2.2.3 等差数列的前n项和(1)
- 格式:doc
- 大小:191.02 KB
- 文档页数:5
《2.2.3等差数列的前n项和(1)》说课稿江苏省清浦中学时坤明【教材分析】数列在高中数学中占据非常重要的位置,主要以等差数列与等比数列为核心内容展开。
本节课是在学习了等差数列通项公式及简单性质的基础上进行了进一步研究,该内容也为日后学习各种数列的求和作出了引领与铺垫。
等差数列的前n项和公式是数列求和的最基本公式。
不论是公式的获取过程,还是公式推导及方法的发现过程,都是数学家们发现数学结论和数学方法的重要过程。
苏教版必修五旧教材中本课内容是以计算一堆钢管总数为例,从身边的生活实际出发,运用从特殊到一般的方法,进一步发现等差数列的前n项和公式的推导方法。
此法虽然比较实用,导向性比较明确,但个人认为其方式给予学生的思考空间比较狭隘、思维路径比较简短、思维方式过于单一。
参考2019年新出版的人教版高中数学必修五新教材中本课内容开头直接给出问题“?+++ ”,对学生的思维方法没有++4100321=作出任何限定,给了学生广阔的想象空间。
教师可以根据学情因地制宜的安排导入新课的方式,便于让学生更好的掌握本课内容。
除此而外,在例题及习题的编排上,新教材比旧教材更加注重了实用,题目也变得更加灵活,这也是新课程理念和思想在课标教材中的又一体现。
【学情分析】本课之前,学生已经学习了等差数列的通项公式及基本性质。
大部分学生对高斯算法有一定的认识,甚至有些同学对此算法原理比较熟练,然而熟练的只是高斯算法中的“?++++ ”这样一种特殊数列的求和,对于一般等差数列的求和方法+1001=423和公式,学生却没有详细了解。
江苏省常州高级中学是江苏省一所名校,学生的知识面、动脑能力、动手能力等各方面综合素质较高。
针对这一情况,教师所设置教学内容应具有一定的梯度性、关联性、灵活性及发散性。
教师应给予学生足够的展示平台和发挥空间,要处理好预设与生成的关系。
把握本质、紧扣主题,在达成目标的情况下适度外延,丰富知识内涵,体现数学的科学价值、人文价值及审美价值。
§2.3 等差数列的前n 项和(一)学习目标 1.掌握等差数列前n 项和公式及其获取思路(重点);2.经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会观察、归纳、反思;3.熟练掌握等差数列的五个量a 1,d ,n ,a n ,S n 的关系,能够由其中三个求另外两个(重、难点).预习教材P42-43完成下列问题: 知识点一 数列a n 与前n 项和S n 的关系 1.数列的前n 项和的概念一般地,我们称a 1+a 2+a 3+…+a n 为数列{a n }的前n 项和,用S n 表示,即S n =a 1+a 2+a 3+…+a n .2.数列的通项a n 与前n 项和S n 的关系当n ≥2时,有S n =a 1+a 2+a 3+…+a n ,S n -1=a 1+a 2+a 3+…+a n -1,所以S n -S n -1=a n ; 当n =1时,a 1=S 1.综上可得a n =⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2.【预习评价】1.利用数列的前n 项和S n 求数列的通项公式时,能不能直接运用S n -S n -1=a n 求解?提示 不能.因为当n =1时,S 1-S 0没有意义. 2.已知数列{a n }的前n 项和S n =n 2,怎样求a 1,a n? 提示 a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1, 又n =1时也适合上式,所以a n =2n -1,n ∈N *.知识点二 等差数列的前n 项和公式 1.等差数列的前n 项和公式2.两个公式的关系:把a n =a 1+(n -1)d 代入S n =1n 2中,就可以得到S n=na 1+n (n -1)2d .【预习评价】1.高斯用1+2+3+…+100=(1+100)+(2+99)+…+(50+51)=101×50迅速求出了等差数列前100项的和.如果是求1+2+3+…+n ,不知道共有奇数项还是偶数项怎么办?提示 不知共有奇数项还是偶数项导致不能配对.但我们可以采用倒序相加来回避这个问题:设S n =1+2+3+…+(n -1)+n , 又S n =n +(n -1)+(n -2)+…+2+1,∴2S n =(1+n )+[2+(n -1)]+…+[(n -1)+2]+(n +1), ∴2S n =n (n +1),∴S n =n (n +1)2.2.能否用“倒序相加法”求首项为a 1,公差为d 的等差数列{a n }的前n 项和S n 呢?提示 由上节课学到的性质:在有穷等差数列中,与首末两项“等距离”的两项之和等于首项与末项的和.即a 1+a n =a 2+a n -1=a 3+a n -2=….“倒序相加法”可以推广到一般等差数列求前n 项和,其方法如下: S n =a 1+a 2+a 3+…+a n -1+a n=a 1+(a 1+d )+(a 1+2d )+…+[a 1+(n -2)d ]+[a 1+(n -1)d ];S n =a n +a n -1+a n -2+…+a 2+a 1=a n +(a n -d )+(a n -2d )+…+[a n -(n -2)d ]+[a n -(n -1)d ]. 两式相加,得2S n =(a 1+a n )×n ,由此可得等差数列{a n }的前n 项和公式:S n =n (a 1+a n )2.根据等差数列的通项公式a n =a 1+(n -1)d , 代入上式可得S n =na 1+n (n -1)2d .知识点三 等差数列前n 项和的性质 1.若数列{a n }是公差为d的等差数列,则数列⎩⎨⎧⎭⎬⎫S n n 也是等差数列,且公差为d2.2.若S m ,S 2m ,S 3m 分别为{a n }的前m 项,前2m 项,前3m 项的和,则S m ,S 2m -S m ,S 3m -S 2m 也成等差数列,公差为m 2d .3.设两个等差数列{a n },{b n }的前n 项和分别为S n ,T n ,则a n b n =S 2n -1T 2n -1.4.若等差数列的项数为2n ,则S 2n =n (a n +a n +1), S 偶-S 奇=nd ,S 偶S 奇=a n +1a n. 5.若等差数列的项数为2n +1,则S 2n +1=(2n +1)a n +1, S 偶-S 奇=-a n +1,S 偶S 奇=nn +1.【预习评价】1.数列{a n }为等差数列,它的前n 项和为S n ,若S n =(n +1)2+λ,则λ的值是( ) A .-2 B.-1 C .0D.1解析 等差数列前n 项和S n 的形式为S n =an 2+bn ,∴λ=-1. 答案 B2.设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5=( )A .1 B.-1 C.2D.12解析 由于S 2n -1=(2n -1)a n ,则, S 9S 5=9a 55a 3=95×59=1. 答案 A题型一 数列的前n 项和S n 与通项a n 之间的关系【例1】 已知数列{a n }的前n 项和为S n =na 1+12n (n -1)d (d 为常数).求证:数列{a n }是等差数列.证明 根据S n =na 1+12n (n -1)d , a n +1=S n +1-S n=(n +1)a 1+12(n +1)[(n +1)-1]·d -⎣⎢⎡⎦⎥⎤na 1+12n (n -1)d=a 1+nd .① 当n >1时, a n =S n -S n -1=na 1+12n (n -1)d -⎣⎢⎡⎦⎥⎤(n -1)a 1+12(n -1)(n -2)d=a 1+(n -1)d ,当n =1时,a 1=S 1,适合此式. ∴a n =a 1+(n -1)d (n ∈N *).∴a n +1-a n =(a 1+nd )-[a 1+(n -1)d ]=d (常数),对任意n ∈N *成立. ∴数列{a n }是等差数列.规律方法 已知前n 项和S n 求通项a n ,先由n =1时,a 1=S 1求得a 1,再由n ≥2时,a n =S n -S n -1求a n ,最后验证a 1是否符合a n ,若符合则统一用一个解析式表示.【训练1】 已知数列{a n }的前n 项和为S n =n 2+12n ,求这个数列的通项公式.这个数列是等差数列吗?如果是,它的首项与公差分别是什么?解 根据S n =a 1+a 2+…+a n -1+a n 可知S n -1=a 1+a 2+…+a n -1(n >1), 当n >1时,a n =S n -S n -1=n 2+12n -⎣⎢⎡⎦⎥⎤(n -1)2+12(n -1)=2n -12,① 当n =1时,a 1=S 1=12+12×1=32,也满足①式.∴数列{a n }的通项公式为a n =2n -12.由此可见:数列{a n }是以32为首项,2为公差的等差数列.题型二 等差数列前n 项和的有关运算 【例2】 在等差数列{a n }中, (1)a 1=56,a n =-32,S n =-5,求n 和d ;(2)a 1=4,S 8=172,求a 8和d .解 (1)由题意得,S n =n (a 1+a n )2=n ⎝ ⎛⎭⎪⎫56-322=-5,解得n =15.又a 15=56+(15-1)d =-32,∴d =-16.∴n =15,d =-16.(2)由已知得S 8=8(a 1+a 8)2=8(4+a 8)2=172,解得a 8=39,又∵a 8=4+(8-1)d =39,∴d =5. ∴a 8=39,d =5.规律方法 等差数列中基本计算的两个技巧(1)利用基本量求值.(2)利用等差数列的性质解题.【训练2】 在等差数列{a n }中, (1)已知a 6=10,S 5=5,求a 8和S 10; (2)已知a 3+a 15=40,求S 17.解(1)⎩⎨⎧S 5=5a 1+5×42d =5,a 6=a 1+5d =10,解得a 1=-5,d =3. ∴a 8=a 6+2d =10+2×3=16,S 10=10a 1+10×92d =10×(-5)+5×9×3=85.(2)S 17=17×(a 1+a 17)2=17×(a 3+a 15)2=17×402=340.【例3】 (1)设S n 是等差数列{a n }的前n 项和,已知a 2=3,a 6=11,则S 7等于( ) A.13 B.35 C.49D.63(2)等差数列{a n }与{b n }的前n 项和分别是S n 和T n ,已知S n T n =7n n +3,则a 5b 5等于( )A.7B.23 C.7013 D.214(3)已知数列{a n }的通项公式为a n =2n +1(n ∈N *),其前n 项和为S n ,则数列{S nn }的前10项的和为________.解析 (1)S 7=72(a 1+a 7)=72(a 2+a 6)=72(3+11)=49. (2)a 5b 5=a 1+a 92b 1+b 92=S 9T 9=7×99+3=214.(3)∵S n =n (3+2n +1)2=n (n +2).∴S nn =n +2,∴数列{S nn }是以首项为3,公差为1的等差数列,∴{S nn }的前10项和为10×3+10×92×1=75. 答案 (1)C (2)D (3)75【迁移1】 已知两个等差数列{a n }与{b n }的前n (n >1)项和分别是S n 和T n ,且S n ∶T n =(2n +1)∶(3n -2),求a 9b 9的值.解 法一 a 9b 9=2a 92b 9=a 1+a 17b 1+b 17=a 1+a 172×17b 1+b 172×17=S 17T 17=2×17+13×17-2=3549=57. 法二 ∵数列{a n },{b n }均为等差数列, ∴S n =A 1n 2+B 1n ,T n =A 2n 2+B 2n . 又S n T n =2n +13n -2,∴令S n =tn (2n +1),T n =tn (3n -2),t ≠0,且t ∈R . ∴a n =S n -S n -1=tn (2n +1)-t (n -1)(2n -2+1) =tn (2n +1)-t (n -1)(2n -1)=t (4n -1)(n ≥2), b n =T n -T n -1=tn (3n -2)-t (n -1)(3n -5) =t (6n -5)(n ≥2).∴a n b n =t (4n -1)t (6n -5)=4n -16n -5, ∴a 9b 9=4×9-16×9-5=3549=57. 【迁移2】 已知两个等差数列{a n }与{b n }的前n 项和分别是S n 和T n ,且a n ∶b n =(2n +1)∶(3n -2),则S 9T 9=________.解析 ∵{a n },{b n }均为等差数列, 则S 9T 9=9a 59b 5=2×5+13×5-2=1113.答案1113规律方法 等差数列前n 项和运算的几种思维方法(1)整体思路:利用公式S n =n (a 1+a n )2,设法求出整体a 1+a n ,再代入求解.(2)待定系数法:利用S n 是关于n 的二次函数,设S n =An 2+Bn (A ≠0),列出方程组求出A ,B 即可,或利用S n n 是关于n 的一次函数,设S nn =an +b (a ≠0)进行计算. (3)利用S n ,S 2n -S n ,S 3n -S 2n 成等差数列进行求解.课堂达标1.在等差数列{a n }中,S 10=120,那么a 1+a 10的值是( ) A.12 B.24 C.36D.48解析 S 10=10(a 1+a 10)2=5(a 1+a 10)=120,∴a 1+a 10=24. 答案 B2.记等差数列前n 项和为S n ,若S 2=4,S 4=20,则该数列的公差d 等于( ) A.2 B.3 C.6D.7解析 法一 由⎩⎪⎨⎪⎧S 2=2a 1+d =4,S 4=4a 1+6d =20,解得d =3.法二 由S 4-S 2=a 3+a 4=a 1+2d +a 2+2d =S 2+4d ,所以20-4=4+4d ,解得d =3. 答案 B3.等差数列{a n }的前四项之和为124,后四项之和为156,各项和为210,则此数列的项数为( ) A.5 B.6 C.7D.8解析 由题意知a 1+a 2+a 3+a 4=124, a n +a n -1+a n -2+a n -3=156, ∴4(a 1+a n )=280, ∴a 1+a n =70.又S =n (a 1+a n )2=n2×70=210,∴n =6.答案 B4.已知数列{a n }的通项公式是a n =2n -48,则S n 取得最小值时,n 为________. 解析 ∵a 24=0,∴a 1<0,a 2<0,…,a 23<0,故S 23=S 24最小. 答案 23或245.已知等差数列{a n }中,(1)a 1=32,d =-12,S n =-15,求n ; (2)a 1=1,a n =-512,S n =-1 022,求d . 解 (1)∵S n =n ×32+⎝ ⎛⎭⎪⎫-12×n (n -1)2=-15,整理得n 2-7n -60=0, 解之得n =12或n =-5(舍去).(2)由S n =n (a 1+a n )2=n (1-512)2=-1 022,解之得n =4.又由a n =a 1+(n -1)d ,即-512=1+(4-1)d , 解之得d =-171.课堂小结1.求等差数列前n 项和公式的方法称为倒序相加法,在某些数列求和中也可能用到.2.等差数列的两个求和公式中,一共涉及a 1,a n ,S n ,n ,d 五个量,若已知其中三个量,通过方程思想可求另外两个量,在利用求和公式时,要注意整体思想的应用,注意下面结论的运用:若m +n =p +q ,则a n +a m =a p +a q (n ,m ,p ,q ∈N *),若m +n =2p ,则a n +a m =2a p .3.本节基本思想:方程思想、函数思想、整体思想、分类讨论思想.基础过关1.已知等差数列{a n }中,a 2+a 8=8,则该数列的前9项和S 9等于( ) A.18 B.27 C.36D.45解析 S 9=92(a 1+a 9)=92(a 2+a 8)=36. 答案 C2.等差数列{a n }中,S 10=4S 5,则a 1d 等于( )A.12B.2C.14D.4解析 由题意得:10a 1+12×10×9d =4⎝ ⎛⎭⎪⎫5a 1+12×5×4d ,∴10a 1+45d =20a 1+40d , ∴10a 1=5d ,∴a 1d =12.答案 A3.已知等差数列{a n }中,a 23+a 28+2a 3a 8=9,且a n <0,则S 10为( )A.-9B.-11C.-13D.-15解析 由a 23+a 28+2a 3a 8=9得(a 3+a 8)2=9,∵a n <0,∴a 3+a 8=-3,∴S 10=10(a 1+a 10)2=10(a 3+a 8)2=10×(-3)2=-15. 答案 D4.在一个等差数列中,已知a 10=10,则S 19=________.解析 S 19=19(a 1+a 19)2=19(a 10+a 10)2=19a 10=19×10=190. 答案 1905.已知等差数列{a n }的前n 项和为S n ,且6S 5-5S 3=5,则a 4=________. 解析 设等差数列{a n }的首项为a 1,公差为d ,由6S 5-5S 3=5,得3(a 1+3d )=1,所以a 4=13. 答案 136.设S n 为等差数列{a n }的前n 项和,若S 3=3,S 6=24,求a 9. 解 设等差数列的公差为d ,则S 3=3a 1+3×22d =3a 1+3d =3,即a 1+d =1,S 6=6a 1+6×52d =6a 1+15d =24,即2a 1+5d =8.由⎩⎪⎨⎪⎧a 1+d =1,2a 1+5d =8,解得⎩⎪⎨⎪⎧a 1=-1,d =2.故a 9=a 1+8d =-1+8×2=15.7.已知S n 是等差数列{a n }的前n 项和,且S 10=100,S 100=10,求S 110. 解 法一 设等差数列{a n }的首项为a 1,公差为d ,∵S 10=100,S 100=10,∴⎩⎨⎧10a 1+10(10-1)2d =100,100a 1+100(100-1)2d =10,解得⎩⎪⎨⎪⎧a 1=1 099100,d =-1150. ∴S 110=110a 1+110(110-1)2d =110×1 099100+110×1092×⎝ ⎛⎭⎪⎫-1150=-110. 法二 ∵S 10,S 20-S 10,S 30-S 20,…,S 100-S 90,S 110-S 100,…成等差数列,设公差为d ,∴该数列的前10项和为10×100+10×92d =S 100=10,解得d =-22,∴前11项和S 110=11×100+11×102×(-22)=-110.能力提升8.在等差数列{a n }中,前四项之和为20,最后四项之和为60,前n 项之和是100,则项数n 为( )A.9B.10C.11D.12解析 由题意及等差数列的性质可得4(a 1+a n )=20+60=80,∴a 1+a n =20.∵前n 项之和是100=n (a 1+a n )2,解得n =10,故选B. 答案 B9.等差数列{a n }中,已知前15项的和S 15=90,则a 8等于( )A.452B.12C.6D.454解析 在等差数列{a n }中, ∵S 15=90,由S 15=15a 8=90,得a 8=6.故选C.答案 C10.已知{a n }为等差数列,a 2+a 8=43,则S 9等于________.解析 由等差数列的求和公式可得:S 9=9(a 1+a 9)2=9(a 2+a 8)2=9×432=6. 答案 611.含2n +1项的等差数列,其奇数项的和与偶数项的和之比为________.解析 S 奇=(n +1)(a 1+a 2n +1)2,S 偶=n (a 2+a 2n )2. ∵a 1+a 2n +1=a 2+a 2n ,∴S 奇S 偶=n +1n . 答案 n +1n12.已知数列{a n }的前n 项和S n =32n -n 2+1,(1)求数列{a n }的通项公式;(2)求数列{a n }的前多少项和最大.解 (1)当n =1时,a 1=S 1=32-1+1=32;当n ≥2时,a n =S n -S n -1=(32n -n 2+1)-[32(n -1)-(n -1)2+1]=33-2n ;所以:a n =⎩⎪⎨⎪⎧32,n =1,33-2n ,n ≥2;(2)S n =32n -n 2+1=-(n 2-32n )+1=-(n -16)2+162+1;所以,前16项的和最大.13.(选做题)已知数列{a n }的通项公式为a n =6n +5(n ∈N *),数列{b n }是等差数列,且a n =b n +b n +1.(1)求数列{a n }的前n 项和;(2)求数列{b n }的通项公式. 解 (1)∵a n =6n +5(n ∈N *), ∴a n +1-a n =[6(n +1)+5]-(6n +5)=6(n ∈N *). ∴数列{a n }是以公差为6的等差数列. 又∵a 1=11,∴数列{a n }的前n 项和:S n =n (a 1+a n )2=n [11+(6n +5)]2=3n 2+8n . (2)∵a n =b n +b n +1, ∴a 1=b 1+b 2,a 2=b 2+b 3. ∴⎩⎪⎨⎪⎧b 1+b 2=11,b 2+b 3=17. 设数列{b n }的公差为d , 则⎩⎪⎨⎪⎧2b 1+d =11,2b 1+3d =17,∴⎩⎪⎨⎪⎧b 1=4,d =3. ∴数列{b n }的通项公式:b n =3n +1.。
人教版数学必修五第二章数列重难点解析第二章课文目录2.1 数列的概念与简单表示法2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和【重点】1、数列及其有关概念,通项公式及其应用。
2、根据数列的递推公式写出数列的前几项。
3、等差数列的概念,等差数列的通项公式;等差数列的定义、通项公式、性质的理解与应用。
4、等差数列n项和公式的理解、推导及应用,熟练掌握等差数列的求和公式。
5、等比数列的定义及通项公式,等比中项的理解与应用。
6、等比数列的前n项和公式推导,进一步熟练掌握等比数列的通项公式和前n项和公式【难点】1、根据数列的前n项观察、归纳数列的一个通项公式。
2、理解递推公式与通项公式的关系。
3、等差数列的性质,灵活应用等差数列的定义及性质解决一些相关问题。
4、灵活应用等差数列前n项公式解决一些简单的有关问题。
5、灵活应用求和公式解决问题,灵活应用定义式及通项公式解决相关问题。
6、灵活应用等比数列定义、通项公式、性质解决一些相关问题。
一、数列的概念与简单表示法1.数列的定义:按一定次序排列的一列数叫做数列.注意:(1)数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;(2)定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.2.数列的项:数列中的每一个数都叫做这个数列的项.各项依次叫做这个数列的第1项(或首项),第2项,…,第n项,….3.数列的一般形式:aj,az,ag, …,an, …,或简记为{a},其中a。
是数列的第n项4.数列的通项公式:如果数列{a}的第n项a。
与n之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.注意: (1)并不是所有数列都能写出其通项公式,如上述数列④;(2)一个数列的通项公式有时是不唯一的,如数列:1,0,1,0,1,0, …它的通项公式可以是,也可以是; 1.(3)数列通项公式的作用:①求数列中任意一项;②检验某数是否是该数列中的一项.数列的通项公式具有双重身份,它表示了数列的第召项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项.5.数列与函数的关系:数列可以看成以正整数集N(或它的有限子集{1,2,3,…,n})为定义域的函数an= f(n),当自变量从小到大依次取值时对应的一列函数值。
等差数列前n项和(1)
江苏省沭阳如东高级中学揭可厚
教材分析:
等差数列是苏教版必修五第二章,在江苏高考中非常重要,是八个C级考点之一,所以等差数列前n 项和在高考中非常重要。
本节课是学生学习了等差数列的定义、通项公式后,对数列知识的进一步学习。
数列在生产实际中的应用范围很广,而且是培养学生发现、认识、分析、综合等能力的重要题材,同时也是学生进一步学习高等数学的必备的基础知识。
学情分析:
我校高二年级大部分学生成绩非常优秀,有一定的观察分析能力和归纳推理能力,但是还有少部分学生基础较薄弱,他们对知识的理解还是处于模糊阶段,虽然对等差数列有了一定的了解。
但是由于学生是第一次接触到数列的求和,缺乏相关经验,因此,借助几何直观学习和理解数学,是数学学习中的重要方面。
只有做到了直观上的理解,才是真正的理解。
教学目标:
要求学生掌握等差数列的求和公式以及推导该公式的数学思想方法,并能运用公式解决简单的问题.
教学重点:
掌握等差数列的求和公式推导和应用.
教学难点:
等差数列前n项和公式的推导过程中渗透倒序相加的思想方法.
教学方法:
启发、讨论、引导式.
设计理念:
在教学中通过生动具体的现实问题,激发学生探究的兴趣和欲望,由浅入深,层层深入,增强学生学好数学的心理体验,产生热爱数学的情感,体验在学习中获得成功。
教学策略:
用小组合作学习的方法调动学生的积极性
教学步骤:
问题呈现阶段
探究发现阶段
公式应用阶段
教学过程:
(一)创设问题情境
问题情境一:泰姬陵坐落于印度古都阿格,是十七世纪莫卧儿帝国皇帝沙杰罕为纪念其爱妃所建,她宏伟壮观,纯白大理石砌建而成的主体建筑叫人心醉神
迷,成为世界七大奇迹之一。
陵寝以宝石镶饰,图案之细致令人叫绝。
传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共有100层,奢靡之程度,可见一斑。
你知道这个图案一共花了多少宝石吗?图案中,第1层到第10层一共有多少颗宝石?
问题情境二:设计一个住房贷款问题同学们很感兴趣,用幻灯片展示:贷款25万,还款期限20年,第一个月2308,第二月2303,第三月2998,…依次下去,一共还款多少钱?
<设计说明>:在知道了高斯算法之后,同学们很容易把本题与高 斯算法联系起来,也就是联想到“首尾配对”摆出几何图形,将两个三角形拼成平行四边形. 让学生初步形成数形结合的思想,这是在高中数学学习中非常重要的思想方法.借助图形理解逆序相加,也为后面公式的推导打下基础. 因此在教学中,要鼓励学生借助几何直观进行思考,揭示研究对象的性质和关系,从而渗透了数形结合的数学思想。
上述故事归结为:
1.这是求等差数列1,2,3,…,100前100项和
2. 求等差数列1,2,3,…,10前10项
3. 求2308+2303+2298+…等差数列的和,用高斯算法即首尾相 加较麻烦,为了引出公式二
(二)等差数列求和公式
一般地,称12n a a a +++ 为等差数列的前n 项的和,用n s 表示,即12n n s a a a =+++
1. 思考:受高斯的启示,我们这里可以用什么方法去求和呢?思考后知道,也可以用“倒序相加法”进行求和。
我们用两种方法表示n s :
1111()(2)[(1)]n s a a d a d a n d =+++++++- ……①
()(2)[(1)]n n n n n s a a d a d a n d =+-+-++-- ……②
由①+②,得 1112()()()n n n n S a a a a a a =++++++
=1()n n a a +
由此得到等差数列{}n a 的前n 项和的公式:1()2n n n a a s +=
对于这个公式,我们知道:只要知道等差数列首项、尾项和项数就可以求等差数列前n 项和了。
2. 除此之外,等差数列还有其他方法吗?当然,对于等差数列求和公式的推导,也可以有其他的推导途径。
例如:
12n n s a a a =+++
=1111()(2)[(1)]a a d a d a n d +++++++-
=1[23(1)]na d d d n d +++++-
=1[12(1)]na n d d ++++- =1(1)2
n n d na -+ 这两个公式是可以相互转化的。
把1(1)n a a n d =+-代入1()2n n n a a s +=
中,就可以得到n s =1(1)2
n n d na -+ 引导学生思考这两个公式的结构特征得到:第一个公式反映了等差数列的任
意的第k 项与倒数第k 项的和等于首项与末项的和这个内在性质。
第二个公式反映了等差数列的前n 项和与它的首项、公差之间的关系,这两个公式的共同点都有四个量,都有1a 和n ,都可以“知三求二”,不同点是第一个公式还需知道n a ,而第二个公式是要知道d ,解题时还需要根据已知条件决定选用哪个公式。
<设计说明>:让学生参与知识的形成过程,提高兴趣,体验成就感. 对公式的教学,要使学生掌握与理解公式的来龙去脉,公式的推导方法,理解公式的成立条件,充分体现公式之间的联系。
(三) 数学运用
例1 求和: (1)1+2+3+…+n (2)1+3+5+…+(21n -)(3)2+4+6+…+2n 学生通过这三个小题进一步熟悉公式(-)
例2 等差数列-10,-6,-2,2, …前多少项的和为54?
本题实质是反用公式,解一个关于n 的一元二次函数,注意得到的项数n 必须是正整数.
<设计说明>:让学生观察分析,灵活应用公式,培养学生转化能力、计算能力,同时渗透方程思想。
例3.在等差数列{}n a 中
(1)已知:25121536a a a a +++=,求16s (2).已知:620a =,求11s
学生观察分析:知三求一,首先找出已知那三个量,求那个量,然后再判断使用哪一个求和公式,最后让学生共同计算结果。
(四)课堂练习
(1)在等差数列{}n a 中,已知 d =20,n =37,n s =629,求1a 及n a .
(2)求1000以内能被7整除的所有自然数之和.
(3)南北朝《张秋建算经》:今有女子善织布,逐日所织布以同数递增,初日织五尺,计织三十日,共织九匹三丈,问日增几何?(一匹为四丈) (五)要点归纳与方法小结
本节课学习了以下内容:
1.运用从特殊到一般的方法得到了等差数列前n 项和公式.
11()(1)22
n n n a a n n d S na +-==+; 2.探究过程中得到了一种重要的求和方法:倒序相加法.
3.学生进一步体会数形结合思想,分类讨论思想。
六、课后作业
1.教材47-48页:1、2、3、5、6、7
2.等差数列的前n 项和的求和方法除了倒序相加法还有没有其它方法呢?
(七)反思与评价
1.用倒序相加法推导等差数列前n 项和公式
2.用推导的两个公式灵活解题。
3.特别注意n s 公式中项数n 的值。
‘
(八):板书设计。