 于E.(1)求证:DE 是⊙O 的切线;(2)若DE=2cm,AE=1cm,求⊙O 的半径.第23 题24.(本题满分12 分)如图,在正方形OABC 中,点O 为原点,点A 的坐标为(0,8).抛物线y =-1 2+bx +c 2经过点A,C,与AB 交于点D.(1)求抛物线的函数解析式;(2)点P 为线段BC 上一个动点(不与点C 重合),点Q 为线段AC 上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ 的面积为S.①求S 关于m 的函数表达式;②当S 最大时,在抛物线y =-1x2+bx +c 的对称轴l 上,若存在点F,使△DFQ 为直角三角形,2请直接写出所有符合条件的点F 的坐标;若不存在,请说明理由.第24 题。
九年级数学参考答案(第4页,共4页)孝感市2018--2019学年度上学期期末学业水平测试九年级数学参考答案一、精心选一选,相信自己的判断! 题号 1 2 3 4 5 6 7 8 9 10 答案DCBAADBADD二、细心填一填,试试自己的身手! 11.312.61 13.814.216x -15.2345-π16.6三、用心做一做,显显自己的能力! 17.解:(1)x x 3122=+,01322=+-x x(2x -1)(x -1)=0 …………………………………1分2x -1=0或x -1=0 解之:211=x ,12=x …………………………………3分(2)0462=++x x ,2414662⨯⨯-±-=x , …………………………………1分2526±-=x ,53±-=x …………………………………3分 18.(1)垂直;…………………………………3分(2)OA OE 2=. …………………………………4分证明如下:连接OB 交AC 于点F ,∴OF 垂直平分AC ,……5分∵∠AOF =60°,∴∠OAF =30°,2rOF =∴r OF OA AF 2322=-=,r AF AC 32== ∴r AC AE 3== ……………………6分在Rt △AOE 中,2222)3(r r OA AE OE -=-==r 2 ∴OA OE 2=…………………………………8分九年级数学参考答案(第4页,共4页)19.解:(1)α=15°时,能使得AB ∥DC .…………………………………3分(2)当0°<α≤45°时,∠DBC′+∠CAC′+∠BDC 值的大小不变,为105°. ………4分证明如下:当0°<α≤45°时,总有△EFC'存在.∵∠EFC'=∠BDC +∠DBC',∠CAC'=α,∠FEC'=∠C +α.………………………5分 又∵∠EFC'+∠FEC'+∠C'=180°,∴∠BDC +∠DBC'+∠C +α+∠C'=180°.…6分 又∵∠C'=45°,∠C =30°,∴∠DBC'+∠CAC'+∠BDC =105°.…………………………………8分20.解:(1)列表得:第一次第二次1 2 3 4 1 (1,1) (2,1) (3,1) (4,1) 2 (1,2) (2,2) (3,2) (4,2) 3 (1,3) (2,3) (3,3) (4,3) 4(1,4)(2,4)(3,4)(4,4)则共有16种等可能的结果; …………………………………4分 (2)∵这样的点落在如图所示的圆内的有:(1,1),(1,2),(1,3),(2,1),(2,2), (2,3),(3,1),(3,2),(3,3). …………………………………6分 ∴这样的点落在如图所示的圆内的概率为:169. …………………………………8分21.解:(1)k =21,b =25,m =-2,-4<x <-1(答对一个得1分)………4分(2)设点P 的横坐标为P x ,∵AC ⊥x 轴,点A (-4,21),∴AC =21.……………5分 ∵△PCA 的面积等于21,∴21×21×[P x -(-4)]=21,解得P x =-2, …………………………………7分 ∵P 是线段AB 上的一点,∴P y =21×(-2)+25=23,…………………………9分∴点P 的坐标为(-2,23). …………………………………10分 22.解:(1)根据题意得△=(2m -1)2-4m 2≥0, …………………………………1分 ∴224144m m m -+-≥0,14+-m ≥0, …………………………………3分 解得m ≤41;…………………………………4分九年级数学参考答案(第4页,共4页)(2)存在. …………………………………5分 根据题意得α+β=-(2m -1),αβ=m 2, …………………………………6分 ∵α2+β2-αβ=6,∴(α+β)2-3αβ=6,…………………………………7分 即(2m -1)2-3m 2=6,整理得m 2-4m -5=0,解得m 1=5,m 2=-1,…………………………………9分∵m ≤41; ∴m 的值为-1.…………………………………10分23.解:(1)如图,连接OE , ∵OA =OE ,∴∠EAO =∠AEO , …………………1分 ∵AE 平分∠F AH ,∴∠EAO =∠F AE ,………………2分∴∠F AE =∠AEO ,∴AF ∥OE , …………………3分∴∠AFE +∠OEF =180°,∵AF ⊥GF ,∴∠AFE =∠OEF =90°, ∴OE ⊥GF ,…………………………………4分∵点E 在圆上,OE 是半径,∴GF 是⊙O 的切线.…………………………………5分 (2)设AB =x , ∵四边形ABCD 是矩形, ∴AB =CD =x ,BC =AD =8, ∴CE =BC -BE =3, …………………………………6分 ∵AE 是∠BAF 的角平分线,BE ⊥AB ,EF ⊥AF , ∴EF =BE =5,…………………………………7分在Rt △CEF 中,根据勾股定理得,CF =4, ∴DF =CD -CF =x -4,在Rt △ABE 和Rt △AFE 中,⎩⎨⎧==AE AE EB EF ,∴Rt △ABE ≌Rt △AFE (HL ),…………………………………8分∴AF =AB =x ,在Rt △ADF 中,x 2-(x -4)2=64, ∴x =10,∴AB =10,设⊙O 的半径为r ,∴OB =10-r , 在Rt △BOE 中,r 2-(10-r )2=25, ∴r =425,∴⊙O 的直径为225. …………………………………10分九年级数学参考答案(第4页,共4页)24.解:(1)x x y +=241 …………………………………3分(2)∵直线y =kx +4与抛物线两交点的横坐标分别为1x ,2x , ∴4412+=+kx x x ,∴x 2-4(k -1)x -16=0, 根据根与系数的关系得,1x +2x =4(k -1),1x 2x =-16, …………………………4分∵211121=-x x ,∴2(1x -2x )=1x 2x , ∴4(1x -2x )2=(1x 2x )2,∴4[(1x +2x )2-41x 2x ]=(1x 2x )2, ∴4[16(k -1)2+64]=162,(k -1)2=0…………………………6分∴k =1……………………7分(3)如图,取OB 的中点C ,∴BC =21OB , ∵B (4,8),∴C (2,4),∵PQ ∥OB ,∴点O 到PQ 的距离等于点Q 到OB 的距离, ∵S △POQ :S △BOQ =1:2,∴OB =2PQ , ∴PQ =BC ,∵PQ ∥OB ,∴四边形BCPQ 是平行四边形,………8分 ∴PC ∥AB ,∵抛物线的解析式为x x y +=241 ①,令y =0,∴0412=+x x , ∴x =0或x =-4,∴A (-4,0),…………………………9分∵B (4,8),∴直线AB 解析式为y =x +4,设直线PC 的解析式为y =x +m , ∵C (2,4),m =2∴直线PC 的解析式为y =x +2 ②,…………………………10分 联立①②解得,⎪⎩⎪⎨⎧+==22222y x (舍)或⎪⎩⎪⎨⎧+-=-=22222y x ,…………………………11分∴P (22-,22-+2).………………………………………12分注意:1.按照评分标准分步评分,不得随意变更给分点;2.第17题至第24题的其它解法,只要思路清晰,解法正确,都应按步骤给予相应分数.。
孝感文昌中学2018-2019学度初三上年中考试数学试题数 学 试 卷〔第I 卷〕【一】精心选一选,相信自己旳推断!〔此题12小题,每题3分,共36分.每题给出旳四个选项中只有一项符合题目要求 ,将正确选项写在第二卷答题卡上,不选、选错或选旳代号超过一个旳,一律得0分〕1、以下二次根式中,最简二次根式是A.15B 25a C. 5 D.a 25 2、以下图形中,既是轴对称图形,又是中心对称图形旳是A B C D3、a 为任意实数,以下式子一定有意义旳是 A 、a1 B.1+a a C 、112+a D 、1+a 4.1=x 是一元二次方程01)1(2=++-x x m 旳一个根,那么m 旳值是 A 、 -1 B 、1 C 、 0 D 、 无法确定 5.在算式〔〕□〔〕旳□中填上运算符号,使结果最大,那个运算符号是A 、加号B 、减号C 、乘号D 、除号6.如图,在方格纸中,选择标有序号①②③④中旳一个小正方形涂黑,与图中阴影部分构成中心对称图形、该小正方形旳序号是 A 、〔1〕 B 、〔2〕 C 、〔3〕 D 、〔4〕7.如图,△ABC 旳外心坐标是 A 、〔-1,-2〕 B 、〔-2,-1〕 C 、〔-2,-2〕 D 、〔-1,-1〕 8.用配方法解关于x 旳方程x 2+2mx -n =0,那么变形正确旳选项是A 、n m m x -=+22)(B 、22)(m n m x +=+C 、22)m n m x +=-(D 、n m m x -=-22)( 等圆心角所对旳弧相等.其中是正确命题旳是 A.①②B.仅①C.②③D.①②③;10.利用墙旳一边,再用13m 旳铁丝网,围成一个面积为202m 旳长方形场地,求那个长方形场地旳两邻边长.设墙旳对边长为xm ,可列方程为 A 、(13)20x x -=B 、1(13)202x x -=第6题图 第7题图C 、13202x x -∙=D 、132202xx -∙= 11.如图,AB 是⊙O 旳直径,∠ACD =15,那么∠BAD 旳度数为 A.60°B.65°C.70°D.75°12..如图,在△ABC 中,∠ACB =90º,∠B =30º,AC =1,AC 在直线l上、将△ABC 绕点A 顺时针方向旋转到位置①,可得到点P 1,现在AP 1=2;将位置①旳三角形绕点P 1顺时针方向旋转到位置②,可得到点P 2,现在AP 2=2+3;将位置②旳三角形绕点P 2顺时针方向旋转到位置③,可得到点P 3,现在AP 3=3+3;…,按此规律接着旋转,直到点P 2018为止,那么AP 2018旳长是A 、2017+671 3B 、2018+671 3C 、2018+671 3D 、2018+671 3孝感市文昌中学2018-2018学年度九年级〔上〕期中考试数学试卷〔第II 卷〕【一】选择题(每题3分,共36分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 选项【二】细心填一填,试试自己旳身手!〔本大题共6小题,每题3分,共18分〕 13.假如a a -=2,那么a 旳取值范围是﹏﹏﹏﹏﹏﹏﹏﹏. 14.方程1)2)(1(+=-+x x x 旳解是﹏﹏﹏﹏﹏﹏﹏﹏.15.如图,正方形ABCO,以O 为圆心OC 为半径画圆弧交AO 延长线于D ,P 是弧CD 上一动点,过点P作PM ⊥AB 于M,PM 交CO 于E,过点P 作PF ⊥AD 于F,那么222MEPF PE +旳值是﹏﹏﹏﹏﹏﹏﹏. 16.假设A ()1 ,2+-+a b a 、B ()2 ,4+-b b 两点关于原点中心对称,.将线段AB 绕原点O 按逆时针方向旋转90°后到A ′B ′位置,那么点A ′、B ′旳坐标分别是A ′﹏﹏﹏﹏﹏﹏﹏﹏,B ′﹏﹏﹏﹏﹏﹏﹏﹏.17.工程上常用钢珠来测量零件上小圆孔旳内径,假设钢珠旳直径是10mm ,测得钢珠顶端离零件表面旳距离为8mm ,如下图,那么那个小圆孔旳内径AB 旳长度为mm.18.实数y x ,满足:3232=+x x ,3232=+y y ,那么=+xyy x ﹏﹏﹏﹏﹏﹏﹏﹏﹏. CAB ①② ③P 1P 2 P 3… l第12题图 第11题图第10题图※※ ※ ※ ※ ※ ※ ※ ※※ ※ ※ ※装 订线【三】解答题(共66分)19.计算以下各题(每题5分,共10分) 〔1〕3240.538-+〔2〕()()20142013013232)10()33(-+--+--π20.(此题总分值8分)如图,每个小方格差不多上边长为1个单位旳正方形、Rt △ABC 旳顶点在格点上,建立平面直角坐标系后,点A 旳坐标为〔﹣4,0〕,点B 旳坐标为〔﹣1,0〕、Rt △ABC 和Rt △A 1B 1C 1关于y 轴对称,Rt △A 1B 1C 1和Rt △A 2B 2C 2关于直线y=-2轴对称.〔1〕试画出Rt △A 1B 1C 1和Rt △A 2B 2C 2,并写出A 1,B 1,C 1,A 2,B 2,C 2旳坐标;(2)请推断Rt △A 1B 1C 1和Rt △A 2B 2C 2是否关于某点M 中心对称?假设是,请写出M 点旳坐标;假设不是,请说明理由.21.(此题总分值8分)如图,四边形ABCD 是正方形,点E 是边CD 上一点,点F 是CB 延长线上一点,且DE=BF=4,解答以下问题:(1)求证:△ABF ≌△ADE ;(2)指出△AFB 是由△AED 如何样旋转得到旳?并求出旋转过程中线段DE 所扫过旳区域旳面积〔列式计算即可〕.22.(此题总分值8分)为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房旳建设力度、2017年某市政府共投资2亿元人民币建设了廉租房8万平方米,可能到2018年底三年共累计投资9.5亿元人民币建设廉租房,假设在这两年内每年投资旳增长率相同、求每年市政府投资旳增长率、16.(此题总分值10分),关于x 旳方程221(1)104x k x k -+++=有两实数根12,x x ,依照以下条件,分别求出k 旳值:(1)21x x =5;(2)12||x x =、24.(此题总分值10分)如图,PA 、PB 分别与⊙O 相切于点A 、B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N 、〔1〕求证:△OBM ≌△MNP ;〔2〕假设⊙O 旳半径R =3,PA =9,求OM 旳长、25.(此题总分值12分)如图1,在矩形ABCD 中,AB=4cm ,AD=6cm ,以AB 为直径作圆⊙O ,动点P 、Q 分别同时从A 、C 动身,点P 以1cm /s 旳速度向D 移动,点Q 以2cm /s 旳速度向B 移动,点Q 移动到B 点时停止,点P 也随之停止、设运动时刻为ts,求: (1)当BC PQ ⊥时,求t 旳值;〔2〕如图2,当PQ 与⊙O 相切时,求t 旳值;〔3〕连接DQ,当PDQ ∆为等腰三角形时,直截了当写出t 旳所有值第25题图1第20题图 第21题图 第24题图。
2018-2019学年九年级(上)期末数学试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.在Rt△ABC中,∠C=90°,,AC=2,则tanA的值为()A.B.2C.D.2.如果3x=4y(y≠0),那么下列比例式中正确的是()A.B.C.D.3.如图,AB是⊙O的直径,点C、D在⊙O上.若∠ACD=25°,则∠BOD的度数为()A.100°B.120°C.130°D.150°4.如图,在⊙O中,弦AB垂直平分半径OC.若⊙O的半径为4,则弦AB的长为()A.B.C.D.5.如果在二次函数的表达式y=ax2+bx+c中,a>0,b<0,c<0,那么这个二次函数的图象可能是()A.B.C.D.6.若二次函数y=x2+2x+m的图象与坐标轴有3个交点,则m的取值范围是()A.m>1B.m<1C.m>1且m≠0D.m<1且m≠07.如图,将函数的图象沿y轴向上平移得到新函数图象,其中原函数图象上的两点A(1,m)、B(4,n)平移后对应新函数图象上的点分别为点A′、B′.若阴影部分的面积为6,则新函数的表达式为()A.B.C.D.8.如图,点M为▱ABCD的边AB上一动点,过点M作直线l垂直于AB,且直线l与▱ABCD 的另一边交于点N.当点M从A→B匀速运动时,设点M的运动时间为t,△AMN 的面积为S,能大致反映S与t函数关系的图象是()A.B.C.D.二、填空题(本题共16分,每小题2分)9.如果两个相似三角形的周长比为2:3,那么这两个相似三角形的面积比为.10.如图,在△ABC中,点D、E分别在边AB、AC上.若∠ADE=∠C,AB=6,AC=4,AD=2,则EC=.11.如图,扇形的圆心角∠AOB=60°,半径为3cm.若点C、D是的三等分点,则图中所有阴影部分的面积之和是cm2.12.“平改坡”是指在建筑结构许可条件下,将多层住宅的平屋顶改建成坡屋顶,并对外立面进行整修粉饰,达到改善住宅性能和建筑物外观视觉效果的房屋修缮行为.如图是某小区对楼顶进行“平改坡”改造的示意图.根据图中的数据,如果要使坡面BC的坡度达到1:1.2,那么立柱AC的长为米.13.如图,一次函数y1=kx+b的图象与反比例函数y2=的图象相交于点A和点B.当y1>y2>0时,x的取值范围是.14.如图,在Rt△ABC中,∠C=90°,AB=10,若以点C为圆心,CB长为半径的圆恰好经过AB的中点D,则AC的长等于.15.如图,在平面直角坐标系xOy中,△ABC经过若干次图形的变化(平移、轴对称、旋转)得到△DEF,写出一种由△ABC得到△DEF的过程:.16.石景山区八角北路有一块三角形空地(如图1)准备绿化,拟从点A出发,将△ABC 分成面积相等的三个三角形,栽种三种不同的花草.下面是小美的设计(如图2).作法:(1)作射线BM;(2)在射线BM上顺次截取BB1=B1B2=B2B3;(3)连接B3C,分别过B1、B2作B1C1∥B2C2∥B3C,交BC于点C1、C2;(4)连接AC1、AC2.则.请回答,成立的理由是:①;②.三、解答题(本题共68分)解答应写出文字说明,演算步骤或证明过程.17.(5分)计算:3tan30°﹣cos245°+﹣2sin60°.18.(5分)用配方法求二次函数y=x2﹣10x+3的顶点坐标.19.(5分)在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.若a=2,sin,求b和c.20.(5分)小红和小丁玩纸牌游戏:如图是同一副扑克中的4张牌的正面,将它们正面朝下洗匀后放在桌上,小红先从中抽出一张,小丁从剩余的3张牌中也抽出一张.比较两人抽出的牌面上的数字,数字大者获胜.(1)请用树状图或列表法表示出两人抽牌可能出现的所有结果;(2)这个游戏公平吗?请说明理由.21.(5分)如图,小明想测量山的高度.他在点B处仰望山顶A,测得仰角∠ABN=30°,再向山的方向(水平方向)行进100m至索道口点C处,在点C处仰望山顶A,测得仰角∠ACN=45°.求这座山的高度.(结果精确到0.1m,小明的身高忽略不计)(参考数据:≈1.41,≈1.73)22.(5分)在平面直角坐标系xOy中,一次函数y=x+b的图象与x轴交于点A(2,0),与反比例函数y=的图象交于点B(3,n).(1)求一次函数与反比例函数的表达式;(2)若点P为x轴上的点,且△PAB的面积是2,则点P的坐标是.23.(5分)如图,四边形ABCD是平行四边形,CE⊥AD于点E,DF⊥BA交BA的延长线于点F.(1)求证:△ADF∽△DCE;(2)当AF=2,AD=6,且点E恰为AD中点时,求AB的长.24.(5分)二次函数y=x2﹣2mx+5m的图象经过点(1,﹣2).(1)求二次函数图象的对称轴;(2)当﹣4≤x≤1时,求y的取值范围.25.(6分)如图,AC是⊙O的直径,点D是⊙O 上一点,⊙O的切线CB与AD的延长线交于点B,点F是直径AC上一点,连接DF并延长交⊙O于点E,连接AE.(1)求证:∠ABC=∠AED;(2)连接BF,若AD=,AF=6,tan∠AED=,求BF的长.26.(7分)在平面直角坐标系xOy中,抛物线y=﹣x2+mx+n经过点A(﹣1,0)和B(0,3).(1)求抛物线的表达式;(2)抛物线与x轴的正半轴交于点C,连接BC.设抛物线的顶点P关于直线y=t的对称点为点Q,若点Q落在△OBC的内部,求t的取值范围.27.(7分)在正方形ABCD中,点P在射线AC上,作点P关于直线CD的对称点Q,作射线BQ交射线DC于点E,连接BP.(1)当点P在线段AC上时,如图1.①依题意补全图1;②若EQ=BP,则∠PBE的度数为,并证明;(2)当点P在线段AC的延长线上时,如图2.若EQ=BP,正方形ABCD的边长为1,请写出求BE长的思路.(可以不写出计算结果)28.(8分)在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2,y1≠y2,若PQ为某个等腰三角形的腰,且该等腰三角形的底边与x轴平行,则称该等腰三角形为点P,Q的“相关等腰三角形”.下图为点P,Q的“相关等腰三角形”的示意图.(1)已知点A的坐标为(0,1),点B的坐标为,则点A,B的“相关等腰三角形”的顶角为°;(2)若点C的坐标为,点D在直线y=4上,且C,D的“相关等腰三角形”为等边三角形,求直线CD的表达式;(3)⊙O的半径为,点N在双曲线y=﹣上.若在⊙O上存在一点M,使得点M、N的“相关等腰三角形”为直角三角形,直接写出点N的横坐标x N的取值范围.参考答案与试题解析一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.在Rt△ABC中,∠C=90°,,AC=2,则tanA的值为()A.B.2C.D.【分析】本题需先根据已知条件,得出BC的长,再根据正切公式即可求出答案.【解答】解:∵∠C=90°,AB=,AC=2,∴BC=1,∴tanA==.故选:A.【点评】本题主要考查了锐角三角函数的定义,在解题时要根据在直角三角形中,正切等于对边比邻边这个公式计算是本题的关键.2.如果3x=4y(y≠0),那么下列比例式中正确的是()A.B.C.D.【分析】根据比例的性质,可得答案.【解答】解:A、由比例的性质,得4x=3y与3x=4y不一致,故A不符合题意;B、由比例的性质,得xy=12与3x=4y不一致,故B不符合题意;C、由比例的性质,得4x=3y与3x=4y不一致,故C不符合题意;D、由比例的性质,得3x=4y与3x=4y一致,故D符合题意;故选:D.【点评】本题考查了比例的性质,利用比例的性质是解题关键.3.如图,AB是⊙O的直径,点C、D在⊙O上.若∠ACD=25°,则∠BOD的度数为()A.100°B.120°C.130°D.150°【分析】根据圆周角定理求出∠AOD即可解决问题.【解答】解:∵∠AOD=2∠ACD,∠ACD=25°,∴∠AOD=50°,∴∠BOD=180°﹣∠AOD=180°﹣50°=130°,故选:C.【点评】本题考查圆周角定理,邻补角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4.如图,在⊙O中,弦AB垂直平分半径OC.若⊙O的半径为4,则弦AB的长为()A.B.C.D.【分析】连接OA,由AB垂直平分OC,求出OD的长,再利用垂径定理得到D为AB的中点,在直角三角形AOD中,利用垂径定理求出AD的长,即可确定出AB的长.【解答】解:连接OA,由AB垂直平分OC,得到OD=OC=2,∵OC⊥AB,∴D为AB的中点,则AB=2AD=2=2=4.故选:B.【点评】此题考查了垂径定理,以及勾股定理,根据题意作出辅助线,构造出直角三角形是解本题的关键.5.如果在二次函数的表达式y=ax2+bx+c中,a>0,b<0,c<0,那么这个二次函数的图象可能是()A.B.C.D.【分析】由a>0,b<0,c<0,推出﹣>0,可知抛物线的图象开口向上,对称轴在y轴的右边,交y轴于负半轴,由此即可判断.【解答】解:∵a>0,b<0,c<0,∴﹣>0,∴抛物线的图象开口向上,对称轴在y轴的右边,交y轴于负半轴,故选:C.【点评】本题考查二次函数的图象,解题的关键是熟练掌握基本知识,灵活运用所学知识解决问题,属于中考常考题型.6.若二次函数y=x2+2x+m的图象与坐标轴有3个交点,则m的取值范围是()A.m>1B.m<1C.m>1且m≠0D.m<1且m≠0【分析】由抛物线与坐标轴有三个交点可得出:方程x2+2x+m=0有两个不相等的实数根,且m≠0,利用根的判别式△>0可求出m的取值范围,此题得解.【解答】解:∵二次函数y=x2+2x+m的图象与坐标轴有3个交点,∴方程x2+2x+m=0有两个不相等的实数根,且m≠0,∴△=22﹣4m>0,∴m<1.∴m<1且m≠0.故选:D.【点评】本题考查了抛物线与x轴的交点以及根的判别式,利用根的判别式△>0找出关于m的一元一次不等式是解题的关键.7.如图,将函数的图象沿y轴向上平移得到新函数图象,其中原函数图象上的两点A(1,m)、B(4,n)平移后对应新函数图象上的点分别为点A′、B′.若阴影部分的面积为6,则新函数的表达式为()A.B.C.D.【分析】先根据二次函数图象上点的坐标特征求出A、B两点的坐标,再过A作AC∥x轴,交B′B的延长线于点C,则C(4,1),AC=4﹣1=3,根据平移的性质以及曲线段AB扫过的面积为6(图中的阴影部分),得出AA′=2,然后根据平移规律即可求解.【解答】解:∵函数y=(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=2,∴A(1,1),B(4,2),过A作AC∥x轴,交B′B的延长线于点C,则C(4,1),∴AC=4﹣1=3,∵曲线段AB扫过的面积为6(图中的阴影部分),∴AC•AA′=3AA′=6,∴AA′=2,即将函数y=(x﹣2)2+1的图象沿y轴向上平移2个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=(x﹣2)2+3.故选:B.【点评】此题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识,根据已知得出AA′是解题关键.8.如图,点M为▱ABCD的边AB上一动点,过点M作直线l垂直于AB,且直线l与▱ABCD 的另一边交于点N.当点M从A→B匀速运动时,设点M的运动时间为t,△AMN 的面积为S,能大致反映S与t函数关系的图象是()A.B.C.D.【分析】当点N在AD上时,可得前半段函数图象为开口向上的抛物线的一部分;当点N在DC上时,MN长度不变,可得后半段函数图象为一条线段.【解答】解:设∠A=α,点M运动的速度为a,则AM=at,当点N在AD上时,MN=tanα×AM=tanα•at,此时S=×at×tanα•at=tanα×a2t2,∴前半段函数图象为开口向上的抛物线的一部分,当点N在DC上时,MN长度不变,此时S=×at×MN=a×MN×t,∴后半段函数图象为一条线段,故选:C.【点评】本题主要考查了动点问题的函数图象,用图象解决问题时,要理清图象的含义即会识图.函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.二、填空题(本题共16分,每小题2分)9.如果两个相似三角形的周长比为2:3,那么这两个相似三角形的面积比为4:9.【分析】根据相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方解答.【解答】解:因为两个相似三角形的周长比为2:3,所以这两个相似三角形的相似比为2:3,所以这两个相似三角形的面积比为4:9;故答案为:4:9.【点评】本题考查的是相似三角形的性质,相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.10.如图,在△ABC中,点D、E分别在边AB、AC上.若∠ADE=∠C,AB=6,AC=4,AD=2,则EC=1.【分析】只要证明△ADE∽△ACB,推出=,求出AE即可解决问题;【解答】解;∵∠A=∠A,∠ADE=∠C,∴△ADE∽△ACB,∴=,∴=,∴AE=3,∴EC=AC﹣AE=4﹣3=1,故答案为1.【点评】本题考查相似三角形的判定和性质,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.11.如图,扇形的圆心角∠AOB=60°,半径为3cm.若点C、D是的三等分点,则图中所有阴影部分的面积之和是cm2.【分析】由题意可知C、D是弧AB的三等分点,通过平移可把阴影部分都集中到一个小扇形中,可发现阴影部分正好是扇形AOB的,先求出扇形AOB的面积再求阴影部分的面积或者直接求圆心角是20度,半径是3的扇形的面积皆可.=,【解答】解:S扇形OABS阴影=S扇形OAB=×π=π.故答案为:【点评】此题考查扇形的面积问题,通过平移的知识把小块的阴影部分集中成一个规则的图形﹣﹣扇形,再求算扇形的面积即可.利用平移或割补把不规则图形变成规则图形求面积是常用的方法.12.“平改坡”是指在建筑结构许可条件下,将多层住宅的平屋顶改建成坡屋顶,并对外立面进行整修粉饰,达到改善住宅性能和建筑物外观视觉效果的房屋修缮行为.如图是某小区对楼顶进行“平改坡”改造的示意图.根据图中的数据,如果要使坡面BC的坡度达到1:1.2,那么立柱AC的长为 2.5米.【分析】由坡度的概念得出=,根据AB=3可得AC的长度.【解答】解:根据题意知=,∵AB=3,∴=,解得:AC=2.5,故答案为:2.5.【点评】本题主要考查解直角三角形的应用﹣坡度坡角问题,解题的关键是熟练掌握坡度的定义.13.如图,一次函数y 1=kx +b 的图象与反比例函数y 2=的图象相交于点A 和点B .当y 1>y 2>0时,x 的取值范围是 ﹣2<x <﹣0.5 .【分析】根据一次函数与反比例函数交点纵坐标,结合图象确定出所求x 的范围即可.【解答】解:根据图象得:当y 1>y 2>0时,x 的取值范围是﹣2<x <﹣0.5, 故答案为:﹣2<x <﹣0.5【点评】此题考查了反比例函数与一次函数的交点问题,利用了数形结合的思想,弄清数形结合思想是解本题的关键.14.如图,在Rt △ABC 中,∠C=90°,AB=10,若以点C 为圆心,CB 长为半径的圆恰好经过AB 的中点D ,则AC 的长等于 5 .【分析】连接CD ,根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD ,求出圆的半径的长,再利用勾股定理列式进行计算即可得解.【解答】解:如图,∵∠C=90°,点D 为AB 的中点,∴AB=2CD=10,∴CD=5,∴BC=CD=5,在Rt △ABC 中,AC===5.故答案为:5.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的应用,求出圆的半径的长是解题的关键.15.如图,在平面直角坐标系xOy中,△ABC经过若干次图形的变化(平移、轴对称、旋转)得到△DEF,写出一种由△ABC得到△DEF的过程:向右平移4个单位,沿对称轴BC翻折,再绕点C逆时针旋转90°.【分析】根据对应点C与点F的位置,结合两三角形在网格结构中的位置解答.【解答】解:△ABC向右平移4个单位,沿对称轴BC翻折,再绕点C逆时针旋转90°即可得到△DEF,所以,过程为:向右平移4个单位,沿对称轴BC翻折,再绕点C逆时针旋转90°.故答案为:向右平移4个单位,沿对称轴BC翻折,再绕点C逆时针旋转90°.【点评】本题考查了几何变换的类型,平移、旋转,准确识图是解题的关键.16.石景山区八角北路有一块三角形空地(如图1)准备绿化,拟从点A出发,将△ABC 分成面积相等的三个三角形,栽种三种不同的花草.下面是小美的设计(如图2).作法:(1)作射线BM;(2)在射线BM上顺次截取BB1=B1B2=B2B3;(3)连接B3C,分别过B1、B2作B1C1∥B2C2∥B3C,交BC于点C1、C2;(4)连接AC1、AC2.则.请回答,成立的理由是:①平行线分线段成比例定理;②等底共高.【分析】根据平行线分线段成比例定理和等底共高求解可得.【解答】解:由BB1=B1B2=B2B3且B1C1∥B2C2∥B3C,依据平行线分线段成比例定理知BC1=C1C2=C2C,再由△ABC1,△AC1C2与△AC2C等底共高知,故答案为:①平行线分线段成比例定理;②等底共高.【点评】本题主要考查作图﹣应用与设计作图,解题的关键是掌握平行线分线段成比例定理和等底共高的两三角形面积关系.三、解答题(本题共68分)解答应写出文字说明,演算步骤或证明过程.17.(5分)计算:3tan30°﹣cos245°+﹣2sin60°.【分析】根据特殊角三角函数值,可得答案.【解答】解:原式=3×﹣()2+﹣2×=﹣+2﹣=.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.18.(5分)用配方法求二次函数y=x2﹣10x+3的顶点坐标.【分析】把解析式化为顶点式即可.【解答】解:∵y=x2﹣10x+3=(x﹣5)2﹣22,∴二次函数的顶点坐标为(5,﹣22).【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a (x﹣h)2+k中,顶点坐标为(h,k),对称轴为x=h.19.(5分)在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.若a=2,sin,求b和c.【分析】先根据sinA=知c==6,再根据勾股定理求解可得.【解答】解:如图,∵a=2,sin,∴c===6,则b===4.【点评】本题主要考查锐角三角函数的定义,解题的关键是掌握正弦函数的定义及勾股定理.20.(5分)小红和小丁玩纸牌游戏:如图是同一副扑克中的4张牌的正面,将它们正面朝下洗匀后放在桌上,小红先从中抽出一张,小丁从剩余的3张牌中也抽出一张.比较两人抽出的牌面上的数字,数字大者获胜.(1)请用树状图或列表法表示出两人抽牌可能出现的所有结果;(2)这个游戏公平吗?请说明理由.【分析】(1)根据题意画出树状图,即可解决问题;(2)根据树状图,利用概率公式即可求得小红获胜的概率,由概率相等,即可判定这个游戏公平;【解答】解:(1)树状图如右:则小红获胜的概率:=,小丁获胜的概率:=,所以这个游戏比较公平.【点评】本题考查的是用列表法与树状图法求事件的概率,解题的关键是学会正确画出树状图,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比..21.(5分)如图,小明想测量山的高度.他在点B处仰望山顶A,测得仰角∠ABN=30°,再向山的方向(水平方向)行进100m至索道口点C处,在点C处仰望山顶A,测得仰角∠ACN=45°.求这座山的高度.(结果精确到0.1m,小明的身高忽略不计)(参考数据:≈1.41,≈1.73)【分析】作AH⊥BN于H,设AH=xm,根据正切的概念表示出CH、BH,根据题意列出方程,解方程即可.【解答】解:如图,作AH⊥BN于H,设AH=xm,∵∠ACN=45°,∴CH=AH=xm,∵tanB=,∴BH=x,则BH﹣CH=BC,即x﹣x=100,解得x=50(+1).答:这座山的高度为50(+1)m;【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,正确作出辅助线、熟记锐角三角函数的概念是解题的关键.22.(5分)在平面直角坐标系xOy中,一次函数y=x+b的图象与x轴交于点A(2,0),与反比例函数y=的图象交于点B(3,n).(1)求一次函数与反比例函数的表达式;(2)若点P为x轴上的点,且△PAB的面积是2,则点P的坐标是(﹣2,0)或(6,0).【分析】(1)利用待定系数法即可解决问题;(2)利用三角形的面积公式求出PA的长即可解决问题;【解答】解:(1)∵一次函数y=x+b的图象与x轴交于点A(2,0),∴2+b=0,∴b=﹣2,∴y=x﹣2,当x=3时,y=1,∴B(3,1),代入y=中,得到k=3,∴反比例函数的解析式为y=.(2)∵△PAB的面积是2,∴•PA•1=2,∴PA=4,∴P(﹣2,0)或(6,0).【点评】本题考查一次函数的性质、反比例函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.(5分)如图,四边形ABCD是平行四边形,CE⊥AD于点E,DF⊥BA交BA的延长线于点F.(1)求证:△ADF∽△DCE;(2)当AF=2,AD=6,且点E恰为AD中点时,求AB的长.【分析】(1)由平行四边形的性质知CD∥AB,即∠DAF=∠CDE,再由CE⊥AD、DF⊥BA 知∠AFD=∠DEC=90°,据此可得;(2)根据△ADF∽△DCE知=,据此求得DC=9,再根据平行四边形的性质可得答案.【解答】解:(1)∵四边形ABCD是平行四边形,∴CD∥AB,∴∠DAF=∠CDE,又∵CE⊥AD、DF⊥BA,∴∠AFD=∠DEC=90°,∴△ADF∽△DCE;(2)∵AD=6、且E为AD的中点,∴DE=3,∵△ADF∽△DCE,∴=,即=,解得:DC=9,∵四边形ABCD是平行四边形,∴AB=CD=9.【点评】本题主要考查相似三角形的判定和性质,解题的关键是熟练掌握相似三角形的判定和性质及平行四边形的性质.24.(5分)二次函数y=x2﹣2mx+5m的图象经过点(1,﹣2).(1)求二次函数图象的对称轴;(2)当﹣4≤x≤1时,求y的取值范围.【分析】(1)根据抛物线的对称性和待定系数法求解即可;(2)根据二次函数的性质可得.【解答】解:(1)把点(1,﹣2)代入y=x2﹣2mx+5m中,可得:1﹣2m+5m=﹣2,解得:m=﹣1,所以二次函数y=x2﹣2mx+5m的对称轴是x=﹣,(2)∵y=x2+2x﹣5=(x+1)2﹣6,∴当x=﹣1时,y取得最小值﹣6,由表可知当x=﹣4时y=3,当x=﹣1时y=﹣6,∴当﹣4≤x≤1时,﹣6≤y≤3.【点评】本题考查了二次函数图象与性质及待定系数法求函数解析式,熟练掌握二次函数的图象与性质是解题的关键.25.(6分)如图,AC是⊙O的直径,点D是⊙O 上一点,⊙O的切线CB与AD的延长线交于点B,点F是直径AC上一点,连接DF并延长交⊙O于点E,连接AE.(1)求证:∠ABC=∠AED;(2)连接BF,若AD=,AF=6,tan∠AED=,求BF的长.【分析】(1)直接利用圆周角定理以及切线的性质定理得出∠ACD=∠ABC,进而得出答案;(2)首先得出DC的长,即可得出FC的长,再利用已知得出BC的长,结合勾股定理求出答案.【解答】(1)证明:连接DC,∵AC是⊙O的直径,∴∠BDC=90°,∴∠ABC+∠BCD=90°,∵⊙O的切线CB与AD的延长线交于点B,∴∠BCA=90°,∴∠ACD+∠BCD=90°,∴∠ACD=∠ABC,∴∠ABC=∠AED;(2)解:连接BF,∵在Rt△ADC中,AD=,tan∠AED=,∴tan∠ACD==,∴DC=AD=,∴AC==8,∵AF=6,∴CF=AC﹣AF=8﹣6=2,∵∠ABC=∠AED,∴tan∠ABC==,∴=,解得:BD=,故BC=6,则BF==2.【点评】此题主要考查了切线的性质与判定以及勾股定理等知识,正确得出∠ACD=∠ABC是解题关键.26.(7分)在平面直角坐标系xOy中,抛物线y=﹣x2+mx+n经过点A(﹣1,0)和B(0,3).(1)求抛物线的表达式;(2)抛物线与x轴的正半轴交于点C,连接BC.设抛物线的顶点P关于直线y=t的对称点为点Q,若点Q落在△OBC的内部,求t的取值范围.【分析】(1)利用待定系数法即可解决问题;(2)分别求出点Q落在直线BC和x轴上时的t的值即可判断;【解答】解:(1)∵抛物线y=﹣x2+mx+n经过点A(﹣1,0)和B(0,3),∴,解得,∴抛物线的解析式为y=﹣x2+2x+3.(2)如图,易知抛物线的顶点坐标为(1,4).观察图象可知当点P关于直线y=t的对称点为点Q中直线BC上时,t=3,当点P关于直线y=t的对称点为点Q在x轴上时,t=2,∴满足条件的t的值为2<t<3.【点评】本题考查二次函数的性质、待定系数法、轴对称等知识,解题的关键是熟练掌握基本知识,学会寻找特殊点解决问题,属于中考常考题型.27.(7分)在正方形ABCD中,点P在射线AC上,作点P关于直线CD的对称点Q,作射线BQ交射线DC于点E,连接BP.(1)当点P在线段AC上时,如图1.①依题意补全图1;②若EQ=BP,则∠PBE的度数为45°,并证明;(2)当点P在线段AC的延长线上时,如图2.若EQ=BP,正方形ABCD的边长为1,请写出求BE长的思路.(可以不写出计算结果)【分析】(1)①作点P关于直线CD的对称点Q,作射线BQ交射线DC于点E,连接BP;②依据题意得到DP=EP,再根据四边形内角和求得∠BPE=90°,根据BP=EP,即可得到∠PBE=45°;(2)连接PD,PE,依据△CPD≌△CPB,可得DP=BP,∠1=∠2,根据DP=EP,可得∠3=∠1,进而得到∠PEB=45°,∠3=∠4=22.5°,△BCE中,已知∠4=22.5°,BC=1,可求BE长.【解答】解:(1)①作图如下:②如图,连接PD,PE,易证△CPD≌△CPB,∴DP=BP,∠CDP=∠CBP,∵P、Q关于直线CD对称,∴EQ=EP,∵EQ=BP,∴DP=EP,∴∠CDP=∠DEP,∵∠CEP+∠DEP=180°,∴∠CEP+∠CBP=180°,∵∠BCD=90°,∴∠BPE=90°,∵BP=EP,∴∠PBE=45°,故答案为:45°;(2)思路:如图,连接PD,PE,易证△CPD≌△CPB,∴DP=BP,∠1=∠2,∵P、Q关于直线CD对称,∴EQ=EP,∠3=∠4,∵EQ=BP,∴DP=EP,∴∠3=∠1,∴∠3=∠2,∴∠5=∠BCE=90°,∵BP=EP,∴∠PEB=45°,∴∠3=∠4=22.5°,在△BCE中,已知∠4=22.5°,BC=1,可求BE长.【点评】此题是四边形综合题,主要考查了正方形的性质、轴对称的性质、全等三角形的判定与性质等知识的综合运用,解决本题的关键是熟记全等三角形的性质定理和判定定理.28.(8分)在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2,y1≠y2,若PQ为某个等腰三角形的腰,且该等腰三角形的底边与x轴平行,则称该等腰三角形为点P,Q的“相关等腰三角形”.下图为点P,Q的“相关等腰三角形”的示意图.(1)已知点A的坐标为(0,1),点B的坐标为,则点A,B的“相关等腰三角形”的顶角为120°;(2)若点C的坐标为,点D在直线y=4上,且C,D的“相关等腰三角形”为等边三角形,求直线CD的表达式;(3)⊙O的半径为,点N在双曲线y=﹣上.若在⊙O上存在一点M,使得点M、N的“相关等腰三角形”为直角三角形,直接写出点N的横坐标x N的取值范围.【分析】(1)画出图形求出∠BAO的度数即可解决问题;(2)利用等边三角形的性质求出点D坐标即可解决问题;(3)因为点M、N的“相关等腰三角形”为直角三角形,推出直线MN与x轴的夹角为45°,可以假设直线MN的解析式为y=﹣x+b,当直线与⊙O相切于点M时,求出直线MN的解析式,利用方程组求出点N的坐标,观察图象即可解决问题.【解答】解:(1)如图1中,∵A的坐标为(0,1),点B的坐标为,∴点A,B的“相关等腰三角形”△ABC的当C(,0)或(﹣2,1),∵tan∠BAO==,∴∠BAO=∠CAO=60°,∴∠BAC=∠ABC′=120°,故答案为120.(2)如图2中,设直线y=4交y轴于F(0,4),∵C(0,),∴CF=3,∵且C,D的“相关等腰三角形”为等边三角形,∴∠CDF=∠CD′F=60°,∴DF=FD′=3•tan30°=3,∴D(3,4),D′(﹣3,4),∴直线CD的解析式为y=x+,或y=﹣x+.(3)如图3中,∵点M、N的“相关等腰三角形”为直角三角形,∴直线MN与x轴的夹角为45°,可以假设直线MN的解析式为y=﹣x+b,当直线与⊙O相切于点M时,易知b=±2,∴直线MN的解析式为y=﹣x+2或y=﹣x﹣2,由,解得或,∴N(﹣1,3),N′(3,1),由解得或,∴N1(﹣3,1),N2(1,﹣3),观察图象可知满足条件的点N的横坐标的取值范围为:﹣3≤x N≤﹣1或1≤x N≤3.【点评】本题考查反比例函数综合题、一次函数的应用、等边三角形的性质、等腰直角三角形的性质、“相关等腰三角形”的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题.。
九年级数学(第 1 页 共 6 页)孝感市2018—2019学年度上学期期末学业水平测试九年级数学试卷温馨提示:1.答题前,考生务必将自己所在县(市、区)、学校、姓名、考号填写在试卷上指定的位置,并将条形码粘贴在答题卡上的指定位置.2.选择题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题的答案必须写在答题卡的指定位置,在本卷上答题无效.3.本试卷满分120分,考试时间120分钟. 一、精心选一选,相信自己的判断!(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的,不涂、错涂或涂的代号超过一个,一律得0分) 1.计算2)3(-的结果等于A .3-B .9-C .3D .9 2.下列说法中,正确的是A .对载人航天器“神舟十号”的零部件的检查适合采用抽样调查的方式B .某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的地区降雨C .掷一枚硬币,正面朝上的概率为21D .若1.02=甲S ,01.02=乙S ,则甲组数据比乙组数据稳定 3.已知圆锥的底面直径为80cm ,母线长为90cm ,其侧面展开图的圆心角为A .160°B .120°C .100°D .80°4.一司机驾驶汽车从甲地去乙地,他以80km/h 的平均速度用6h 到达目的地.当他按原路匀速返回时,汽车的速度v 与时间t 的函数关系是 A .tv 480=B .tv 240=C .tv 180=D .tv 120=5.从边长为a 的正方形内去掉一个边长为b 的小正方形(如图1),然后将剩余部分剪拼成一个矩形(如图2),上述操作所能验证的等式是A .))((22b a b a b a -+=-B .2222)(b ab a b a +-=-C .2222)(b ab a b a ++=+D .)(2b a a ab a +=+九年级数学(第 2 页 共 6 页)6.如图,AB 是⊙O 的直径,CD 为弦,CD ⊥AB 于E ,则下列结论中不成立的是A .∠A ﹦∠DB .CE ﹦DEC .∠ACB ﹦90°D .CE ﹦BD 7.如图,直线y =-2x -2与双曲线xky =交于点 A ,与x 轴,y 轴分别交于B ,C ,AD ⊥x 轴于 点D ,若S △ADB =S △OCB ,那么k 的值是 A .-5 B .-4 C .-3 D .-2 8.不等式组⎩⎨⎧<--≤-1211x x 的整数解共有A .3个B .4个C .5个D .6个9.Rt △ABC 中,AB =AC ,点D 为BC 中点.∠MDN =90°,∠MDN 绕点D 旋转,DM 、DN 分别与边AB ,AC 交于E ,F 两点.下列结论中不正确的是A .BE +CF =22BC ; B .S △AEF ≤41S △ABC ; C .AD 与EF 可能互相平分;D .AD ≥EF . 10.如图所示,二次函数)0(2≠++=a c bx ax y 的图象经过点)2 1(,-,且与x 轴交点的横坐标 分别为1x ,2x ,其中121-<<-x ,102<<x .下列结论:①0>abc ;②024<+-c b a ;③02<-b a ;④ac a b 482>+.其中正确的有 A .1个B .2个C .3个D .4个二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分.请将结果直接填写在答题卡相应位置上)11.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,AE ⊥BD ,垂足为E ,∠AOB =60°,AC =12,则BE 的长 为 ☆ .九年级数学(第 3 页 共 6 页)12.第一盒中有2个白球,1个黄球,第二盒中有1个白球,1个黄球,这些球除颜色外无其 他差别.分别从每个盒子中任取1个球,则取出的2个球都是黄球的概率为 ☆ . 13.某学校九年级组织了一次乒乓球比赛,每班派一名同学代表班级进行比赛,参赛的每两 个队之间都要比赛一场,共比赛28场,该校九年级共有 ☆ 个班级. 14.如图,正方形ABCD 的边长是4,E 是AB 上一点,F 是AD 延长线上的一点,BE =DF .四边形AEGF 是矩形,矩形AEGF 的面积y 与BE 的长x 的函数关系是 ☆ . 15.如图,在△ABC 中,∠ACB =90°,AC =BC =2,将△ABC 绕AC 的中点D 逆时针旋转90°得到△A'B′C',其中点B 的运动路径为,则图中阴影部分的面积为 ☆ .16.如图,直线y =x +m 与双曲线xy 3=相交于A ,B 两点,BC ∥x 轴,AC ∥y 轴,则△ABC 面积的最小值为 ☆ .三、用心做一做,显显自己的能力!(本大题共8小题,满分72分.解答写在答题卡上) 17.(本题满分6分,每小题3分)用适当的方法解下列方程: (1)x x 3122=+(2)0462=++x x18.(本题满分8分)拿破仑曾经是法国的一位皇帝,但是这位皇帝非常喜欢数学,他这样进行了如图所示的研究:如图,已知半径为r的⊙O上有一点A.①从点A开始,以r为半径,在⊙O上依次连续截取,顺次得到点B、C、D;②连接AC、OD;③分别以A、D为圆心,以AC为半径画弧,两弧相交于点E,连接OE,OE.(1)线段OE与OA 的位置关系是☆;(2分)(2)线段OE与OA有什么数量关系?并证明你的结论.(6分)19.(本题满分8分)取一副三角板按图1拼接,固定三角板ADC,将三角板ABC绕点A依顺时针方向旋转一个大小为α的角(0°<α≤45°)得到△ABC′,如图所示.试问:(1)当α为★度时,能使得图2中AB∥DC;(3分)(2)连接BD,当0°<α≤45°时,探寻∠DBC′+∠CAC′+∠BDC值的大小变化情况,并给出你的证明.(5分)九年级数学(第4 页共6 页)九年级数学(第 5 页 共 6 页)20.(本题满分8分)在不透明的箱子里放有4个乒乓球,每个乒乓球上分别写有数字1、2、3、4,从箱中摸出一个球记下数字后放回箱中,摇匀后再摸出一个记下数字.若将第一次摸出的球上的数字记为点的横坐标,第二次摸出球上的数字记为点的纵坐标.(1)请用列表法或树状图法写出两次摸球后所有可能的结果.(4分)(2)求这样的点落在如图所示的圆内的概率(注:图中圆心在直角坐标系中的第一象限内,并且分别于x 轴、y 轴切于点(2,0)和(0,2)两点).(4分)21.(本题满分10分)如图,已知) 4(a A ,-,)1 2(,-B 是一次函数y 1=kx +b 与反比例函数xmy =2(m <0)图象的两个交点,AC ⊥x 轴于C .(1)则k = ☆ ,b = ☆ ,m = ☆ ,在第二象限内,当y 1>y 2时,x 的取值范围是____☆____;(4分) (2)若P 是线段AB 上的一点,连接PC ,若△PCA 的面积等于21,求点P 坐标.(6分)22.(本题满分10分)已知关于x 的方程0)12(22=+-+m x m x 有实数根. (1)求m 的取值范围;(4分)(2)设α、β是方程的两个实数根,是否存在实数m 使得622=-+αββα成立?如果存在,请求出来,若不存在,请说明理由.(6分)九年级数学(第 6 页 共 6 页)23.(本题满分10分)如图,AH 是⊙O 的直径,AE 平分∠F AH ,交⊙O 于点E ,过点E 的直线FG ⊥AF ,垂足为F ,B 为直径OH 上一点,点E 、F 分别在矩形ABCD 的边BC 和CD 上. (1)求证:直线FG 是⊙O 的切线;(5分) (2)若AD =8,EB =5,求⊙O 的直径.(5分)24.(本题满分12分)如图,抛物线()02≠++=a c bx ax y 与x 轴交于原点及点A ,且经过点B (4,8),对称轴为直线x =-2.(1)则抛物线的解析式为 ☆ ;(3分)(2)设直线y =kx +4与抛物线两交点的横坐标分别为1x ,2x (1x <2x ),当211121=-x x 时,求k 的值;(4分)(3)连接OB ,点P 为x 轴下方抛物线上一动点,过点P 作OB 的平行线交直线AB 于点Q ,当S △POQ :S △BOQ =1:2时,求出点P 的坐标.(5分)。
2018-2019学年九年级(上)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)将下列一元二次方程化成一般形式后,其中二次项系数是3,一次项系数是﹣6,常数项是1的方程是()A.3x2+1=6x B.3x2﹣1=6x C.3x2+6x=1D.3x2﹣6x=1 2.(3分)下列图形中,是中心对称图形的是()A.B.C.D.3.(3分)将抛物线y=x2向右平移1个单位长度,再向上平移2个单位长度所得的抛物线解析式为()A.y=(x﹣1)2+2B.y=(x+1)2+2C.y=(x﹣1)2﹣2D.y=(x+1)2﹣2 4.(3分)投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于125.(3分)已知⊙O的半径等于8cm,圆心O到直线l的距离为9cm,则直线l与⊙O的公共点的个数为()A.0B.1C.2D.无法确定6.(3分)如图,“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何.”用几何语言可表述为:CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,则直径CD的长为()A.12.5寸B.13寸C.25寸D.26寸7.(3分)假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,则三只雏鸟中恰有两只雌鸟的概率是()A.B.C.D.8.(3分)如图,将半径为1,圆心角为120°的扇形OAB绕点A逆时针旋转一个角度,使点O的对应点D落在弧AB上,点B的对应点为C,连接BC,则图中CD、BC和弧BD 围成的封闭图形面积是()A.﹣B.﹣C.﹣D.﹣9.(3分)欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=.则该方程的一个正根是()A.AC的长B.AD的长C.BC的长D.CD的长10.(3分)已知抛物线y=ax2+bx+c(a<0)的对称轴为x=﹣1,与x轴的一个交点为(2,0).若于x的一元二次方程ax2+bx+c=p(p>0)有整数根,则p的值有()A.2个B.3个C.4个D.5个二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)已知3是一元二次方程x2=p的一个根,则另一根是.12.(3分)在平面直角坐标系中,点P(﹣1,﹣2)关于原点对称点的坐标是.13.(3分)一个口袋有3个黑球和若干个白球,在不允许将球倒出来的前提下,小明为估计其中的白秋数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,再放回口袋中,…,不断重复上述过程,小明共摸了100次,其中20次摸到黑球.根据上述数据,小明正估计口袋中的白球的个数是.14.(3分)第七届世界军人运动会将于2019年10月18日至27日在中国武汉矩形,小郑幸运获得了一张军运会吉祥物“兵兵”的照片.如图,该照片(中间的矩形)长29cm、宽为20cm,她想为此照片配一个四条边宽度相等的镜框(阴影部分),且镜框所占面积为照片面积的.为求镜框的宽度,他设镜框的宽度为xcm,依题意列方程,化成一般式为.15.(3分)如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m.水面下降2.5m,水面宽度增加m.16.(3分)如图,正方形ABCD的边长为4,点E是CD边上一点,连接AE,过点B作BG⊥AE于点G,连接CG并延长交AD于点F,则AF的最大值是.三、解答题(共8题,共72分)17.(8分)解方程:x2﹣3x﹣1=0.18.(8分)如图,A、B、C、D是⊙O上四点,且AD=CB,求证:AB=CD.19.(8分)武汉的早点种类丰富,品种繁多,某早餐店供应甲类食品有:“热干面”、“面窝”、“生煎包”、“锅贴饺”(分别记为A、B、C、D);乙类食品有:“米粑粑”、“烧梅”、“欢喜坨”、“发糕”(分别记为E、F、G、H),共八种美食.小童和小郑同时去品尝美食,小童准备在“热干面”、“面窝”、“米粑粑”、“烧梅”(即A、B、E、F)这四种美食中选择一种,小郑准备在“生煎包”、“锅贴饺”、“欢喜坨”、“发糕”(即C、D、G、H)这四种美食中选择一种,用列举法求小童和小郑同时选择的美食都会甲类食品的概率.20.(8分)如图,在边长为1的正方形网格中,A(1,7)、B(5,5)、C(7,5)、D(5,1).(1)将线段AB绕点B逆时针旋转,得到对应线段BE.当BE与CD第一次平行时,画出点A运动的路径,并直接写出点A运动的路径长;(2)线段AB与线段CD存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,直接写出这个旋转中心的坐标.21.(8分)如图,在四边形ABCD中,AD∥BC,AD⊥CD,AC=AB,⊙O为△ABC的外接圆.(1)如图1,求证:AD是⊙O的切线;(2)如图2,CD交⊙O于点E,过点A作AG⊥BE,垂足为F,交BC于点G.①求证:AG=BG;②若AD=2,CD=3,求FG的长.22.(10分)某商家销售一种成本为20元的商品,销售一段时间后发现,每天的销量y(件)与当天的销售单价x(元/件)满足一次函数关系,并且当x=25时,y=550;当x=30时,y=500.物价部门规定,该商品的销售单价不能超过48元/件.(1)求出y与x的函数关系式;(2)问销售单价定为多少元时,商家销售该商品每天获得的利润是8000元?(3)直接写出商家销售该商品每天获得的最大利润.23.(10分)如图,等边△ABC与等腰三角形△EDC有公共顶点C,其中∠EDC=120°,AB=CE=2,连接BE,P为BE的中点,连接PD、AD(1)为了研究线段AD与PD的数量关系,将图1中的△EDC绕点C旋转一个适当的角度,使CE与CA重合,如图2,请直接写出AD与PD的数量关系;(2)如图1,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)如图3,若∠ACD=45°,求△P AD的面积.24.(12分)如图,在平面直角坐标系中,抛物线y=x2+(1﹣m)x﹣m交x轴于A、B两点(点A在点B的左边),交y轴负半轴于点C(1)如图1,m=3.①直接写出A、B、C三点的坐标.②若抛物线上有一点D,∠ACD=45°,求点D的坐标.(2)如图2,过点E(m,2)作一直线交抛物线于P、Q两点,连接AP、AQ,分别交y 轴于M、N两点,求证:OM•ON是一个定值.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.【解答】解:3x2﹣6x+1=0,其二次项系数是3,一次项系数是﹣6,常数项是1,故选:A.2.【解答】解:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不符合题意;故选:C.3.【解答】解:将抛物线y=x2向右平移1个单位长度,再向上平移+2个单位长度所得的抛物线解析式为y=(x﹣1)2+2.故选:A.4.【解答】解:A、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;B、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;C、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;D、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;故选:D.5.【解答】解:∵⊙O的半径等于8cm,圆心O到直线l的距离为9cm,即圆心O到直线l的距离大于圆的半径,∴直线l和⊙O相离,∴直线l与⊙O没有公共点.故选:A.6.【解答】解:设直径CD的长为2x,则半径OC=x,∵CD为⊙O的直径,弦AB⊥CD于E,AB=10寸,∴AE=BE=AB=×10=5寸,连接OA,则OA=x寸,根据勾股定理得x2=52+(x﹣1)2,解得x=13,CD=2x=2×13=26(寸).故选:D.7.【解答】解:画树状图,如图所示:所有等可能的情况数有8种,其中三只雏鸟中恰有两只雌鸟的情况数有3种,则P=.故选:B.8.【解答】解:如图,连接OD.由题意:OA=OD=AD,∴△AOD是等边三角形,∴∠ADO=∠AOD=60°,∵∠ADC=∠AOB=120°,∴∠ADO+∠ADC=180°,∴O,D,C共线,∴图中CD、BC和弧BD围成的封闭图形面积=S△OBC﹣S扇形ODB=×1×﹣=﹣,故选:B.9.【解答】解:欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=,设AD=x,根据勾股定理得:(x+)2=b2+()2,整理得:x2+ax=b2,则该方程的一个正根是AD的长,故选:B.10.【解答】解:∵抛物线y=ax2+bx+c(a<0)的对称轴为x=﹣1∴﹣=﹣1,解得b=2a.又∵抛物线y=ax2+bx+c(a<0)与x轴的一个交点为(2,0).把(2,0)代入y=ax2+bx+c得,0=4a+4a+c解得,c=﹣8a.∴y=ax2+2ax﹣8a(a<0)对称轴h=﹣1,最大值k==﹣9a如图所示,顶点坐标为(﹣1,﹣9a)令ax2+2ax﹣8a=0即x+2x﹣8=0解得x=﹣4或x=2∴当a<0时,抛物线始终与x轴交于(﹣4,0)与(2,0)∴ax2+bx+c=p即常函数直线y=p,由p>0∴0<y≤﹣9a由图象得当0<y≤﹣9a时,﹣4<x<2,其中x为整数时,x=﹣3,﹣2,﹣1,0,1∴一元二次方程ax2+bx+c=p(p>0)的整数解有5个.又∵x=﹣3与x=1,x=﹣2与x=0关于直线x=﹣1轴对称当x=﹣1时,直线y=p恰好过抛物线顶点.所以p值可以有3个.故选:B.二、填空题(本大题共6个小题,每小题3分,共18分)11.【解答】解:把x=3代入x2=p,得p=32=9.则原方程为x2=9,即x2﹣9=0.设方程的另一根为x,则3x=﹣9.所以x=﹣3.故答案是:﹣3.12.【解答】解:点(﹣1,﹣2)关于原点对称的点的坐标是(1,2).故答案为:(1,2).13.【解答】解:3÷=12(个).故答案为:12.14.【解答】解:根据题意可得:2(29+2x)•x+20x•2=20×29×,整理得:4x2+98x﹣145=0.故答案是:4x2+98x﹣145=0.15.【解答】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C 点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降2米,通过抛物线在图上的观察可转化为:当y=﹣2时,对应的抛物线上两点之间的距离,也就是直线y=﹣2与抛物线相交的两点之间的距离,可以通过把y=﹣2代入抛物线解析式得出:﹣2.5=﹣0.5x2+2,解得:x=±3,所以水面宽度增加到6米,比原先的宽度当然是增加了6﹣4=2米,故答案为:2.16.【解答】解:以AB为直径作圆,因为∠AGB=90°,所以G点在圆上.当CF与圆相切时,AF最大.此时F A=FG,BC=CG.设AF=x,则DF=4﹣x,FC=4+x,在Rt△DFC中,利用勾股定理可得:42+(4﹣x)2=(4+x)2,解得x=1.故答案为1.三、解答题(共8题,共72分)17.【解答】解:∵a=1,b=﹣3,c=﹣1,∴b2﹣4ac=(﹣3)2﹣4×1×(﹣1)=13,∴x1=,x2=.18.【解答】证明:∵AD=CB,∴=,∴+=+,即=,∴AB=CD.19.【解答】解:根据题意画树状图如下:由树状图可知,所有可能出现的结果共有16种,并且这些结果出现的可能性相等,小童和小郑同时选择的美食都会甲类食品的结果共有4种,则小童和小郑同时选择的美食都会甲类食品的概率是=.20.【解答】解:(1)点A运动的路径如图所示,出点A运动的路径长为=;(2)如图所示,旋转中心P的坐标为(3,3)或(6,6).21.【解答】(1)证明:如图1,连接OA,OB,OC.在△OAC和△OAB中,,∴△OAC≌△OAB(SSS),∴∠OAC=∠OAB,∴AO平分∠BAC,∴AO⊥BC.又∵AD∥BC,∴AD⊥AO,∴AD是⊙O的切线.(2)①证明:如图2,连接AE.∵∠BCE=90°,∴∠BAE=90°.又∵AF⊥BE,∴∠AFB=90°.∵∠BAG+∠EAF=∠AEB+∠EAF=90°,∴∠BAG=∠AEB.∵∠ABC=∠ACB=∠AEB,∴∠BAG=∠ABC,∴AG=BG.②解:在△ADC和△AFB中,,∴△ADC≌△AFB(AAS),∴AF=AD=2,BF=CD=3.设FG=x,在Rt△BFG中,FG=x,BF=3,BG=AG=x+2,∴FG2+BF2=BG2,即x2+32=(x+2)2,∴x=,∴FG=.22.【解答】解:(1)设y=kx+b,根据题意可得,解得:,则y=﹣10x+800;(2)根据题意,得:(x﹣20)(﹣10x+800)=8000,整理,得:x2﹣100x+2400=0,解得:x1=40,x2=60,∵销售单价最高不能超过48元/件,∴x=40,答:销售单价定为40元/件时,工艺厂试销该工艺品每天获得的利润8000元;(3)利润w=(x﹣20)(﹣10x+800)=﹣10(x﹣80)(x﹣20),∵﹣10<0,故w有最大值,当x=50时,w最大值为9000.23.【解答】解:(1)如图2中,由题意:在Rt△APD中,∠APD=90°,∠P AD=30°,∴AD=2PD.(2)结论成立.理由:如图1中,延长ED到F,使得DF=DE,连接BF,CF.∵BP=EP,DE=DF,∴BF=2PD,BF∥PD,∵∠EDC=120°,∴∠FDC=60°,∵DF=DE=DC,∴△DFC是等边三角形,∵CB=CA,∠BCA=∠DCF=60°,∴∠BCF=∠ACD,∵CF=CD,∴△BCF≌△ACD(SAS),∴BF=AD,∴AD=2PD.(3)如图1中,延长BF交AD于G,由(2)得到∠FBC=∠DAC,∴∠AGB=∠ACB=60°,∵DP∥BG,∴∠ADP=∠AGB=60°,如图3中,作DM⊥AC于M,PN∠AD于N.在等腰△CDE中,∵CE=2,∠CDE=120°,∴CD=DE=2,∵∠ACD=45°,∴CM=DM=2.AM=2﹣2,在Rt△ADM中,AD2=(2﹣2)2+22=32﹣8.在Rt△P AD中,S△P AD=•AD•PN=AD2=4﹣3.24.【解答】解:(1)①当m=3时,y=x2﹣2x﹣3,当x=0时,y=﹣3,当y=0时,x2﹣2x﹣3=0,解得:x=﹣1或x=3,∴A(﹣1,0),B(3,0),C(0,﹣3)②如图1,过A作AK⊥AC交CD于点K,作KH⊥x轴于点H,∵∠ACD=45°,∴AC=AK,∵∠AOC=∠KHA=90°,∠ACO=90°﹣∠OAC=∠KAH,∴△OAC≌△HKA(AAS),∴AH=CO=3,KH=OA=1,∴K(2,1),设直线CD的解析式为y=kx﹣3∴2k﹣3=1,∴k=2,∴设直线CD的解析式为y=2x﹣3,联立,解得x=0(舍去),或x=4,∴D(4,5)(2)∵y=x2+(1﹣m)x﹣m,当y=0时,x2+(1﹣m)x﹣m=0,解得x=﹣1或x=m,∴A(﹣1,0),B(m,0),∵过点E(m,2)作一直线交抛物线于P、Q两点,设直线PQ的解析式为y=ax+b,P(x1,y1),Q(x2,y2),∴2=am+b,b=2﹣am,∴直线PQ的解析式为y=ax+2﹣am,联立,消去y,得:x2+(1﹣m﹣a)x+am﹣m+2=0,∴x1+x2=a+m﹣1,x1•x2=am﹣m﹣2,如图2,作PS⊥x轴于点S,作QT⊥x轴于点T,则△AMO∽△APS,∴,即∴OM=x1﹣m,同理,ON=﹣(x2﹣m),∴OM•ON=﹣(x1﹣m)(x2﹣m)==﹣[am﹣m﹣2﹣m(a+m ﹣1)+m2]=2,为定值.。
湖北省孝感市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2019·大庆) 在下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分) (2018九上·辽宁期末) 已知点A(-1,5)在反比例函数y= (k≠0)的图象上,则该函数的解析式为()A . y=B . y=C . y=-D . y=5x3. (2分) (2019九上·灌云月考) 关于概率,下列说法正确的是()A . 某地“明天降雨的概率是90%”表明明天该地有90%的时间会下雨;B . 13个同学参加一个聚会,他们中至少有两个同学的生日在同一个月;C . “打开电视,正在播放新闻节目”是不可能事件;D . 经过有交通信号灯的路口,一定遇到红灯.4. (2分) (2016九上·萧山期中) 由二次函数y=2(x﹣3)2+1,可知()A . 其图像的开口向下B . 其图像的对称轴为直线x=﹣3C . 其最小值为1D . 当x<3时,y随x的增大而增大5. (2分) (2018八上·裕安期中) 如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=()A . 90°B . 180°C . 160°D . 120°6. (2分)(2019·兰州模拟) 如图,在平面直角坐标系中,其中一个三角形是由另一个三角形绕某点旋转一定的角度得到的,则其旋转中心是()A . (1,0)B . (﹣1,2)C . (0,0)D . (﹣1,1)7. (2分)已知点(-1,y1),(2,y2),(3,y3)在反比例函数y=的图象上.下列结论中正确的是()A . y1>y2>y3B . y1>y3>y2C . y3>y1>y2D . y2>y3>y18. (2分) (2020九上·邓州期末) 某商店今年10月份的销售额是2万元,12月份的销售额是2.88万元,从10月份到12月份,该商店销售额平均每月的增长率为()A . 44%B . 22%C . 20%D . 10%9. (2分)如图,半径为10的⊙O中,弦AB的长为16,则这条弦的弦心距为()A . 6B . 8C . 10D . 1210. (2分)方程2x2﹣4x+1=0的解是()A .B .C .D .11. (2分) (2011八下·建平竞赛) 图中的圆点是有规律地从里到外逐层排列的.设y为第n层(n为正整数)圆点的个数,则下列函数关系中正确的是()A .B .C .D .12. (2分)抛物线y=ax2+bx+c(a>0)的顶点在x轴上方的条件是()A . b2-4ac<0B . b2-4ac>0C . b2-4ac≥0D . c>0二、填空题 (共6题;共6分)13. (1分) (2018九上·耒阳期中) 方程(x-2)(x-3)=6的解为________.14. (1分)(2016·嘉兴) 一个不透明的口袋中有5个完全相同的小球,分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号是偶数的概率为________.15. (1分)(2018·柳州) 如图,在中,,,,,则的长为________.16. (1分) (2017八下·文安期末) 如图,在平行四边形ABCD中,AD=5,AB=3,BE平分∠ABC,则DE=________.17. (1分) (2018八上·沁阳期末) 若关于x的分式方程无解,则实数m=________.18. (1分)(2017·江西模拟) 如图,矩形AOCB边OC在x轴上点B的坐标为(3,1),将此矩形折叠,使点C与点A重合,点B折至点B'处,折痕为EF,则点B'的坐标为________.三、解答题 (共8题;共90分)19. (10分)解方程(1) x2+x﹣1=0;(2)(x﹣1)(x+3)=5.20. (10分) (2017八上·台州期中) 在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′;(3)写出点B′的坐标.21. (10分)(2017·乐陵模拟) 如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C 分别在坐标轴上,顶点B的坐标(4,2),过点D(0,3)和E(6,0)的直线分别于AB,BC交于点M,N.(1)求直线DE的解析式和点M的坐标;(2)若反比例函数y= (x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N是否在该函数的图象上.22. (15分) (2017九上·金华开学考) 如图,小华和小丽两人玩游戏,她们准备了A、B两个分别被平均分成三个、四个扇形的转盘.游戏规则:小华转动A盘、小丽转动B盘.转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止.两个转盘停止后指针所指区域内的数字之和小于6,小华获胜.指针所指区域内的数字之和大于6,小丽获胜.(1)用树状图或列表法求小华、小丽获胜的概率;(2)这个游戏规则对双方公平吗?请判断并说明理由.23. (10分)(2017·黔东南模拟) 某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如下表所示:国外品牌国内品牌进价(元/部)44002000售价(元/部)50002500该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可毛获利润共2.7万元.[毛利润=(售价﹣进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少的数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,该商场应该怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.24. (10分)在菱形ABCD中,P是直线BD上一点,点E在射线AD上,连接PC.(1)如图1,当∠BAD=90°时,连接PE,交CD于点F,若∠CPE=90°,求证:PC=PE;(2)如图2,当∠BAD=60°时,连接PE,PC交AE于点F,若∠CPE=60°,设AC=CE=4,求BP的长.25. (10分) (2019七上·九龙坡期中) 现在定义两种运算“*”和“#”,对于整数a,b有a*b=a+b-1,a#b=ab-1;(1)求;(2)26. (15分)(2018·深圳模拟) 已知直线y=kx+b与抛物线y=ax2(a>0)相交于A、B两点(点A在点B的左侧),与y轴正半轴相交于点C,过点A作AD⊥x轴,垂足为D.(1)若∠AOB=60°,AB∥x轴,AB=2,求a的值;(2)若∠AOB=90°,点A的横坐标为﹣4,AC=4BC,求点B的坐标;(3)延长AD、BO相交于点E,求证:DE=CO.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共90分)19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、26-3、。
孝感市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列各式中,与是同类二次根式的是()。
A .B .C .D .2. (2分)正方形网格中,如图放置,则tan的值是()A .B .C .D . 23. (2分)下列说法中正确的是()A . 抛一枚均匀的硬币,出现正面、反面的机会不能确定B . 抛一枚均匀的硬币,出现正面的机会比较大C . 抛一枚均匀的硬币,出现反面的机会比较大D . 抛一枚均匀的硬币,出现正面与反面的机会相等4. (2分)如果关于的一元二次方程有两个不相等的实数根,那么的取值范围是()A .B .C . 且D .5. (2分) (2019九上·崇明期末) 如图,如果∠BAD=∠CAE,那么添加下列一个条件后,仍不能确定△ABC∽△ADE 的是()A . ∠B=∠DB . ∠C=∠AEDC . =D . =6. (2分)(2019·南关模拟) 如图,某超市自动扶梯的倾斜角为,扶梯长为米,则扶梯高的长为()A . 米B . 米C . 米D . 米7. (2分)用配方法解方程时,原方程可变形为()A .B .C .D .8. (2分)如图,在Rt△ABC,∠BAC=90°,AD⊥BC,AB=10,BD=6,则BC的值为()A .B . 2C .D .9. (2分)关于方程x3+2x2+3x﹣1=0根的情况判断正确的是()A . 有一个正实数根B . 有两个不同的正实数根C . 有一个负实数根D . 有三个不同的实数根10. (2分)如图,已知是的角平分线,是的垂直平分线,,,则的长为()A . 6B . 5C . 4D .二、填空题 (共6题;共6分)11. (1分) (2019八下·温江期中) 不等式-3x+1<-2的解集为________.12. (1分)若x2+y2-4x+6y+13=0,则2x+3y的值为________.13. (1分) (2019九上·克东期末) 抛掷一枚均匀的硬币,前次都正面朝上,则抛掷第次正面朝上的概率是________.14. (1分)已知关于x的一元二次方程x2-4x+1=0的两个实数根是x1、x2,那么x1+x2=________.15. (1分) (2019八上·灌云月考) 如图1.在平面内取一定点O,引一条射线Ox,再取定一个长度单位,那么平面上任一点M的位置可由OM的长度m与∠xOM的度数α确定,有序数对(m,α)称为M点的极坐标,这样健的坐标系称为极坐标系,如图2,在极坐标系下,有一个等边三角形AOB,AB=4,则点B的极坐标为________.16. (1分)如图,将一个长方形纸条折成如图的形状,若已知∠1=130°,则∠2=________度.三、解答题 (共8题;共82分)17. (5分) (2017九上·松北期末) 先化简,再求代数式÷(1﹣)的值,其中x=2sin45°﹣tan45°.18. (5分) (2018九上·永定期中) 解下列方程:(1)【答案】解:,x(x-3)=0,x=0,x-3=0,∴x=0,x=3(1) .19. (7分)(2017·邵阳模拟) 某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.(1)该顾客至少可得到________元购物券,至多可得到________元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.20. (10分)(2017·永嘉模拟) 如图,一艘渔船位于码头M的南偏东45°方向,距离码头120海里的B处,渔船从B处沿正北方向航行一段距离后,到达位于码头北偏东60°方向的A处.(1)求渔船从B到A的航行过程中与码头M之间的最小距离.(2)若渔船以20海里/小时的速度从A沿AM方向行驶,求渔船从A到达码头M的航行时间.21. (15分)(2016·眉山) 如图,△ABC和△BEC均为等腰直角三角形,且∠ACB=∠BEC=90°,AC=4 ,点P为线段BE延长线上一点,连接CP以CP为直角边向下作等腰直角△CPD,线段BE与CD相交于点 F(1)求证:;(2)连接BD,请你判断AC与BD有什么位置关系?并说明理由;(3)设PE=x,△PBD的面积为S,求S与x之间的函数关系式.22. (15分)(2017·郑州模拟) 近几年,全社会对空气污染问题越来越重视,空气净化器的销量也在逐年增加.某商场从厂家购进了A、B两种型号的空气净化器,两种净化器的销售相关信息见下表:A型销售数量(台)B型销售数量(台)总利润(元)51020001052500(1)每台A型空气净化器和B型空气净化器的销售利润分别是多少?(2)该公司计划一次购进两种型号的空气净化器共100台,其中B型空气净化器的进货量不少于A型空气净化器的2倍,为使该公司销售完这100台空气净化器后的总利润最大,请你设计相应的进货方案;(3)已知A型空气净化器的净化能力为300m3/小时,B型空气净化器的净化能力为200m3/小时,某长方体室内活动场地的总面积为200m2,室内墙高3m,该场地负责人计划购买5台空气净化器每天花费30分钟将室内就欧诺个气净化一新,若不考虑空气对流等因素,至少要购买A型空气净化器多少台?23. (10分) (2017九下·盐都期中) 如图1是一种折叠椅,忽略其支架等的宽度,得到他的侧面简化结构图(图2),支架与坐板均用线段表示,若座板DF平行于地面MN,前支撑架AB与后支撑架AC分别与座板DF交于点E、D,现测得DE=20厘米,DC=40厘米,∠AED=58°,∠ADE=76°.(1)求椅子的高度(即椅子的座板DF与地面MN之间的距离)(精确到1厘米)(2)求椅子两脚B、C之间的距离(精确到1厘米)(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,sin76°≈0.97.cos76°≈0.24,tan76°≈4.00)24. (15分)(2017·宛城模拟) 如图,抛物线y=﹣ x2+bx+e与x轴交于点A(﹣3,0)、点B(9,0),与y轴交于点C,顶点为D,连接AD、DB,点P为线段AD上一动点.(1)求抛物线的解析式;(2)如图1,过点P作BD的平行线,交AB于点Q,连接DQ,设AQ=m,△PDQ的面积为S,求S关于m的函数解析式,以及S的最大值;(3)如图2,抛物线对称轴与x轴交与点G,E为OG的中点,F为点C关于DG对称的对称点,过点P分别作直线EF、DG的垂线,垂足为M、N,连接MN,直接写出△PMN为等腰三角形时点P的坐标.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共82分)17-1、18-1、19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、24-1、24-2、。
文昌中学2018-2019学年度九年级上学期期末考试
数学试卷
一、精心选一选,相信自己的判断!(本题12小题,每小题3分,共36分.每小题给出的四个选项中只有一项符合题目要求 ,不选、选错或选的代号超过一个的,一律得0分) 1.下列二次根式中,与2是同类二次根式的是( ). A.3 B .5 C .7 D .22
2.下列图形中是中心对称图形的是( ).
A. B. C. D.
3.已知:4≤x - 1 -则下列式子中有意义的是( ).
A .1-x
B .4+x
C .x -4
D .4-x
4.下列事件是必然事件的是( ).
A .掷两个均匀的骰子,朝上面的点数和不小于2
B .2019年2月1日孝感市可能下雪
C .打开电视机,正在播放体育节目
D .抛一枚硬币,正面朝上 5.某班共有41名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学解答问题,习惯用左手写字的同学被选中概率是( ). A .
141
B .
241
C .0
D .1
6.方程(x +1)(x -2)=x +1的解是( ). A .2=x
B .3=x
C .2 ,121=-=x x
D .3 ,121=-=x x
7.半径分别为2cm 、3 cm 的两圆相交,则两圆圆心距d 的取值范围是( ). A .2cm <<d 3cm
B .1cm <<d 3cm
C .2cm <<d 5cm
D .1cm <<d 5cm
8.有一个四等分转盘,在它的上、右、下、左的位置分别挂着“开”、“心”、“快”、“乐”四个字牌,如图1.若将位于上下位置的两个字牌对调,同时将位于左右位置的两个字牌对调,再将转盘顺时针旋转90,则完成一次变换.图2、图3分别表示第1次变换和第2次变换.按上述规则完成第2019次变换后,“开”字位于转盘的位置是( ).
图1 图2
1 次变换第 图3
2 次变换第
A .上
B .下
C .左
D .右
9.抛物线()2
23y x =+-由抛物线2
y x =平移得到,则下列平移过程正确的是( ).
A.先向左平移2个单位,再向上平移3个单位
B.先向左平移2个单位,再向下平移3个单位
C.先向右平移2个单位,再向下平移3个单位
D.先向右平移2个单位,再向上平移3个单位
10.如图,已知正方形ABCD ,以BC 为直径作半⊙O , E 是边CD 上一点,AE 切半⊙O 于F ,
若△AED 的周长为6,则半⊙O 的弧长是( ).
A .π
B .2π
C .3π
D .4π
11.如图,⊙P 内含于⊙O ,⊙O 的弦AB 切⊙P 于点C ,且OP AB //.若阴影部分的面积
为π9,则弦AB 的长为( ).
A .6
B .5
C .4
D .3
12.二次函数)0(2
≠++=a c bx ax y 的图象如图所示,下列结论:(1)c <0
02)2(=+a b
(3)420a b c ++> (4)042
≤-ac b 其中正确的有( ).
A.0个
B. 1个
C. 2个
D. 3个
二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分)
13.已知1=x 是方程022
=--bx x 的一个根,则b 的值是 .
14.点)3 ,2(-P 关于原点对称的点P '的坐标是 .
15.底面半径为6㎝的圆锥,其侧面展开图扇形的圆心角为240°,则圆锥母线长为 . 16.正方形A 1B 1C 2C 1,A 2B 2C 3C 2,A 3B 3C 4C 3按如图所示的方式放置,点A 1、A 2、A 3和点C 1、C 2、C 3、
C 4分别在抛物线2x y =和y 轴上,若点C 1(0,1),则正方形A 3B 3C 4C 3的面积是 .
(第16题图)
(第17题图)
y
B 3 A
3
C 2 A 1 C 3
B 1 A 2
C 1
x C 4 B 2
(第11题图)
17.如图, ⊙O 与正六边形的相邻两边相切,切点分别是D 、E ,若P 是⊙O 上任一点,那么
DPE ∠的度数为 .
18.对于任意的两个实数a 、b ,定义运算※如下:a ※b ⎩⎨⎧>≤+=)(
)
( 2b a ab b a b a , 若x ※2=8
时,
则x 的值是 .
三、用心做一做,显显自己的能力!(本大题共7小题,满分66分.) 19.(本小题满分6分)已知:.21 ,21-=+=y x 求 ()
2012
xy - 的值.
20.(本题满分8分)如图,在平面直角坐标系中,已知△ABC 与△DEF 关于点P 中心对称 (1)求出点P 的坐标;
(2)将△DEF 绕P 点逆时针方向旋转90,画出旋转后的△F E D ''',并指出△F E D '''可
由△ABC 经过怎样的旋转而得到?
21.(本小题满分8分)小明与小亮玩游戏,他们将牌面数字分别是2,3,4的三张扑克牌充分洗匀后,背面朝上放在桌面上.规定游戏规则如下:先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再从中随机抽出一张牌,将牌面数字作为个位上的数字.如果组成的两位数恰好是2的倍数,则小明胜;如果组成的两位数恰好是3的倍数,则小亮胜.
你认为这个游戏规则对双方公平吗?请用画树状图或列表的方法说明理由. 22.(本小题满分8分)已知关于x 的一元二次方程0)12(22=+-+m x m x 有两个实数根1x 和2x .(1)求实数m 的取值范围; (2)当02
22
1=-x x 时,求m 的值.
温馨提示:一元二次方程)0(02
≠=++a c bx ax 有两个实数根1x 和2x ,满足关系
(第20题图)
a
c x x a b x x =
-=+2121 ,. 23.(本小题满分10分)如右图,已知等边△ABC ,以BC 为直径作半⊙O 交AB 于D ,DE ⊥AC 于点E .
(1)、求证:DE 是半⊙O 的切线;
(2)、若DE=3,求△ABC 与半⊙O 重合部分的面积.
24.(本小题满分12分)某商场试销一种成本为每件60元的服装,规定试销期间销售单价
不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)
符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =.
(1)、求一次函数的表达式;(3分)
(2)、设该商场获得利润为W 元,试写出利润W 与销售单价x 之间的函数关系式,并指出销售单价x 的取值范围;(4分)
(3)、若该商场获得利润等于500元,试求x 的值.(5分)
25.(本小题满分14分)如图,抛物线经过(40)(10)(02)A B C -,,,,,三点. (1)、求抛物线对应的二次函数关系式;(5分)
(2)、在直线AC 上方抛物线上有一动点D ,求使DCA △面积最大的点D 的坐标;(5分) (3)、x 轴上是否存在P 点,使得以A 、P 、C 为顶点的三角形是等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.(4分)
(第23题图)。