2013江苏淮安中考数学
- 格式:doc
- 大小:379.00 KB
- 文档页数:11
第4题l O 2O 12013年南京中考数学试题一、选择题(本大题共有6小题,共12分,每小题2分.) 1.计算12-7×(-4)+8÷(-2)的结果是A .-24B .-20C .6D .362.计算23)1·a a (的结果是A .aB .5aC .6aD .9a3.设边长为3的正方形的对角线长为a.下列关于a 的四种说法:①a 是无理数;②a 可以用数轴上的一个点来表示;③3<a <4;④a 是18的算术平方根。
其中,所有正确说法的序号是 A .①④ B .②③ C .①②④ D .①③④ 4.如图,⊙O 1、⊙O 2的圆心O 1、O 2在直线l 上,⊙O 1的半径为2cm ,⊙O 2的半径为3cm ,O 1O 2=8cm 。
⊙O 1以1cm/s 的速度沿直线l 向右运动,7s 后停止运动。
再此过程中,⊙O 1与⊙O 2没有出现的位置关系是A .外切B .相交C .内切D .内含函数y=k 1x 的图像与反比例函数xk y 2=的图像没有公5.在同一直角坐标系中,若正比例共点,则A .k 1+ k 2<0B .k 1+ k 2>0C .k 1k 2<0D .k 1k 2>06. 如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,下列图形中,是该几何体的表面展开图的是二、填空题(本大题共有10小题,共20分,每小题2分.)7.-3的相反数是 ;-3的倒数是 . 8.计算2123-的结果是 . 第6题A .B .C .D .F E O D B A 1D'B'C'D CB A 第12题第11题N PMAB9.使式子111-+x 有意义的x 的取值范围是 . 10.第二节亚洲青年运动会将于2013年8月16日至24日在南京举办,在此期间约有13000名青少年志愿者提供服务,将13000用科学计数法表示为 .11.如图将矩形ABCD 绕点A 顺时针旋转到AB ’C ’D ’的位置,旋转角α(0°<α<90°).若 ∠1=110°,则∠α= °.12. 如图,将菱形纸片ABCD 折叠,使点A 恰好落在菱形的对称中心O 处,折痕为EF .若菱形ABCD 的边长为2cm ,∠A =120°,则EF = cm .13.△OAB 是以正多边形相邻的两个顶点A 、B 与它的中心O 为顶点的三角形,若△OAB 的一个内角为70°,则该正多边形的边数为 .14. 已知如图所示的图形的面积为24,根据图中的条件,可列出方程 . 15. 如图,在梯形ABCD 中,AD ∥BC ,AB =DC ,AC 与BD 相交于点P ,已知A (2,3),B (1,1), D (4,3),则点P 的坐标为( , ).16.计算⎪⎭⎫⎝⎛+++⎪⎭⎫ ⎝⎛------⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛----51413121615141312116151413121514131211的结果是.三、解答题(本大题共有11小题,共88分.)17.(6分)化简b a a b a b b a +÷⎪⎭⎫ ⎝⎛---221. 18.(6分)解方程x x x --=-2112219.(8分)如图,在四边形ABCD 中,AB =BC ,对角线BD 平分∠ABC ,P 是BD 上一点,过点P 作PM ⊥AD ,PN ⊥CD ,垂足分别为M 、N.(1)求证:∠ADB =∠CDB ;(2)若∠ADC =90°,求证:四边形MPND 是正方形.x第14题第15题20.(8分)(1)一只不透明的袋子中装有颜色分别为红、黄、蓝、白的球各1个,这些球除颜色外都相同,求下列事件的概率:①搅匀后从中任意摸出1个球,恰好是红球;②搅匀后从中任意摸出1个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出1个球,两次都是是红球;(2)某次考试共有6道选择题,每道题所给出的4个选项中,恰有一项是正确的.如果小明从每道题的4个选项中随机的选择一个,那么他6道选择题全部选正确的概率是( )A .41B .641⎪⎭⎫ ⎝⎛ C .6411⎪⎭⎫ ⎝⎛- D .6431⎪⎭⎫ ⎝⎛-21.(9分)某校有2000名学生,为了解全校学生的上学方式,该校数学兴趣小组在全校随机抽取了150名学生进行抽样调查,整理样本数据,得到下列图表:问题:如果名学生全部在同一个年级抽取,这样的抽样是否合理?请说明理由;步行10%其它6%乘私家车 20%乘公共交通工具 30%骑车34% 某校150名学生上学方式 频数分布表 某校150名学生上学方式 扇形统计图(2)根据抽样调查的结果,将估计出的全校2000名学生上学方式的情况绘制成条形统计图:(3)该校数学兴趣小组结合调查获取的信息,向学校提出了一些建议,如:骑车上学的学生数约占全校的34%,建议学生合理安排自行车停车场地,请你结合上述统计的全过程,再提出一条合理化建议: .22.(8分)已知不等臂跷跷板AB 长4m ,如图①,当AB 的一端A 碰到地面时,AB 与地面的夹角为α;如图②,当AB 的另一端B 碰到地面时,AB 与地面的夹角为β.求跷跷板AB 的支撑点O 到地面的高度OH .(用含α、β的式子表示)23.(8分)某商场促销方案规定:商场内所有商品按标价的80%出售,同时,当顾客在商场内700~900某校2000名学生上学方式条形统计图 步行 骑车 乘公共 乘私 其它 上学方式 交通工具 家车 人数 H ① H ②注:300~400表示消费金额大于300元且小于或等于400元,其他类同.根据上述促销方案,顾客在该商场购物可以获得双重优惠,例如,若购买标价为400元的商品,则消费金额为320元,获得的优惠额为400×(1-80%)+30=110(元) (1)购买一件标价为1000元的商品,顾客获得的优惠额是多少?(2)如果顾客购买标价不超过800元的商品,要使获得的优惠额不少于226元,那么该商品的标价至少为多少元?24.(8分)小丽驾车从甲地到乙地,设她出发第x min 时的速度为y km/h ,图中折线表示她在整个驾车过程中第y 与 x 之间的函数关系.(1)小丽驾车的最高速度是 km/h;(2)当20≤x ≤30时,求y 与 x 之间的函数关系式,并求出小丽出发第22min 时的速度; (3)如果汽车每行驶100km 耗油10L ,那么小丽驾车从甲地到乙地共耗油多少升?25.(8分)如图,AD 是⊙O 的切线,切点为A ,AB 是⊙O 的弦,过点B 作BC ∥AD ,交⊙O 于点C ,连接AC ,过点C 作CD ∥AB ,交AD 于点D ,连接AO 并延长交BC 于点M ,交过点C 的直线于点P ,且∠BCP =∠ACD . (1)判断直线PC 与⊙O (2)若AB =9,BC =6,求PC 的长.O y 方法指导 如果物体的运动速度随着时间均匀增加(或减少),那么其在某个时间段内的平均速度为该时间段开始时刻的速度与结束时刻的速度的平均数。
第二讲实数的运算【重点考点例析】考点一:实数的大小比较。
A.6个B.5个C.4个D.3个点评:本题主要考查了无理数的估算和数轴,根据数轴的特点,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.对应训练1.(2013•内江)下列四个实数中,绝对值最小的数是()A.-5 B.C.1 D.4考点二:估算无理数的大小A.1与2之间B.2与3之间C.3与4之间D.4与5之间点评:此题主要考查了根式的计算和估算无理数的大小,解题需掌握二次根式的基本运算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.对应训练考点三:有关绝对值的运算例3 (2013•咸宁)在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a-b|=2013,且AO=2BO,则a+b的值为-671.点评:本题考查了数轴、绝对值以及两点间的距离.根据已知条件得到a<0<b是解题的关键.对应训练.考点四:实数的混合运算。
点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负零指数幂、负指数幂、特殊角的三角函数值、绝对值等考点的运算.对应训练考点五:实数中的规律探索。
例5 (2013•永州)我们知道,一元二次方程x2=-1没有实数根,即不存在一个实数的平方等于-1.若我们规定一个新数“i”,使其满足i2=-1(即方程x2=-1有一个根为i).并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有i1=i,i2=-1,i3=i2•i=(-1)•i=-i,i4=(i2)2=(-1)2=1,从而对于任意正整数n,我们可以得到i4n+1=i4n•i=(i4)n•i=i,同理可得i4n+2=-1,i4n+3=-i,i4n=1.那么i+i2+i3+i4+…+i2012+i2013的值为()A.0 B.1 C.-1 D.i点评:本题考查了实数的运算,解答本题的关键是计算出前面几个数的值,发现规律,求出一个循环内的和再计算,有一定难度.对应训练【聚焦山东中考】A.- B.- C.-2 D.-1A.5B.-5C.6D.-63.(2013•日照)计算-22+3的结果是()A.7 B.5 C.-1 D.-5 4.(2013•聊城)(-2)3的相反数是()A.-6 B.8 C.- 16D.165.(2013•菏泽)如果a的倒数是-1,那么a2013等于()A.1 B.-1 C.2013 D.-2013 【备考真题过关】一、选择题1.(2013•广州)比0大的数是()A.-1 B.-12C.0 D.12.(2013•重庆)在-2,0,1,-4这四个数中,最大的数是()A.-4 B.-2 C.0 D.1 3.(2013•天津)计算(-3)+(-9)的结果等于()A.12 B.-12 C.6 D.-6 4.(2013•河北)气温由-1℃上升2℃后是()A.-1℃B.1℃C.2℃D.3℃5.(2013•自贡)与-3的差为0的数是()A.3 B.-3 C.13D.-136.(2013•温州)计算:(-2)×3的结果是()A.-6 B.-1 C.1 D.6 7.(2013•厦门)下列计算正确的是()A.-1+2=1 B.-1-1=0 C.(-1)2=-1 D.-12=1 8.(2013•南京)计算:12-7×(-4)+8÷(-2)的结果是()A.-1 B.1 C.D.710.(2013•南京)设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是()A.①④B.②③C.①②④D.①③④二、填空题...20.(2013•天河区一模)我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1011)2换算成十进制数应为:(101)2=1×22+0×21+1×20=4+0+1=5;(1011)2=1×23+0×22+1×21+1×20=11按此方式,将二进制(1101)2换算成十进制数的结果是13.三、解答题。
2013年某某省某某市淮海中学中考数学三模试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)(2013•六盘水)﹣2013相反数()A.﹣2013 B.C.2013 D.﹣考点:相反数.分析:根据相反数的概念:只有符号不同的两个数叫做互为相反数解答即可.解答:解:﹣2013的相反数为2013,故选C.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10﹣5B.0.25×10﹣6C.2.5×10﹣5D.2.5×10﹣6考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000 0025=2.5×10﹣6;故选:D.点评:本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)(2012•某某)等腰三角形两边长分别为4和8,则这个等腰三角形的周长为()A.16 B.18 C.20 D.16或20考点:等腰三角形的性质;三角形三边关系.专题:压轴题;探究型.分析:由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.解答:解:①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8﹣4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.故选C.点评:本题考查的是等腰三角形的性质和三边关系,解答此题时注意分类讨论,不要漏解.4.(3分)(2011•某某)下列计算正确的是()A.x2•x=x3B.x+x=x2C.(x2)3=x5D.x6÷x3=x2考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:根据同底数幂的乘法、合并同类项、幂的乘方、同底数幂的除法的运算法则计算即可.解答:解:A、正确;B、x+x=2x,选项错误;C、(x2)3=x6,选项错误;D、x6÷x3=x3,选项错误.故选A.点评:本题考查了同底数幂的乘法、合并同类项、幂的乘方、同底数幂的除法等多个运算性质,需同学们熟练掌握.5.(3分)(2011•某某)如图所示的物体有两个紧靠在一起的圆柱体组成,它的主视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:主视图是从正面看,圆柱从正面看是长方形,两个圆柱,看到两个长方形.故选A.点评:此题主要考查了三视图的知识,主视图是从物体的正面看得到的视图.6.(3分)(2011•某某)如图,直线AB、CD相交于点E,DF∥AB.若∠D=70°,则∠CEB等于()A.70°B.80°C.90°D.110°考点:平行线的性质.专题:压轴题.分析:由DF∥AB,根据两直线平行,内错角相等,即可求得∠BED的度数,又由邻补角的定义,即可求得答案.解答:解:∵DF∥AB,∴∠BED=∠D=70°,∵∠BED+∠BEC=180°,∴∠CEB=180°﹣70°=110°.故选D.点评:此题考查了平行线的性质.注意两直线平行,内错角相等,注意数形结合思想的应用.7.(3分)(2013•某某)已知:如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB的度数为()A.45°B.35°C.25°D.20°考点:圆周角定理.专题:探究型.分析:直接根据圆周角定理进行解答即可.解答:解:∵OA⊥OB,∴∠AOB=90°,∴∠AC B=∠AOB=45°.故选A.点评:本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8.(3分)(2010•北仑区二模)如图,以AB为直径的半圆O上有两点D、E,ED与BA的延长线交于点C,且有DC=OE,若∠C=20°,则∠EOB的度数是()A.40°B.50°C.60°D.80°考点:圆的认识;三角形的外角性质;等腰三角形的性质.专题:压轴题.分析:利用等边对等角即可证得∠C=∠DOC=20°,然后根据三角形的外角等于不相邻的两个内角的和即可求解.解答:解:∵CD=OD=OE,∴∠C=∠DOC=20°,∴∠EDO=∠E=40°,∴∠EOB=∠C+∠E=20°+40°=60°.故选C.点评:本题主要考查了三角形的外角的性质和等腰三角形的性质,正确理解圆的半径都相等是解题的关键.二、填空题(本大题共10题,每小题3分,共30分)9.(3分)(2012•某某)计算:23= 8 .考点:有理数的乘方.分析:正确理解有理数乘方的意义,a n表示n个a相乘的积.解答:解:23表示3个2相乘的积,2×2×2=8,因此23=8.点评:要准确理解有理数乘方的含义.10.(3分)(2012•某某)使有意义的x的取值X围是x≤1.考点:二次根式有意义的条件.专题:计算题.分析:根据二次根式的被开方数为非负数,即可得出x的X围.解答:解:∵有意义,∴1﹣x≥0,解得:x≤1.故答案为:x≤1.点评:此题考查了二次根式有意义的条件,属于基础题,解答本题的关键是熟练掌握二次根式的被开方数为非负数.11.(3分)(2013•达州)分解因式:x3﹣9x= x(x+3)(x﹣3).考点:提公因式法与公式法的综合运用.分析:先提取公因式x,再利用平方差公式进行分解.解答:解:x3﹣9x,=x(x2﹣9),=x(x+3)(x﹣3).点评:本题主要考查提公因式法分解因式和利用平方差公式分解因式,本题要进行二次分解,分解因式要彻底.12.(3分)(2012•某某)方程﹣=0的解是x=6 .考点:解分式方程.专题:计算题.分析:先去分母,然后求出整式方程的解,继而代入检验即可得出方程的根.解答:解:去分母得:3(x﹣2)﹣2x=0,去括号得:3x﹣6﹣2x=0,整理得:x=6,经检验得x=6是方程的根.故答案为:x=6.点评:此题考查了解分式方程的知识,注意分式方程要化为整式方程求解,求得结果后一定要检验.13.(3分)(2012•某某)如图,∠1、∠2、∠3、∠4是五边形ABCDE的4个外角.若∠A=120°,则∠1+∠2+∠3+∠4=300°.考点:多边形内角与外角.专题:数形结合.分析:根据题意先求出∠5的度数,然后根据多边形的外角和为360°即可求出∠1+∠2+∠3+∠4的值.解答:解:由题意得,∠5=180°﹣∠EAB=60°,又∵多边形的外角和为360°,∴∠1+∠2+∠3+∠4=360°﹣∠5=300°.故答案为:300°.点评:本题考查了多边形的外角和等于360°的性质以及邻补角的和等于180°的性质,是基础题,比较简单.(3分)如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为10 .14.考点:平移的性质.分析:根据平移的基本性质解答即可.解答:解:根据题意,将周长为8的△ABC沿边BC向右平移1个单位得到△DEF,则AD=1,BF=BC+CF=BC+1,DF=AC,又∵AB+BC+AC=10,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.故答案为:10.点评:本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.15.(3分)如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于D,若AC:BC=4:3,AB=10cm,则OD的长为4 cm.考点:圆周角定理;勾股定理;三角形中位线定理;垂径定理.分析:根据AB是直径可以得到△ABC是直角三角形,依据勾股定理即可求得AC的长,然后根据垂径定理证得D是BC的中点,则OD是△ABC的中位线,依据三角形的中位线定理即可求解.解答:解:∵AB是⊙O的直径,∴∠ACB=90°,又∵AC:BC=4:3,∴设AC=4x,则BC=3x,(4x)2+(3x)2=102,解得:x=2,则AC=8cm,BC=6cm.∵OD⊥BC于D,∴BD=CD,又∵OA=OB∴OD=AC=×8=4cm.故答案是:4.点评:本题考查了圆周角定理、勾股定理以及三角形的中位线定理,正确根据垂径定理证明OD是△ABC的中位线是关键.16.(3分)(2012•某某)在某公益活动中,小明对本班同学的捐款情况进行了统计,绘制成如图不完整的统计图.其中捐100元的人数占全班总人数的25%,则本次捐款的中位数是20 元.考点:中位数;条形统计图.分析:根据捐款100元的人数占全班总人数的25%求得总人数,然后确定捐款20元的人数,然后确定中位数即可.解答:解:∵捐100元的15人占全班总人数的25%,∴全班总人数为15÷25%=60人,∴捐款20元的有60﹣20﹣15﹣10=15人,∴中位数是第30和第31人的平均数,均为20元∴中位数为20元.故答案为20.点评:本题考查了中位数的求法,解题的关键是首先求得总人数和捐款20元的人数.17.(3分)如图,直径为10的⊙A经过点C(0,5)和点0(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC 的余弦值为.考点:圆周角定理;坐标与图形性质;含30度角的直角三角形;特殊角的三角函数值.分析:首先设⊙A与x轴的另一个交点为D,连接CD,根据直角对的圆周角是直径,即可得CD是直径,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,可得∠OBC=∠ODC,继而可求得答案.解答:解:设⊙A与x轴的另一个交点为D,连接CD,∵∠COD=90°,∴CD是直径,即CD=10,∵C(0,5),∴OC=5,∴OD==5,∵∠OBC=∠ODC,∴cos∠OBC=cos∠ODC===.故答案为:.点评:此题考查了圆周角定理、勾股定理以及三角函数的定义.注意掌握辅助线的作法,注意掌握数形结合思想与转化思想的应用.18.(3分)在平面直角坐标系中,点O为坐标原点,点A的坐标为(3,4),点B的坐标为(6,0),D,E 分别是线段AO,AB上的点,以DE所在直线为对称轴,把△ADE作轴对称变换得△A′DE,点A′恰好在x 轴上若△OA′D与△OAB相似,则OA′的长为或3 .考点:相似三角形的判定与性质;坐标与图形性质;轴对称的性质.专题:压轴题.分析:由点A的坐标为(3,4),点B的坐标为(6,0),可得OA=5,OB=6,AB=5,然后分别从△OA′D∽△OAB与△OA′D∽△OBA去分析,根据相似三角形的对应边成比例,即可取得答案.解答:解:∵点A的坐标为(3,4),点B的坐标为(6,0),∴OA=5,OB=6,AB=5,若△OA′D∽△OAB,则==,设AD=x,则OD=5﹣x,A′D=OA′=x,即=,解得:x=,∴OA′=;若△OA′D∽△OBA,则==,设AD=AD′=y,则OD=5﹣y,则y=5﹣y,解得:y=2.5,可得:OA′=3.故答案为:或3.点评:此题考查了相似三角形的性质与折叠的知识.此题综合性较强,难度较大,注意数形结合与方程思想的应用,小心别漏解.三、解答题(本大题共9小题,共96分.解答时需写出必要的文字说明、过程或步骤)19.(16分)(1)计算:(π﹣2013)0﹣(﹣)﹣2+tan45°(2)先化简,再求值:﹣,其中x=﹣3.考点:分式的化简求值;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.分析:(1)根据零指数幂、负整数指数幂、特殊角的三角函数值分别进行计算,再把所得的结果合并即可;(2)先把除法转化成乘法,再把分母因式分解,然后约分,最后把x的值代入即可.解答:解:(1)(π﹣2013)0﹣(﹣)﹣2+tan45°=1﹣9+1=﹣7;(2)﹣=×=,当x=﹣3代入上式得:原式==﹣6.点评:此题考查了分式的化简求值和实数的运算,用到的知识点是零指数幂、负整数指数幂、特殊角的三角函数值以及分式的化简的步骤,注意把分式化到最简,再代值.20.(8分)(2010•某某)如图,在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF.(1)求证:△BDF≌△CDE;(2)若AB=AC,求证:四边形BFCE是菱形.考点:菱形的判定;全等三角形的判定.专题:证明题;压轴题.分析:(1)由CE、BF的内错角相等,可得出△CED和△BFD的两组对应角相等;已知D是BC的中点,即BD=DC,由AAS即可证得两三角形全等;(2)若AB=AC,则△ABC是等腰三角形,而D是底边BC的中点,根据等腰三角形三线合一的性质可证得AD⊥BC;由(1)的全等三角形,易证得四边形BFCE的对角线互相平分;根据对角线互相垂直平分的四边形是菱形即可判定四边形BFCE是菱形.解答:证明:(1)∵CE∥BF,∴∠ECD=∠FBD,∠DEC=∠DFB;又∵D是BC的中点,即BD=DC,∴△BDF≌△EDC;(AAS)(2)∵AB=AC,∴△ABC是等腰三角形;又∵BD=DC,∴AD⊥BC(三线合一),由(1)知:△BDF≌△EDC,则DE=DF,DB=DC;∴四边形BFCE是菱形(对角线互相平分且互相垂直的四边形为菱形).点评:此题主要考查的是全等三角形的判定和性质、等腰三角形的性质及菱形的判定方法.21.(8分)(2012•某某)在6X卡片上分别写有1~6的正数,随机的抽取一X后放回,再随机的抽取一X.(1)用列表法或树形图表示所有可能出现的结果;(2)记第一次取出的数字为a,第二次取出的数字为b,求是整数的概率.考点:列表法与树状图法.分析:(1)首先根据题意列出表格,由表格即可求得所有等可能的结果;(2)由(1)中的表格,即可求得是整数的情况,然后利用概率公式求解即可求得答案.解答:解:(1)列表得:6 (1,6)(2,6)(3,6)(4,6)(5,6)(6,6)5 (1,5)(2,5)(3,5)(4,5)(5,5)(6,5)4 (1,4)(2,4)(3,4)(4,4)(5,4)(6,4)3 (1,3)(2,3)(3,3)(4,3)(5,3)(6,3)2 (1,2)(2,2)(3,2)(4,2)(5,2)(6,2)1 (1,1)(2,1)(3,1)(4,1)(5,1)(6,1)1 2 3 4 5 6则可得共有36种等可能的结果;(2)∵是整数的有(1,1),(1,2),(1,3)(1,4),(1,5),(1,6),(2,2),(2,4),(2,6),(3,3)(3,6),(4,4),(5,5),(6,6)共14种情况,∴是整数的概率为:.…8分点评:此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.22.(10分)(2012•某某)小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈:“今天买这两样菜共花了45元,上月买同重量的这两样菜只要36元”;爸爸:“报纸上说了萝卜的单价上涨50%,排骨单价上涨20%”;小明:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?”请你通过列方程(组)求解这天萝卜、排骨的单价(单位:元/斤).考点:二元一次方程组的应用.专题:压轴题.分析:设上月萝卜的单价是x元/斤,排骨的单价y元/斤,根据小明的爸爸和妈妈的对话找到等量关系列出方程组求解即可.解答:解:解法一:设上月萝卜的单价是x元/斤,排骨的单价y元/斤,根据题意得:.解得:.这天萝卜的单价是(1+50%)x=(1+50%)×2=3,这天排骨的单价是(1+20%)y=(1+20%)×15=18,答:这天萝卜的单价是3元/斤,排骨的单价是18元/斤;解法二:这天萝卜的单价是x元/斤,排骨的单价是y元/斤,根据题意得:解得:.答:这天萝卜的单价是3元/斤,排骨的单价是18元/斤.点评:本题考查了二元一次方程组的应用,解题的关键是根据题目找到等量关系并列出方程组.23.(10分)(2011•某某)某中学学生为了解该校学生喜欢球类活动的情况,随机抽取了若干名学生进行问卷调查(要求每位学生只能填写一种自己喜欢的球类),并将调查的结果绘制成如下的两幅不完整的统计图.请根据图中提供的信息,解答下面的问题:(1)参加调查的学生共有300 人,在扇形图中,表示“其他球类”的扇形的圆心角为36 度;(2)将条形图补充完整;(3)若该校有2000名学生,则估计喜欢“篮球”的学生共有800 人.考点:条形统计图;用样本估计总体;扇形统计图.专题:压轴题.分析:(1)本题需根据喜欢乒乓球的人数和所占的百分比即可求出参加调查的学生总数,用360°乘以喜欢“其他球类”的学生所占的百分比即可得出圆心角的度数.(2)本题需先求出喜欢足球的学生人数即可将条形图补充完整.(3)本题需先求出喜欢“篮球”的学生所占的百分比即可得出该校喜欢“篮球”的学生人数.解答:解:(1)参加调查的学生共有60÷20%=300人表示“其他球类”的扇形的圆心角为:360×=36°(2)如图.(3)喜欢“篮球”的学生共有:2000×=800(人)故答案为:300,36°,800点评:本题主要考查了条形图和扇形图,在解题时要注意灵活应用条形图和扇形图之间的关系是本题的关键.24.(10分)为保卫祖国的南疆,我人民解放军海军在中业岛(P地)处设立观测站,按国际惯例,中业岛12海里X围内均为我国领海,外国船只除特许外,不得私自进入我国领海.某日,观测员发现某国船只行驶至P地南偏西30°的A处,欲向正东方向航行至P地南偏东60°的B处,已知A、B两地相距10海里问此时是否需要向此未经特许的船只发出警告,命令其不得进入我国领海?考点:解直角三角形的应用-方向角问题.分析:首先作PH⊥AB于H,设PH=x海里,由已知得:∠APH=30°,∠BPH=60°,即可得AH=PH•tan30°=x(海里),BH=PH•tan60°=x(海里),继而可得方程:x=10,解此方程即可求得PH的长,继而可求得答案.解答:解:需要向此未经特许的船只发出警告,命令其不得进入我国领海.作PH⊥AB于H,设PH=x海里,由已知得:∠APH=30°,∠BPH=60°,∴AH=PH•tan30°=x(海里),BH=PH•tan60°=x(海里),∴AB=AH+BH=x,∵AB=10海里,∴x=10,解得:x=7.5<12.∴需要向此未经特许的船只发出警告,命令其不得进入我国领海.点评:此题考查了方向角问题.此题难度适中,注意构造直角三角形,并能借助于解直角三角形的知识求解是关键.25.(10分)(2012•建瓯市一模)如图,已知抛物线y=x2﹣ax+a2﹣4a﹣4与x轴相交于点A和点B,与y轴相交于点D(0,8),直线DC平行于x轴,交抛物线于另一点C,动点P以每秒2个单位长度的速度从C 点出发,沿C→D运动,同时,点Q以每秒1个单位长度的速度从点A出发,沿A→B运动,连接PQ、CB,设点P运动的时间为t秒.(1)求a的值;(2)当四边形ODPQ为矩形时,求这个矩形的面积;(3)当四边形PQBC的面积等于14时,求t的值.(4)当t为何值时,△PBQ是等腰三角形?(直接写出答案)考点:二次函数综合题.专题:应用题;压轴题.分析:(1)把点D(0,8)代入抛物线y=x2﹣ax+a2﹣4a﹣4解方程即可解答;(2)利用(1)中求得的抛物线,求得点A、B、C、D四点坐标,再利用矩形的判定与性质解得即可;(3)利用梯形的面积计算方法解决问题;(4)只考虑PQ=PB,其他不符合实际情况,即可找到问题的答案.解答:解:(1)把点(0,8)代入抛物线y=x2﹣ax+a2﹣4a﹣4得,a2﹣4a﹣4=8,解得:a1=6,a2=﹣2(不合题意,舍去),因此a的值为6;(2)由(1)可得抛物线的解析式为y=x2﹣6x+8,当y=0时,x2﹣6x+8=0,解得:x1=2,x2=4,∴A点坐标为(2,0),B点坐标为(4,0),当y=8时,x2﹣6x+8=8,解得:x=0或x=6,∴D点的坐标为(0,8),C点坐标为(6,8),DP=6﹣2t,OQ=2+t,当四边形OQPD为矩形时,DP=OQ,2+t=6﹣2t,t=,OQ=2+=,S=8×=,即矩形OQPD的面积为;(3)四边形PQBC的面积为(BQ+PC)×8,当此四边形的面积为14时,(2﹣t+2t)×8=14,解得t=(秒),当t=时,四边形PQBC的面积为14;(4)过点P作PE⊥AB于E,连接PB,当QE=BE时,△PBQ是等腰三角形,∵CP=2t,∴DP=6﹣2t,∴BE=OB﹣PD=4﹣(6﹣2t)=2t﹣2,∵OQ=2+t,∴QE=PD﹣OQ=6﹣2t﹣(2+t)=4﹣3t,∴4﹣3t=2t﹣2,解得:t=,∴当t=时,△PBQ是等腰三角形.点评:此题考查待定系数法求函数解析式、矩形的判定与性质、矩形的面积、梯形的面积以及等腰三角形的判定等知识.26.(12分)(2012•某某)星期天8:00~8:30,燃气公司给平安加气站的储气罐注入天然气,注完气之后,一位工作人员以每车20米3的加气量,依次给在加气站排队等候的若干辆车加气.储气罐中的储气量y(米3)与时间x(小时)的函数关系如图所示.(1)8:00~8:30,燃气公司向储气罐注入了8000 米3的天然气;(2)当x≥8.5时,求储气罐中的储气量y(米3)与时间x(小时)的函数关系式;(3)正在排队等候的20辆车加完气后,储气罐内还有天然气9600 米3,这第20辆车在当天9:00之前能加完气吗?请说明理由.考点:一次函数的应用.分析:(1)根据函数图象可知,8点时储气罐中有2000米3的天然气,8:30时储气罐中有10000米3的天然气,即可得出燃气公司向储气罐注入了8000米3的天然气;(2)根据图象上点的坐标得出函数解析式即可;(3)根据每车20米3的加气量,则可求出20辆车加完气后的储气量,进而得出所用时间.解答:解:(1)根据图象可得出:燃气公司向储气罐注入了10000﹣2000=8000(米3)的天然气;故答案为:8000;(2)当x≥8.5时由图象可设y与x的函数关系式为y=kx+b,由已知得:,解得,故当x≥8.5时,储气罐中的储气量y(米3)与时间x(小时)的函数关系式为:y=﹣1000x+18500,(3)根据每车20米3的加气量,则20辆车加完气后,储气罐内还有天然气:10000﹣20×20=9600(米3),故答案为:9600,根据题意得出:9600=﹣1000x+18500,x=8.9<9,答:这第20辆车在当天9:00之前能加完气.点评:此题主要考查了一次函数的应用以及待定系数法求一次函数解析式,利用图象获取正确信息是解题关键.27.(12分)(2012•某某)已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.(Ⅰ)如图①,当∠BOP=30°时,求点P的坐标;(Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).考点:翻折变换(折叠问题);坐标与图形性质;全等三角形的判定与性质;勾股定理;相似三角形的判定与性质.专题:几何综合题;压轴题.分析:(Ⅰ)根据题意得,∠OBP=90°,OB=6,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案;(Ⅱ)由△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,可知△OB′P≌△OBP,△QC′P≌△QCP,易证得△OBP∽△PCQ,然后由相似三角形的对应边成比例,即可求得答案;(Ⅲ)首先过点P作PE⊥OA于E,易证得△PC′E∽△C′QA,由勾股定理可求得C′A的长,然后利用相似三角形的对应边成比例与m=,即可求得t的值.解答:解:(Ⅰ)根据题意,∠OBP=90°,OB=6,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t.∵OP2=OB2+BP2,即(2t)2=62+t2,解得:t1=2,t2=﹣2(舍去).∴点P的坐标为(,6).(Ⅱ)∵△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,∴△OB′P≌△OBP,△QC′P≌△QCP,∴∠OPB′=∠OPB,∠QPC′=∠QPC,∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°,∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ.又∵∠OBP=∠C=90°,∴△OBP∽△PCQ,∴,由题意设BP=t,AQ=m,BC=11,AC=6,则PC=11﹣t,CQ=6﹣m.∴.∴m=(0<t<11).(Ⅲ)过点P作PE⊥OA于E,∴∠PEA=∠QAC′=90°,∴∠PC′E+∠EPC′=90°,∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A,∴△PC′E∽△C′QA,∴,∵PC′=PC=11﹣t,PE=OB=6,AQ=m,C′Q=CQ=6﹣m,∴AC′==,∴,∴,∴3(6﹣m)2=(3﹣m)(11﹣t)2,∵m=,∴3(﹣t2+t)2=(3﹣t2+t﹣6)(11﹣t)2,∴t2(11﹣t)2=(﹣t2+t﹣3)(11﹣t)2,∴t2=﹣t2+t﹣3,∴3t2﹣22t+36=0,解得:t1=,t2=,点P的坐标为(,6)或(,6).法二:∵∠BPO=∠OPC′=∠POC′,∴OC′=PC′=PC=11﹣t,过点P作PE⊥OA于点E,则PE=BO=6,OE=BP=t,∴EC′=11﹣2t,在Rt△PEC′中,PE2+EC′2=PC′2,即(11﹣t)2=62+(11﹣2t)2,解得:t1=,t2=.点P的坐标为(,6)或(,6).点评:此题考查了折叠的性质、矩形的性质以及相似三角形的判定与性质等知识.此题难度较大,注意掌握折叠前后图形的对应关系,注意数形结合思想与方程思想的应用.。
【中考数学试题汇编】2013—2018年江苏省淮安市中考数学试题汇编(含参考答案与解析)1、2013年江苏省淮安市中考数学试题及参考答案与解析 (2)2、2014年江苏省淮安市中考数学试题及参考答案与解析 (19)3、2015年江苏省淮安市中考数学试题及参考答案与解析 (40)4、2016年江苏省淮安市中考数学试题及参考答案与解析 (63)5、2017年江苏省淮安市中考数学试题及参考答案与解析 (85)6、2018年江苏省淮安市中考数学试题及参考答案与解析 (105)2013年江苏省淮安市中考数学试题及参考答案一、选择题(本大题共8小题,每小题3分,共24分)1.在﹣1,0.﹣2,1四个数中,最小的数是()A.﹣1 B.0 C.﹣2 D.12.计算(2a)3的结果是()A.6a B.8a C.2a3D.8a33.不等式组1xx⎧⎨⎩<≥的解集是()A.x≥0 B.x<1 C.0<x<1 D.0≤x<14.若反比例函数kyx=的图象经过点(5,﹣1).则实数k的值是()A.﹣5 B.15-C.15D.55.若扇形的半径为6,圆心角为120°,则此扇形的弧长是()A.3π B.4π C.5π D.6π6.如图,数轴上A、B 5.1,则A、B两点之间表示整数的点共有()A.6个B.5个C.4个D.3个7.若等腰三角形有两条边的长度为3和1,则此等腰三角形的周长为()A.5 B.7 C.5或7 D.68.如图,点A、B、C是⊙0上的三点,若∠OBC=50°,则∠A的度数是()A.40°B.50°C.80°D.100°二、填空题(本大题10小题,每小题3分,共30分)9.sin30°的值为.10.方程210x+=的解集是.11.点A(﹣3,0)关于y轴的对称点的坐标是.12.一组数据3,9,4,9,5的众数是.13.若n 边形的每一个外角都等于60°,则n= .14.如图,三角板的直角顶点在直线l 上,看∠1=40°,则∠2的度数是 .15.如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点.若DE=3,则BC= .16.二次函数y=x 2+1的图象的顶点坐标是 .17.若菱形的两条对角线分别为2和3,则此菱形的面积是 .18.观察一列单项式:1x ,3x 2,5x 2,7x ,9x 2,11x 2,…,则第2013个单项式是 . 三、解答题(本大题有10小题,共96分.) 19.(10分)计算:(1)(π﹣5)0﹣|﹣3|(2)2123121a a a a a -⎛⎫++⋅⎪--⎝⎭. 20.(6分)解不等式:x+1≥2x+2,并把解集在数轴上表示出来.21.(8分)如图,在边长为1个单位长度的小正方形组成的两格中,点A 、B 、C 都是格点. (1)将△ABC 向左平移6个单位长度得到得到△A 1B 1C 1;(2)将△ABC 绕点O 按逆时针方向旋转180°得到△A 2B 2C 2,请画出△A 2B 2C 2.22.(8分)如图,在平行四边形ABCD 中,过AC 中点0作直线,分别交AD 、BC 于点E 、F . 求证:△AOE ≌△COF .23.(10分)如图,某中学为合理安排体育活动,在全校喜欢乒乓球、排球、羽毛球、足球、篮球五种球类运动的1000名学生中,随机抽取了若干名学生进行调查,了解学生最喜欢的一种球类运动,每人只能在这五种球类运动中选择一种.调查结果统计如下:解答下列问题:(1)本次调查中的样本容量是;(2)a=,b=;(3)试估计上述1000名学生中最喜欢羽毛球运动的人数.24.(10分)一个不透明的袋子中装有大小、质地完全相同的3只球,球上分别标有2,3,5三个数字.(1)从这个袋子中任意摸一只球,所标数字是奇数的概率是;(2)从这个袋子中任意摸一只球,记下所标数字,不放回,再从从这个袋子中任意摸一只球,记下所标数字.将第一次记下的数字作为十位数字,第二次记下的数字作为个位数字,组成一个两位数.求所组成的两位数是5的倍数的概率.(请用“画树状图”或“列表”的方法写出过程)25.(10分)小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?26.(10分)如图,AB是⊙0的直径,C是⊙0上的一点,直线MN经过点C,过点A作直线MN 的垂线,垂足为点D,且∠BAC=∠DAC.(1)猜想直线MN与⊙0的位置关系,并说明理由;(2)若CD=6,cos=∠ACD=35,求⊙0的半径.27.(12分)甲、乙两地之间有一条笔直的公路L,小明从甲地出发沿公路ι步行前往乙地,同时小亮从乙地出发沿公路L骑自行车前往甲地,小亮到达甲地停留一段时间,原路原速返回,追上小明后两人一起步行到乙地.设小明与甲地的距离为y1米,小亮与甲地的距离为y2米,小明与小亮之间的距离为s米,小明行走的时间为x分钟.y1、y2与x之间的函数图象如图1,s与x之间的函数图象(部分)如图2.(1)求小亮从乙地到甲地过程中y1(米)与x(分钟)之间的函数关系式;(2)求小亮从甲地返回到与小明相遇的过程中s(米)与x(分钟)之间的函数关系式;(3)在图2中,补全整个过程中s(米)与x(分钟)之间的函数图象,并确定a的值.28.(12分)如图,在△ABC中,∠C=90°,BC=3,AB=5.点P从点B出发,以每秒1个单位长度沿B→C→A→B的方向运动;点Q从点C出发,以每秒2个单位沿C→A→B方向的运动,到达点B后立即原速返回,若P、Q两点同时运动,相遇后同时停止,设运动时间为ι秒.(1)当ι=时,点P与点Q相遇;(2)在点P从点B到点C的运动过程中,当ι为何值时,△PCQ为等腰三角形?(3)在点Q从点B返回点A的运动过程中,设△PCQ的面积为s平方单位.①求s与ι之间的函数关系式;②当s最大时,过点P作直线交AB于点D,将△ABC中沿直线PD折叠,使点A落在直线PC上,求折叠后的△APD与△PCQ重叠部分的面积.参考答案与解析一、选择题(本大题共8小题,每小题3分,共24分)1.在﹣1,0.﹣2,1四个数中,最小的数是()A.﹣1 B.0 C.﹣2 D.1【知识考点】有理数大小比较.【思路分析】根据在有理数中:负数<0<正数;两个负数,绝对值大的反而小;据此可求得最小的数.【解答过程】解:在﹣1,0.﹣2,1四个数中,最小的数是﹣2;故选C.【总结归纳】本题考查了有理数的大小比较,其方法如下:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.2.计算(2a)3的结果是()A.6a B.8a C.2a3D.8a3【知识考点】幂的乘方与积的乘方.【思路分析】利用积的乘方以及幂的乘方法则进行计算即可求出答案.【解答过程】解:(2a)3=8a3;故选D.【总结归纳】此题考查了幂的乘方与积的乘方,同底数幂的乘法与幂的乘方很容易混淆,一定要记准法则是解题的关键.3.不等式组1xx⎧⎨⎩<≥的解集是()A.x≥0 B.x<1 C.0<x<1 D.0≤x<1 【知识考点】不等式的解集.【思路分析】根据口诀:大小小大中间找即可求解.【解答过程】解:不等式组1xx⎧⎨⎩<≥的解集是0≤x<1.故选D.【总结归纳】本题考查了不等式组的解集的确定,解不等式组可遵循口诀:同大取较大,同小取较小,大小小大中间找,大大小小解不了.4.若反比例函数kyx=的图象经过点(5,﹣1).则实数k的值是()A.﹣5 B.15-C.15D.5【知识考点】反比例函数图象上点的坐标特征.【思路分析】把点(5,﹣1)代入已知函数解析式,借助于方程可以求得k的值.【解答过程】解:∵反比例函数kyx=的图象经过点(5,﹣1),∴k=xy=5×(﹣1)=﹣5,即k的值是﹣5.故选A.【总结归纳】本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.5.若扇形的半径为6,圆心角为120°,则此扇形的弧长是()A.3π B.4π C.5π D.6π【知识考点】弧长的计算.【思路分析】根据弧长的公式进行计算即可.【解答过程】解:∵扇形的半径为6,圆心角为120°,∴此扇形的弧长12064180ππ⨯==.故选B.【总结归纳】本题考查了弧长的计算.此题属于基础题,只需熟记弧长公式即可.6.如图,数轴上A、B 5.1,则A、B两点之间表示整数的点共有()A.6个B.5个C.4个D.3个【知识考点】实数与数轴;估算无理数的大小.1大比2小,5.1比5大比6小,即可得出A、B两点之间表示整数的点的个数.【解答过程】解:∵12,5<5.1<6,∴A、B两点之间表示整数的点有2,3,4,5,共有4个;故选C.【总结归纳】本题主要考查了无理数的估算和数轴,根据数轴的特点,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.7.若等腰三角形有两条边的长度为3和1,则此等腰三角形的周长为()A.5 B.7 C.5或7 D.6【知识考点】等腰三角形的性质;三角形三边关系.【思路分析】因为已知长度为3和1两边,没由明确是底边还是腰,所以有两种情况,需要分类讨论.【解答过程】解:①当3为底时,其它两边都为1,∵1+1<3,∴不能构成三角形,故舍去,当3为腰时,其它两边为3和1,3、3、1可以构成三角形,周长为7.故选B.【总结归纳】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.8.如图,点A、B、C是⊙0上的三点,若∠OBC=50°,则∠A的度数是()A.40°B.50°C.80°D.100°【知识考点】圆周角定理.【思路分析】在等腰三角形OBC中求出∠BOC,继而根据圆周角定理可求出∠A的度数.【解答过程】解:∵OC=OB,∴∠OCB=∠OBC=50°,∴∠BOC=180°﹣50°﹣50°=80°,∴∠A=12∠BOC=40°.故选A.【总结归纳】此题考查了圆周角定理,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.二、填空题(本大题10小题,每小题3分,共30分)9.sin30°的值为.【知识考点】特殊角的三角函数值.【思路分析】根据特殊角的三角函数值计算即可.【解答过程】解:sin30°=12,故答案为12.【总结归纳】本题考查了特殊角的三角函数值,应用中要熟记特殊角的三角函数值,一是按值的变化规律去记,正弦逐渐增大,余弦逐渐减小,正切逐渐增大;二是按特殊直角三角形中各边特殊值规律去记.10.方程210x+=的解集是.【知识考点】解分式方程.【思路分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答过程】解:去分母得:2+x=0,解得:x=﹣2,经检验x=﹣2是分式方程的解.故答案为:x=﹣2【总结归纳】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.11.点A(﹣3,0)关于y轴的对称点的坐标是.【知识考点】关于x轴、y轴对称的点的坐标.【思路分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可以直接写出答案.【解答过程】解:点A(﹣3,0)关于y轴的对称点的坐标是(3,0),故答案为:(3,0).【总结归纳】此题主要考查了关于y轴对称点的坐标特点,关键是掌握点的坐标的变化规律.12.一组数据3,9,4,9,5的众数是.【知识考点】众数.【思路分析】根据众数的定义:一组数据中出现次数最多的数据即可得出答案.【解答过程】解:这组数据中出现次数最多的数据为:9.故众数为9.故答案为:9.【总结归纳】本题考查了众数的知识,属于基础题,解答本题的关键是熟练掌握一组数据中出现次数最多的数据叫做众数.13.若n边形的每一个外角都等于60°,则n=.【知识考点】多边形内角与外角.【思路分析】利用多边形的外角和360°除以60°即可.【解答过程】解:n=360°÷60°=6,故答案为:6.【总结归纳】此题主要考查了多边形的外角和定理,关键是掌握多边形的外角和等于360度.14.如图,三角板的直角顶点在直线l上,看∠1=40°,则∠2的度数是.【知识考点】余角和补角.【思路分析】由三角板的直角顶点在直线l上,根据平角的定义可知∠1与∠2互余,又∠1=40°,即可求得∠2的度数.【解答过程】解:如图,三角板的直角顶点在直线l上,则∠1+∠2=180°﹣90°=90°,∵∠1=40°,∴∠2=50°.故答案为50°.【总结归纳】本题考查了余角及平角的定义,正确观察图形,得出∠1与∠2互余是解题的关键.15.如图,在△ABC中,点D、E分别是AB、AC的中点.若DE=3,则BC=.【知识考点】三角形中位线定理.【思路分析】根据三角形的中位线平行于第三边并且等于第三边的一半解答即可.【解答过程】解:∵点D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴BC=2DE=2×3=6.故答案为:6.【总结归纳】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理是解题的关键.16.二次函数y=x2+1的图象的顶点坐标是.【知识考点】二次函数的性质.【思路分析】根据顶点式解析式写出顶点坐标即可.【解答过程】解:二次函数y=x2+1的图象的顶点坐标是(0,1).故答案为:(0,1).【总结归纳】本题考查了二次函数的性质,熟练掌握顶点式解析式是解题的关键.17.若菱形的两条对角线分别为2和3,则此菱形的面积是.【知识考点】菱形的性质.【思路分析】菱形的面积是对角线乘积的一半,由此可得出结果即可.【解答过程】解:由题意,知:S菱形=12×2×3=3,故答案为:3.【总结归纳】本题考查了菱形的面积两种求法:(1)利用底乘以相应底上的高;(2)利用菱形的特殊性,菱形面积=12×两条对角线的乘积;具体用哪种方法要看已知条件来选择.18.观察一列单项式:1x,3x2,5x2,7x,9x2,11x2,…,则第2013个单项式是.【知识考点】单项式.【思路分析】先看系数的变化规律,然后看x的指数的变化规律,从而确定第2013个单项式.【解答过程】解:系数依次为1,3,5,7,9,11,…2n﹣1;x的指数依次是1,2,2,1,2,2,1,2,2,可见三个单项式一个循环,故可得第2013个单项式的系数为4025;∵20133=671,∴第2013个单项式指数为2,。
2013年江苏省淮安市中考真题数学一、选择题(本大题共有8小题,每小题3分,共24分)1.(3分)在-1,0.-2,1四个数中,最小的数是( )A.-1B.0C.-2D.1解析:在-1,0.-2,1四个数中,最小的数是-2;答案:C.2.(3分)计算(2a)3的结果是( )A. 6aB. 8aC. 2a3D. 8a3解析:(2a)3=8a3;答案:D.3.(3分)不等式组的解集是( )A. x≥0B. x<1C. 0<x<1D. 0≤x<1解析:不等式组的解集是0≤x<1.答案:D.4.(3分)若反比例函数的图象经过点(5,-1),则实数k的值是( )A. -5B. -C.D. 5解析:∵反比例函数的图象经过点(5,-1),∴k=xy=5×(-1)=-5,即k的值是-5. 答案:A.5.(3分)若扇形的半径为6,圆心角为120°,则此扇形的弧长是( )A. 3πB. 4πC. 5πD. 6π解析:∵扇形的半径为6,圆心角为120°,∴此扇形的弧长==4π.答案:B.6.(3分)如图,数轴上A、B两点表示的数分别为和5.1,则A、B两点之间表示整数的点共有( )A. 6个B. 5个C. 4个D. 3个解析:∵1<2,5<5.1<6,∴A、B两点之间表示整数的点有2,3,4,5,共有4个;答案:C.7.(3分)若等腰三角形有两条边的长度为3和1,则此等腰三角形的周长为( )A. 5B. 7C. 5或7D. 6解析:①当3为底时,其它两边都为1,∵1+1<3,∴不能构成三角形,故舍去,当3为腰时,其它两边为3和1,3、3、1可以构成三角形,周长为7.答案:B.8.(3分)如图,点A、B、C是⊙0上的三点,若∠OBC=50°,则∠A的度数是( )A. 40°B. 50°C. 80°D. 100°解析:∵OC=OB,∴∠OCB=∠OBC=50°,∴∠BOC=180°-50°-50°=80°,∴∠A=∠BOC=40°.答案:A.二、填空题(本大题有10小题,每小题3分,共30分)9.(3分)sin30°的值为.解析:sin30°=.答案:.10.(3分)方程的解集是.解析:去分母得:2+x=0,解得:x=-2,经检验x=-2是分式方程的解.答案:x=-211.(3分)点A(-3,0)关于y轴的对称点的坐标是.解析:点A(-3,0)关于y轴的对称点的坐标是(3,0),答案:(3,0).12.(3分)一组数据3,9,4,9,5的众数是.解析:这组数据中出现次数最多的数据为:9.故众数为9.答案:9.13.(3分)若n边形的每一个外角都等于60°,则n= .解析:n=360°÷60°=6,答案:6.14.(3分)如图,三角板的直角顶点在直线l上,若∠1=40°,则∠2的度数是.解析:如图,三角板的直角顶点在直线l上,则∠1+∠2=180°-90°=90°,∵∠1=40°,∴∠2=50°.答案50°.15.(3分)如图,在△ABC中,点D、E分别是AB、AC的中点.若DE=3,则BC= .解析:∵点D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴BC=2DE=2×3=6. 答案:6.16.(3分)二次函数y=x2+1的图象的顶点坐标是.解析:二次函数y=x2+1的图象的顶点坐标是(0,1).答案:(0,1).17.(3分)若菱形的两条对角线分别为2和3,则此菱形的面积是.解析:由题意,知:S菱形=×2×3=3,答案:3.18.(3分)观察一列单项式:1x,3x2,5x2,7x,9x2,11x2,…,则第2013个单项式是. 解析:系数依次为1,3,5,7,9,11,…2n-1;x的指数依次是1,2,2,1,2,2,1,2,2,可见三个单项式一个循环,故可得第2013个单项式的系数为4025;∵=671,∴第2013个单项式指数为2,故可得第2013个单项式是4025x2.答案:4025x2.三、解答题(本大题有10小题,共96分.)19.(10分)计算:(1)(π-5)0+-|-3|(2)3a+(1+)·.解析:(1)首先计算0次幂、开方运算,去掉绝对值符号,然后进行加减运算即可;(2)首先计算括号内的式子,然后进行乘法运算,最后合并同类项即可.答案:(1)原式=1+2-3=0;(2)原式=3a+·=3a+a=4a.20.(6分)解不等式:x+1≥+2,并把解集在数轴上表示出来.解析:根据不等式的性质得到2(x+1)≥x+4,即可求出不等式的解集,再把解集在数轴上表示出来.答案:2(x+1)≥x+4,2x+2≥x+4,x≥2.在数轴上表示为:21.(8分)如图,在边长为1个单位长度的小正方形组成的两格中,点A、B、C都是格点.(1)将△ABC向左平移6个单位长度得到得到△A1B1C1;(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2.解析:(1)将点A、B、C分别向左平移6个单位长度,得出对应点,即可得出△A1B1C1;(2)将点A、B、C分别绕点O按逆时针方向旋转180°,得出对应点,即可得出△A2B2C2. 答案:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求.22.(8分)如图,在平行四边形ABCD中,过AC中点O作直线,分别交AD、BC于点E、F. 求证:△AOE≌△COF.解析:据平行四边形的性质可知:∠AEO=∠OFC,OA=OC,∠EAO=∠OCF,所以△AOE≌△COF. 答案:∵AD∥BC,∴∠EAO=∠FCO.又∵∠AOE=∠COF,OA=OC,在△AOE和△COF中,,∴△AOE≌△COF.23.(10分)如图,某中学为合理安排体育活动,在全校喜欢乒乓球、排球、羽毛球、足球、篮球五种球类运动的1000名学生中,随机抽取了若干名学生进行调查,了解学生最喜欢的一种球类运动,每人只能在这五种球类运动中选择一种.调查结果统计如下:解答下列问题:(1)本次调查中的样本容量是;(2)a= ,b= ;(3)试估计上述1000名学生中最喜欢羽毛球运动的人数.解析:(1)用喜欢排球的人数除以其所占的百分比即可求得样本容量;(2)用样本容量乘以乒乓球所占的百分比即可求得a,用样本容量减去其他求得b值;(3)用总人数乘以喜欢羽毛球的人所占的百分比即可.答案:(1)∵喜欢排球的有12人,占10%,∴样本容量为12÷10%=120;(2)a=120×25%=30人,b=120-30-12-36-18=24人;(3)喜欢羽毛球的人数为:1000×=300人.24.(10分)一个不透明的袋子中装有大小、质地完全相同的3只球,球上分别标有2,3,5三个数字.(1)从这个袋子中任意摸一只球,所标数字是奇数的概率是;(2)从这个袋子中任意摸一只球,记下所标数字,不放回,再从从这个袋子中任意摸一只球,记下所标数字.将第一次记下的数字作为十位数字,第二次记下的数字作为个位数字,组成一个两位数.求所组成的两位数是5的倍数的概率.(请用“画树状图”或“列表”的方法写出过程)解析:(1)直接根据概率公式解答即可;(2)首先画出树状图,可以直观的得到共有6种情况,其中是5的倍数的有两种情况,进而算出概率即可.答案:(1)任意摸一只球,所标数字是奇数的概率是:;(2)如图所示:共有6种情况,其中是5的倍数的有25,35两种情况,概率为:=.25.(10分)小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?解析:根据一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,表示出每件服装的单价,进而得出等式方程求出即可.答案:设购买了x件这种服装且多于10件,根据题意得出:[80-2(x-10)]x=1200,解得:x1=20,x2=30,当x=20时,80-2(20-10)=60元>50元,符合题意;当x=30时,80-2(30-10)=40元<50元,不合题意,舍去;答:她购买了20件这种服装.26.(10分)如图,AB是⊙0的直径,C是⊙0上的一点,直线MN经过点C,过点A作直线MN 的垂线,垂足为点D,且∠BAC=∠DAC.(1)猜想直线MN与⊙0的位置关系,并说明理由;(2)若CD=6,cos∠ACD=,求⊙0的半径.解析:(1)连接OC,推出AD∥OC,推出OC⊥MN,根据切线的判定推出即可;(2)求出AD、AB长,证△ADC∽△ACB,得出比例式,代入求出AB长即可.答案:(1)直线MN与⊙0的位置关系是相切,理由是:连接OC,∵OA=OC,∴∠OAC=∠OCA,∵∠CAB=∠DAC,∴∠DAC=∠OCA,∴OC∥AD,∵AD⊥MN,∴OC⊥MN,∵OC为半径,∴MN是⊙O切线;(2)∵CD=6,cos∠ACD==,∴AC==10,由勾股定理得:AD=8,∵AB是⊙O直径,AD⊥MN,∴∠ACB=∠ADC=90°,∵∠DAC=∠BAC,∴△ADC∽△ACB,∴=,∴=,∴AB=12.5,∴⊙O半径是×12.5=6.25.27.(12分)甲、乙两地之间有一条笔直的公路L,小明从甲地出发沿公路L步行前往乙地,同时小亮从乙地出发沿公路L骑自行车前往甲地,小亮到达甲地停留一段时间,原路原速返回,追上小明后两人一起步行到乙地.设小明与甲地的距离为y1米,小亮与甲地的距离为y2米,小明与小亮之间的距离为s米,小明行走的时间为x分钟.y1、y2与x之间的函数图象如图1,s与x之间的函数图象(部分)如图2.(1)求小亮从乙地到甲地过程中y2(米)与x(分钟)之间的函数关系式;(2)求小亮从甲地返回到与小明相遇的过程中s(米)与x(分钟)之间的函数关系式;(3)在图2中,补全整个过程中s(米)与x(分钟)之间的函数图象,并确定a的值.解析:(1)设小亮从乙地到甲地过程中y2(米)与x(分钟)之间的函数关系式为y2=k2x+b,由待定系数法根据图象就可以求出解析式;(2)先根据函数图象求出甲乙的速度,然后与追击问题就可以求出小亮追上小明的时间,就可以求出小亮从甲地返回到与小明相遇的过程中s(米)与x(分钟)之间的函数关系式;(3)先根据相遇问题建立方程就可以求出a值,10分钟甲、乙走的路程就是相距的距离,14分钟小明走的路程和小亮追到小明时的时间就可以补充完图象.答案:(1)设小亮从乙地到甲地过程中y2(米)与x(分钟)之间的函数关系式为y2=k2x+b,由图象,得,解得:,∴y2=-200x+2000;(2)由题意,得小明的速度为:2000÷40=50米/分,小亮的速度为:2000÷10=200米/分,∴小亮从甲地追上小明的时间为24×50÷(200-50)=8分钟,∴24分钟时两人的距离为:S=24×50=1200,32分钟时S=0,设S与x之间的函数关系式为:S=kx+b1,由题意,得,解得:,∴S=-150x+4800(24≤x≤32);(3)由题意,得a=2000÷(200+50)=8分钟,当x=24时,S=1200,设经过x分钟追上小明,则200x-50x=1200,解得x=8,此时的总时间就是24+8=32分钟. 故描出相应的点就可以补全图象.如图:28.(12分)如图,在△ABC中,∠C=90°,BC=3,AB=5.点P从点B出发,以每秒1个单位长度沿B→C→A→B的方向运动;点Q从点C出发,以每秒2个单位沿C→A→B方向的运动,到达点B后立即原速返回,若P、Q两点同时运动,相遇后同时停止,设运动时间为ι秒.(1)当ι=时,点P与点Q相遇;(2)在点P从点B到点C的运动过程中,当ι为何值时,△PCQ为等腰三角形?(3)在点Q从点B返回点A的运动过程中,设△PCQ的面积为S平方单位.①求S与ι之间的函数关系式;②当S最大时,过点P作直线交AB于点D,将△ABC中沿直线PD折叠,使点A落在直线PC 上,求折叠后的△APD与△PCQ重叠部分的面积.解析:(1)首先利用勾股定理求得AC的长度,点P与点Q相遇一定是在P由A到B的过程中,利用方程即可求得;(2)分Q从C到A的时间是3秒,P从B到C的时间是3秒,则可以分当0≤t≤2时,若△PCQ 为等腰三角形,则一定有:PC=CQ,和当2<t≤3时,若△PCQ为等腰三角形,则一定有PQ=PC 两种情况进行讨论求得t的值;(3)在点Q从点B返回点A的运动过程中,P一定在AC上,则PC的长度是t-3,然后利用相似三角形的性质即可利用t表示出S的值,然后利用二次函数的性质即可求得t的值,从而求解.答案:(1)在直角△ABC中,AC==4,则Q从C到B经过的路程是9,需要的时间是4.5秒.此时P运动的路程是4.5,P和Q之间的距离是:3+4+5-4.5=7.5.根据题意得:(t-4.5)+2(t-4.5)=7.5,解得:t=7s.(2)Q从C到A的时间是2秒,P从B到C的时间是3秒.则当0≤t≤2时,若△PCQ为等腰三角形,则一定有:PC=CQ,即3-t=2t,解得:t=1s.当2<t≤3时,若△PCQ为等腰三角形,则一定有PQ=QC(如图1).则Q在PC的中垂线上,作QH⊥AC,则QH=PC.△AQH∽△ABC,∵BC=3,AB=5,QH⊥AC,∴==,∴QH=AQ,在直角△AQH中,AQ=2t-4,则QH=AQ=.∵PC=BC-BP=3-t,∴(2t-4)=(3-t),解得:t=s;综上所述,t=1s或s;(3)①连接DC(即AD的折叠线)交PQ于点O,过Q作QE⊥CA于点E,过O作OF⊥CA于点F,则△PCO即为折叠后的△APD与△PCQ重叠部分的面积.在点Q从点B返回点A的运动过程中,P一定在AC上,则PC=t-3,BQ=2t-9,即AQ=5-(2t-9)=14-2t.同(2)可得:△PCQ中,PC边上的高是:(14-2t),故S=(t-3)×(14-2t)=(-t2+10t-21).②故当t=5时,s有最大值,此时,P在AC的中点.(如图2).∵沿直线PD折叠,使点A落在直线PC上,∴PD一定是AC的中垂线.则AP=AC=2,PD=BC=,AQ=14-2t=14-2×5=4.则PC边上的高是:AQ=×4=.∵∠COF=∠CDP=∠B,所以,在Rt△COF中,tan∠COF=,设OF为x,则利用三角函数得CF=,PF=2-,则QE=,AE=,∴PE=AE-AP=,∵△POF∽△PQE,∴=,解得:x=,S△PCO=×2×=.。
江苏省2013年中考数学试卷说明:1. 本试卷共6页,包含选择题(第1题~第8题,共8题)、非选择题(第9题~第28题,共20题)两部分.本卷满分150分,考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.2. 答题前,考生务必将本人的姓名、准考证号填写在答题卡相应的位置上,同时务必在试卷的装订线内将本人的姓名、准考证号、毕业学校填写好,在试卷第一面的右下角填写好座位号.3. 所有的试题都必须在专用的“答题卡”上作答,选择题用2B 铅笔作答、非选择题在指定位置用0.5毫米黑色水笔作答.在试卷或草稿纸上答题无效. 4. 作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡相应位置.......上) 1.2-的相反数是( ) A .2B .2-C .12D .12-2.计算23()a 的结果是( ) A .5aB .6aC .8aD .23a3.如图,数轴上A B 、两点分别对应实数a b 、, 则下列结论正确的是( ) A .0a b +> B .0ab > C .0a b ->D .||||0a b ->4.下面四个几何体中,左视图是四边形的几何体共有( )A .1个B .2个C .3个D .4个5.如图,在55⨯方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个矩形,那么,下面的平 移方法中,正确的是( )A .先向下平移3格,再向右平移1格B .先向下平移2格,再向右平移1格C .先向下平移2格,再向右平移2格D .先向下平移3格,再向右平移2格(第3题)圆柱 圆锥 球 正方体 (第5题) 图②图①商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( ) A .平均数 B .众数 C .中位数 D .方差 7.如图,给出下列四组条件:①AB DE BC EF AC DF ===,,; ②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,;④AB DE AC DF B E ==∠=∠,,.其中,能使ABC DEF △≌△的条件共有( )A .1组B .2组C .3组D .4组 8.下面是按一定规律排列的一列数: 第1个数:11122-⎛⎫-+ ⎪⎝⎭; 第2个数:2311(1)(1)1113234⎛⎫⎛⎫---⎛⎫-+++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭; 第3个数:234511(1)(1)(1)(1)11111423456⎛⎫⎛⎫⎛⎫⎛⎫-----⎛⎫-+++++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭; ……第n 个数:232111(1)(1)(1)111112342n n n -⎛⎫⎛⎫⎛⎫----⎛⎫-++++ ⎪⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭.那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是( )A .第10个数B .第11个数C .第12个数D .第13个数二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.计算2(3)-= .10x 的取值范围是 .11.江苏省的面积约为102 600km 2,这个数据用科学记数法可表示为 km 2. 12.反比例函数1y x=-的图象在第 象限. 13.某县2008年农民人均年收入为7 800元,计划到2010年,农民人均年收入达到9 100元.设人均年收入的平均增长率为x ,则可列方程 . 14.若2320a a --=,则2526a a +-= .15.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1、2、3、4、5,转盘指针的位置固定,转动转盘后任其自由停止.转动转A CB DF E (第7题)盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P (偶数),指针指向标有奇数所在区域的概率为P (奇数),则P (偶数) P (奇数)(填“>”“<”或“=”).16.如图,AB 是O ⊙的直径,弦CD AB ∥.若65ABD ∠=°,则ADC ∠= . 17.已知正六边形的边长为1cm ,分别以它的三个不相邻的顶点为圆心,1cm 长为半径画弧(如图),则所得到的三条弧的长度之和为 cm (结果保留π).18.如图,已知EF 是梯形ABCD 的中位线,DEF △的面积为24cm ,则梯形ABCD 的面积为 cm 2.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题满分8分)计算: (1)0|2|(1--(2)2121a a a a a -+⎛⎫-÷ ⎪⎝⎭.20.(本题满分8分)某市对九年级学生进行了一次学业水平测试,成绩评定分A 、B 、C 、D 四个等第.为了解这次数学测试成绩情况,相关部门从该市的农村、县镇、城市三类群体的学生中共抽取2 000名学生的数学成绩进行统计分析,相应数据的统计图表如下:(1)请将上面表格中缺少的三个数据补充完整;(2)若该市九年级共有60 000名学生参加测试,试估计该市学生成绩合格以上(含合格)的人数. 21.(本题满分8分)一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现1个男婴、2个女婴的概率是多少?22.(本题满分8分)一辆汽车从A 地驶往B 地,前13路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h ,在高速公路上行驶的速度为100km/h ,A D EB CF (第16题) (第17题) (第18题) 各类学生人数比例统计图(注:等第A 、B 、C 、D 分别代表优秀、良好、合格、不合格) 各类学生成绩人数比例统计表汽车从A 地到B 地一共行驶了2.2h .请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用二元一次方程组.......解决的问题,并写出解答过程. 23.(本题满分10分)如图,在梯形ABCD 中,AD BC AB DE AF DC E F ∥,∥,∥,、两点在边BC 上,且四边形AEFD 是平行四边形. (1)AD 与BC 有何等量关系?请说明理由;(2)当AB DC =时,求证:ABCD是矩形.24.(本题满分10分)如图,已知二次函数221y x x =--的图象的顶点为A .二次函数2y ax bx =+的图象与x 轴交于原点O 及另一点C ,它的顶点B 在函数221y x x =--的图象的对称轴上.(1)求点A 与点C 的坐标;(2)当四边形AOBC 为菱形时,求函数2y ax bx =+的关系式.25.(本题满分10分)如图,在航线l 的两侧分别有观测点A 和B ,点A 到航线l 的距离为2km ,点B 位于点A 北偏东60°方向且与A 相距10km 处.现有一艘轮船从位于点B 南偏西76°方向的C 处,正沿该航线自西向东航行,5min 后该轮船行至点A 的正北方向的D 处.(1)求观测点B 到航线l 的距离;(2)求该轮船航行的速度(结果精确到0.1km/h ).1.73,sin 760.97°≈, cos 760.24°≈,tan 76 4.01°≈)AD C B26.(本题满分10分) (1)观察与发现小明将三角形纸片()ABC AB AC >沿过点A 的直线折叠,使得AC 落在AB 边上,折痕为AD ,展开纸片(如图①);再次折叠该三角形纸片,使点A 和点D 重合,折痕为EF ,展平纸片后得到AEF △(如图②).小明认为AEF △是等腰三角形,你同意吗?请说明理由.(2)实践与运用将矩形纸片ABCD 沿过点B 的直线折叠,使点A 落在BC 边上的点F 处,折痕为BE (如图③);再沿过点E 的直线折叠,使点D 落在BE 上的点D '处,折痕为E G (如图④);再展平纸片(如图⑤).求图⑤中α∠的大小.27.(本题满分12分)某加油站五月份营销一种油品的销售利润y (万元)与销售量x (万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.(销售利润=(售价-成本价)×销售量)请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题: (1)求销售量x 为多少时,销售利润为4万元; (2)分别求出线段AB 与BC 所对应的函数关系式;(3)我们把销售每升油所获得的利润称为利润率,那么,在O A 、AB 、BC 三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)28.(本题满分12分)如图,已知射线DE 与x 轴和y 轴分别交于点(30)D ,和点(04)E ,.动点C 从点(50)M ,出发,以1个单位长度/秒的速度沿x 轴向左作匀速运动,与此同时,动A C D 图① A C D 图②F EE D CF B A 图③ E D C A B FG 'D ' A DE C BF α图④ 图⑤ 1日:有库存6万升,成本价4元/升,售价5元/升.13日:售价调整为5.5元/升.15日:进油4万升,成本价4.5元/升.31日:本月共销售10万升. 五月份销售记录(万升)点P 从点D 出发,也以1个单位长度/秒的速度沿射线DE 的方向作匀速运动.设运动时间为t 秒.(1)请用含t 的代数式分别表示出点C 与点P 的坐标; (2)以点C 为圆心、12t 个单位长度为半径的C ⊙与x 轴交于A 、B 两点(点A 在点B 的左侧),连接P A 、PB .①当C ⊙与射线DE 有公共点时,求t 的取值范围; ②当PAB △为等腰三角形时,求t 的值.。
专题2:代数式和因式分解一、选择题1. (2013年江苏常州2分)下列计算中,正确的是【】A.(a3b)2=a6b2 B.a•a4=a4 C.a6÷a2=a3 D.3a+2b=5ab2. (2013年江苏常州2分)有3张边长为a的正方形纸片,4张边长分别为a、b(b>a)的矩形纸片,5张边长为b的正方形纸片,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),则拼成的正方形的边长最长可以为【】A.a+b B.2a+b C.3a+b D.a+2b3. (2013年江苏淮安3分)计算(2a)3的结果是【】A.6a B.8a C.2a3 D.8a34. (2013年江苏南京2分)计算231a a ⎛⎫⋅ ⎪⎝⎭的结果是【 】(A) a (B) a 5 (C) a 6 (D) a 95. (2013年江苏南通3分)下列计算,正确的是【 】A .43x x x -=B .632x x x ÷=C .34x x x ⋅=D .()236ax ax =6. (2013年江苏南通3分)函数y=x 的取值范围是【 】 A .x >1 B .x ≥1 C .x >-2 D .x ≥―27. (2013年江苏苏州3分)计算222x 3x -+的结果为【 】A .-5x 2B .5x 2C .-x 2D .x 28. (2013年江苏苏州3分)在实数范围内有意义,则x 的取值范围是【 】 A .x>1B .x<1C .x≥1D .x≤19. (2013年江苏苏州3分)已知x 31x -=,则214x 22x 3-+的值为【 】 A .1B .32C .52D .7210. (2013年江苏宿迁3分)下列运算的结果为a 6的是【 】 A .33a a + B .()33a C .33a a ⋅ D .122a a ÷11. (2013年江苏无锡3分)函数y 3中自变量x 的取值范围是【 】 A .x >1 B .x ≥1 C.x≤1 D.x≠112. (2013年江苏徐州3分)下列各式的运算结果为x 6的是【 】 A .x 9÷x 3B .(x 3)3C .x 2•x 3D .x 3+x 313. (2013年江苏盐城3分)则x 的取值范围是【 】A .x≥3 B.x≤3 C.x >3 D .x <314. (2013年江苏盐城3分)下列运算中,正确的是【 】 A .2242a 3a a 5=+ B .225a 2a 3-=C .326a 2a 2a ⨯=D .6243a a a 3÷=15. (2013年江苏扬州3分)下列运算中,结果是a 4的是【 】 A .23a a ⋅ B .123a a ÷ C .()32a D .()4a -二、填空题1. (2013年江苏常州2分)函数y =中自变量x 的取值范围是 ▲ ;若分式2x 3x 1-+的值为0,则x= ▲ .2. (2013年江苏淮安3分)观察一列单项式:1x ,3x 2,5x 2,7x ,9x 2,11x 2,…,则第2013个单项式是 ▲ .3. (2013年江苏连云港3分)x 的取值范围是 ▲ .4. (2013年江苏连云港3分)分解因式:4-x 2= ▲ .5. (2013年江苏南京2分) 使式子11x 1+-有意义的x 的取值范围是 ▲ 。
江苏省淮安市2013年中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个人选项中,有一项是符合题目要求的.33.(3分)(2013•淮安)不等式组的解集是()的解集是4.(3分)(2013•淮安)若反比例函数的图象经过点(5,﹣1).则实数k的值是()解:∵反比例函数l=进行计算即可.=6.(3分)(2013•淮安)如图,数轴上A、B两点表示的数分别为和5.1,则A、B两点之间表示整数的点共有()比17.(3分)(2013•淮安)若等腰三角形有两条边的长度为3和1,则此等腰三角形的周长为8.(3分)(2013•淮安)如图,点A、B、C是⊙0上的三点,若∠OBC=50°,则∠A的度数是()A=∠二、填空题(本大题有10小题,每小题3分,共30分)9.(3分)(2013•淮安)sin30°的值为.,故答案为10.(3分)(2013•淮安)方程的解集是x=﹣2.11.(3分)(2013•淮安)点A(﹣3,0)关于y轴的对称点的坐标是(3,0).12.(3分)(2013•淮安)一组数据3,9,4,9,5的众数是9.13.(3分)(2013•淮安)若n边形的每一个外角都等于60°,则n=6.14.(3分)(2013•淮安)如图,三角板的直角顶点在直线l上,看∠1=40°,则∠2的度数是50°.15.(3分)(2013•淮安)如图,在△ABC中,点D、E分别是AB、AC的中点.若DE=3,则BC=6.16.(3分)(2013•淮安)二次函数y=x2+1的图象的顶点坐标是(0,1).17.(3分)(2013•淮安)若菱形的两条对角线分别为2和3,则此菱形的面积是3.×=18.(3分)(2013•淮安)观察一列单项式:1x,3x2,5x2,7x,9x2,11x2,…,则第2013个单项式是4025x2.=671三、解答题(本大题有10小题,共96分.)19.(10分)(2013•淮安)计算:(1)(π﹣5)0+﹣|﹣3|(2)3a+(1+)•.•20.(6分)(2013•淮安)解不等式:x+1≥+2,并把解集在数轴上表示出来.21.(8分)(2013•淮安)如图,在边长为1个单位长度的小正方形组成的两格中,点A、B、C都是格点.(1)将△ABC向左平移6个单位长度得到得到△A1B1C1;(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2.22.(8分)(2013•淮安)如图,在平行四边形ABCD中,过AC中点0作直线,分别交AD、BC于点E、F.求证:△AOE≌△COF.23.(10分)(2013•淮安)如图,某中学为合理安排体育活动,在全校喜欢乒乓球、排球、羽毛球、足球、篮球五种球类运动的1000名学生中,随机抽取了若干名学生进行调查,了调查结果统计如下:(1)本次调查中的样本容量是120;(2)a=30,b=24;(3)试估计上述1000名学生中最喜欢羽毛球运动的人数.×24.(10分)(2013•淮安)一个不透明的袋子中装有大小、质地完全相同的3只球,球上分别标有2,3,5三个数字.(1)从这个袋子中任意摸一只球,所标数字是奇数的概率是;(2)从这个袋子中任意摸一只球,记下所标数字,不放回,再从从这个袋子中任意摸一只球,记下所标数字.将第一次记下的数字作为十位数字,第二次记下的数字作为个位数字,组成一个两位数.求所组成的两位数是5的倍数的概率.(请用“画树状图”或“列表”的方法写出过程))任意摸一只球,所标数字是奇数的概率是:;概率为:=.25.(10分)(2013•淮安)小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?26.(10分)(2013•淮安)如图,AB是⊙0的直径,C是⊙0上的一点,直线MN经过点C,过点A作直线MN的垂线,垂足为点D,且∠BAC=∠DAC.(1)猜想直线MN与⊙0的位置关系,并说明理由;(2)若CD=6,cos=∠ACD=,求⊙0的半径.ACD==,==半径是27.(12分)(2013•淮安)甲、乙两地之间有一条笔直的公路L,小明从甲地出发沿公路ι步行前往乙地,同时小亮从乙地出发沿公路L骑自行车前往甲地,小亮到达甲地停留一段时间,原路原速返回,追上小明后两人一起步行到乙地.设小明与甲地的距离为y1米,小亮与甲地的距离为y2米,小明与小亮之间的距离为s米,小明行走的时间为x分钟.y1、y2与x之间的函数图象如图1,s与x之间的函数图象(部分)如图2.(1)求小亮从乙地到甲地过程中y1(米)与x(分钟)之间的函数关系式;(2)求小亮从甲地返回到与小明相遇的过程中s(米)与x(分钟)之间的函数关系式;(3)在图2中,补全整个过程中s(米)与x(分钟)之间的函数图象,并确定a的值.,,28.(12分)(2013•淮安)如图,在△ABC中,∠C=90°,BC=3,AB=5.点P从点B出发,以每秒1个单位长度沿B→C→A→B的方向运动;点Q从点C出发,以每秒2个单位沿C→A→B方向的运动,到达点B后立即原速返回,若P、Q两点同时运动,相遇后同时停止,设运动时间为ι秒.(1)当ι=7时,点P与点Q相遇;(2)在点P从点B到点C的运动过程中,当ι为何值时,△PCQ为等腰三角形?(3)在点Q从点B返回点A的运动过程中,设△PCQ的面积为s平方单位.①求s与ι之间的函数关系式;②当s最大时,过点P作直线交AB于点D,将△ABC中沿直线PD折叠,使点A落在直线PC上,求折叠后的△APD与△PCQ重叠部分的面积.=4QH=QH=AQ=×t=;边上的高是:s=(×((﹣AP=AC=2PD=BC=,=PD=××=.AQ=×.PC•××=.。
江苏省淮安市2010年初中毕业暨中等学校招生文化统一考试数学试题欢迎参加中考,相信你能成功!请先目读以下几点注意事项:1.本卷分为第1卷和第Ⅱ卷两部分,共6页。
满分150分。
考试时闻120分钟。
2.第1卷每小题选出答案后,请用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需要改动,请用橡皮擦干净后.再选涂其他答案。
答案答在本试题卷上无效。
3.作答第Ⅱ卷时,用O.5毫米黑色墨水签字笔将答案写在答题卡上的指定位置。
答案答在本试题卷上或规定区域以外无效。
4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚。
5.考试结束,将本试卷和答题卡一并交回。
第Ⅰ卷 (选择题 共24分)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1. (2010江苏淮安,1,3分)-(-2)的相反数是 A .2 B .12 C .-12D .-2 2. (2010江苏淮安,2,3分)计算32a a ⋅的结果是A .a 6B .a 5C .2a 3D .a3. (2010江苏淮安,3,3分)2010年5月27日,上海世博会参观人数达到37.7万人,37.7万用科学记数法表示应为 A . 0.377×l06 B .3.77×l05 C .3.77×l04 D .377×1034. (2010江苏淮安,4,3分)在一次信息技术考试中,某兴趣小组8名同学的成绩(单位:分)分别是:7,10,9,8,7,9,9,8, 则这组数据的众数是 A .7 B .8 C .9 D .105. (2010江苏淮安,5,3分)若一个多边形的内角和小于其外角和,则这个多边形的边数是A .3B .4C .5D .6 6. (2010江苏淮安,6,3分)如图,圆柱的主视图是7. (2010江苏淮安,7,3 A .2 B .3 C .4 D .5 8. (2010江苏淮安,8,3分)观察下列各式:()1121230123⨯=⨯⨯-⨯⨯()1232341233⨯=⨯⨯-⨯⨯ ()1343452343⨯=⨯⨯-⨯⨯……计算:3×(1×2+2×3+3×4+…+99×100)= A .97×98×99 B .98×99×100 C .99×100×101 D .100×101×102 【分析】从材料可以得出1×2,2×3,3×4,……可以用式子表示,即原式=.()()()1113123012234123991001019899100333⎡⎤⨯⨯⨯-⨯⨯+⨯⨯-⨯⨯+⋅⋅⋅⋅⋅⋅+⨯⨯-⨯⨯⎢⎥⎣⎦=123012234123991001019899100⨯⨯-⨯⨯+⨯⨯-⨯⨯+⋅⋅⋅⋅⋅⋅+⨯⨯-⨯⨯=99×100×101,所以选择C. 【答案】C【涉及知识点】材料阅读题【点评】对于材料阅读的问题是中考问题中的常见问题,也属于难度较大的问题,这种问题的规律性比较强,所以找出材料中的规律是解决此类问题的关键. 【推荐指数】★★★★第Ⅱ卷(非选择题 共126分)二、填空题(本大题共有lO 小题,每小题3分,共30分.不需写出解答过程,请把答案直接写在答题卡相应位置上)9. (2010江苏淮安,9,3分)当x= 时,分式13x -与无意义. 【分析】分式无意义的条件是分母为0,所以x -3=0,即x=3. 【答案】x=3【涉及知识点】分是无意义的条件【点评】本题属于基础题,主要考查学生对分式无意义的条件的考察,考查知识点单一. 【推荐指数】★ 10.(2010江苏淮安,10,3分)已知周长为8的等腰三角形,有一个腰长为3,则最短的一条串位线长为 .【分析】根据等腰三角形的周长和一腰的长,可以求出底边长为5,所以根据三角形中位线的性质,可知较短的中位线是与腰平行的中位线,所以长度为1.5.【答案】1.5【涉及知识点】三角形的中位线和等腰三角形【点评】本题是结合等腰三角形的知识和中位线的性质的问题,三角形的中位线是指连接三角形两边中点的线段,中位线的特征是平行于第三边且等于第三边的一半.【推荐指数】★★11.(2010江苏淮安,11,3分)化简:()()2222x x x+--= .【分析】首先根据完全平方公式可得224444x x x x x ++-+-,然后再得88xx=.【答案】8【涉及知识点】分式的约分和完全平方公式【点评】本题属于基础题,主要考查学生的计算能力和对公式的把握程度.【推荐指数】★★12.(2010江苏淮安,12,3分)若一次函数y=2x+l的图象与反比例函数图象的一个交点横坐标为l,则反比例函数关系式为.【分析】由于交点在一次函数上,所以把x=1代入函数的解析式,可得y=3,所以点的坐标为(1,3),设反比例函数的解析式为kyx=,把(1,3)代入可得k=3,所以反比例函数的解析式为3yx =.【答案】B【涉及知识点】反比例函数和一次函数【点评】本题主要考察点在函数图像上的知识和反比例函数解析式的确定方法,属于中等难度的问题.【推荐指数】★★★13.(2010江苏淮安,13,3分)如图,已知点A,B,C在⊙O上,AC∥0B,∠BOC=40°,则∠ABO= .题13图【分析】由于∠BOC和∠BAC都是弧BC所对的圆周角和圆心角,所以可知2∠BAC=∠BOC,所以∠BAC=20°,又因为AC∥0B,所以∠ABO=∠BAC=20°.【答案】20°【涉及知识点】圆周角的性质和平行线的性质【点评】本题是圆周角与平行线知识相结合的问题,属于中等难度的问题,解决此类问题的关键是记忆在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半.【推荐指数】★★14.(2010江苏淮安,14,3分)在比例尺为1:200的地图上,测得A,B两地间的图上距离为4.5 cm,则A,B两地间的实际距离为m.【分析】根据图上距离:实际距离=比例尺,所以可以得到A、B间的实际距离=4.5×200=900cm=9m.【答案】9【涉及知识点】相似比【点评】本题属于基础问题,主要考察的是比例尺=图上距离:实际距离.【推荐指数】★15.(2010江苏淮安,15,3分)将半径为5,圆心角为144°的扇形围成一个圈锥的侧面,则这个圆锥的底面半径为.【分析】根据弧长公式可以求出圆锥底面周长为14454180ππ⨯=,所以底面半径为422ππ=. 【答案】2【涉及知识点】弧长公式【点评】本题属于中难度的问题,主要是考察对弧长公式的记忆,以及圆锥和扇形之间的关系.【推荐指数】★★★★ 16.(2010江苏淮安,16,3分)小明根据方程5x+2=6x -8编写了一道应用题.请你把空缺的部分补充完整.某手工小组计划教师节前做一批手工品赠给老师,如果每人做5个,那么就比计划少2个; .请问手工小组有几人?(设手工小组有x 人)【分析】从题目可以看出总工作量为5x+2,所以该空格可以填写,若每人作6个,就比原计划多8个.【答案】若每人作6个,就比原计划多8个 【涉及知识点】一元一次方程【点评】本题是实际应用型的问题,属于中等难度的问题. 【推荐指数】★17.(2010江苏淮安,17,3分)如图,在直角三角形ABC 中,∠ABC=90°,AC=2,,以点A 为圆心,AB 为半径画弧,交AC 于点D ,则阴影部分的面积是 .题17图 题18图 【分析】首先根据勾股定理求出AB=1,又因为AC=2,所以∠C=30°,然后根据阴影部分的面积等于三角形的面积1122⨯=,减去扇形的面积6013606ππ⋅⋅=,所以阴影部分的面积为26π-.【答案】26π- 【涉及知识点】扇形的面积公式、勾股定理、直角三角形30°的判定 【点评】本题属于综合型的问题,属于中等偏难的问题. 【推荐指数】★★★★ 18.(2010江苏淮安,18,3分)已知菱形ABCD 中,对角线AC=8cm ,BD=6cm ,在菱形内部(包括边界)任取一点P ,使△ACP 的面积大于6 cm 2的概率为 .【分析】根据三角形的面积公式可知当△ACP面积为6时,高为32cm,所以当点P在垂直于BD距离AC 32cm的直线上时,所构成的面积均为6,然后再结合相似三角形的面积比,可知概率为:14.【答案】1 4【涉及知识点】菱形的性质、相似三角形的性质、概率【点评】本题是概率的知识和相似三角形的知识的综合问题,属于较难的问题.【推荐指数】★★★三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(2010江苏淮安,19,8分)(1)113 ---;(2)解不等式组30,2(1) 3. xx x-<⎧⎨+≥+⎩【答案】(1)原式=3+1-3=1.(2)30,. 2(1)3xx x-<⎧⎨++⎩①≥②解①得:x<3,解②得:x≥1,所以不等式的解集为:1≤x<3.【点评】本题主要是考察基本运算和不等式的基本解法,题目一般是不难,最主要是书写格式必须要注意.【推荐指数】★★★20.(2010江苏淮安,20,8分)已知:如图,点C是线段AB的中点,CE=CD,∠ACD=∠BCE, 求证:AE=BD.题20图【分析】要证明AE=BD,所以可以证明△ACE和△BCD全等,由于两个三角形中具备AC=BC,CE=CD两条边相等,所以只要再具备夹角相等即可.【答案】证明:∵点C是线段AB的中点,∴AC=BC,∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠BCD,在△ACE和△BCD中,AC BCACE BCD CE CD⎧=⎪∠=∠⎨⎪=⎩,∴△ACE≌△BCD(SAS),∴AE=BD.【涉及知识点】三角形全等的条件【点评】本题是一个简单考察三角形全等条件的证明题,关键是对证明方法的选用.【推荐指数】★★★21.(2010江苏淮安,21,8分)在完全相同的五张卡片上分别写上1,2,3,4,5五个数字后,装入一个不透明的口袋内搅匀.(1)从口袋内任取一张卡片,卡片上数字是偶数的概率是;(2)从口袋内任取一张卡片记下数字后放回.搅匀后再从中任取一张,求两张卡片上数字和为5的概率.【分析】在(1)中由于卡片中共有5个数字,而偶数的个数为2个,所以概率为25;(2)中的问题可以列出树形图,共有25中可能,而其中是5的倍数的有5中情况,所以概率为1 5【答案】解:(1)2 5(2)1 5【涉及知识点】概率【点评】本题主要是对概率的求法,此问题属于中等难度的问题.【推荐指数】★★★★22.(2010(1)问A城市的人口密度是每平方公里多少人?(2)请用最恰当的统计图......表示这四个城市的人口密度.【分析】人口密度表示单位面积中人口的数量,所以可以求出人口密度.【答案】解:(1)A城市的人口密度:3001520=(万人/万平方公里);B城市的人口密度:150305=(万人/万平方公里);C城市的人口密度:2002010=(万人/万平方公里);D城市的人口密度:100254=(万人/万平方公里).(2)可以用条形统计图表示:【涉及知识点】统计图【点评】统计图表是中考的必考内容,本题主要考察合理选择统计图表的知识,数据的问题在中考试卷中也有越来越综合的趋势.【推荐指数】★★★★23.(2010江苏淮安,23,10分)玉树地震后,有一段公路急需抢修.此项工程原计划由甲工程队独立完成,需要20天.在甲工程队施工4天后,为了加快工程进度,又调来乙工程队与甲工程队共同施工,结果比原计划提前10天,为抗震救灾赢得了宝贵时间.求乙工程队独立完成这项工程需要多少天.【分析】可设乙工程队单独完成这项任务需要x天,则可以根据甲工作4天的工作量与甲乙合作6天的工作量的和为整体1解决.【答案】解:设乙工程队独立完成这项工程需要x天,所以1114()(20104)12020x⨯++⨯--=,解得x=12,经检验x=12是分式方程的解,所以乙工程队独立完成这项工程需12天.【涉及知识点】分式方程的应用【点评】本题属于难度比较大的问题,所考察的知识点比较单一,主要是考察利用分式方程解决实际问题,这种问题是中考中的常见问题,通常是以社会生活中的热点问题为背景.【推荐指数】★★★★24.(2010江苏淮安,24,10分)已知二次函数y=ax2+bx+c的图象与y轴交于点A(O,-6),与x轴的一个交点坐标是B(-2,0).(1)求二次函数的关系式,并写出顶点坐标;(2)将二次函数图象沿x轴向左平移52个单位长度,求所得图象对应的函数关系式.【分析】.【答案】解:(1)【涉及知识点】【点评】.【推荐指数】★★★★★25.(2010江苏淮安,25,10分)某公园有一滑梯,横截面如图薪示,AB表示楼梯,BC 表示平台,CD表示滑道.若点E,F均在线段AD上,四边形BCEF是矩形,且sin∠BAF=23,BF=3米,BC=1米,CD=6米.求:(1) ∠D的度数;(2)线段AE的长.题25图【分析】(1)要求∠D的度数,可以求出CE和CD的长度,进而根据直角三角形30°角的判定方法求出∠D的度数;(2)要求AD的长度,可以根据解直角三角形的正弦值,求出AF,然后再结合勾股定理求出DE,从而求出AD.【答案】解:(1)∵四边形BCEF是矩形,∴∠BFE=∠CEF=90°,CE=BF,BC=FE,∴∠BFA=∠CED=90°,∵CE=BF,BF=3米,∴CE=3米,∵CD=6米,∠CED=90°,∴∠D=30°.(2)∵sin∠BAF=23,∴23 BFAB,∵BF=3米,∴AB=92米,∴2AF ==米, ∵CD=6米,∠CED=90°,∠D=30°,∴cos 302DE CD ==∴DE =∴AE=22+米. 【涉及知识点】解直角三角形、勾股定理、直角三角形的性质、矩形的性质 【点评】本题属于综合性的问题,设计的知识点比较多,属于中等偏难的问题. 【推荐指数】★★★★ 26.(2010江苏淮安,26,10分)(1)观察发现如题26(a)图,若点A ,B 在直线l 同侧,在直线l 上找一点P ,使AP+BP 的值最小. 做法如下:作点B 关于直线l 的对称点B ',连接AB ',与直线l 的交点就是所求的点P 再如题26(b)图,在等边三角形ABC 中,AB=2,点E 是AB 的中点,AD 是高,在AD 上找一点P ,使BP+PE 的值最小.做法如下:作点B 关于AD 的对称点,恰好与点C 重合,连接CE 交AD 于一点,则这 点就是所求的点P ,故BP+PE 的最小值为 .题26(a)图 题26(b)图(2)实践运用如题26(c)图,已知⊙O 的直径CD 为4,AD 的度数为60°,点B 是 AD 的中点,在直径CD 上找一点P ,使BP+AP 的值最小,并求BP+AP 的最小值.题26(c)图 题26(d)图 (3)拓展延伸如题26(d)图,在四边形ABCD 的对角线AC 上找一点P ,使∠APB=∠APD .保留 作图痕迹,不必写出作法.【分析】(1)由于等边三角形是极其特殊的三角形,所以根据勾股定理求出CE 的长度;(2)首先根据材料提供的方法求出P点的位置,然后再结合圆周角等的性质,求出最短的距离;(3)从(1)(2)可以得出,理由轴对称来解决,找B关于AC对称点E,连DE延长交AC于P即可.【答案】解:(1(2)如图:作点B关于CD的对称点E,则点E正好在圆周上,连接OA、OB、OE,连接AE交CD与一点P,AP+BP最短,因为AD的度数为60°,点B是 AD的中点,所以∠AEB=15°,因为B关于CD的对称点E,所以∠BOE=60°,所以△OBE为等边三角形,所以∠OEB=60°,所以∠OEA=45°,又因为OA=OE,所以△OAE为等腰直角三角形,所以AE=(3)找B关于AC对称点E,连DE延长交AC于P即可,【涉及知识点】圆周角的性质、勾股定理、对称【点评】本题属于综合性的问题,此类问题设计的知识点比较多,解决起来有点难度.【推荐指数】★★★★★27.(2010江苏淮安,27,12分)红星食品厂独家生产具有地方特色的某种食品,产量y1(万千克)与销售价格x(元/千克)(2≤x≤10)满足函数关系式y1=0.5x+11.经市场调查发现:该食品市场需求量y2(万千克)与销售价格x(元/千克)(2≤x≤10)的关系如图所示.当产量小于或等于市场需求量时,食品将被全部售出;当产量大于市场需求量时,只能售出符合市场需求量的食品,剩余食品由于保质期短将被无条件销毁.(1)求y2与x的函数关系式;(2)当销售价格为多少时,产量等于市场需求量?(3)若该食品每千克的生产成本是2元,试求厂家所得利润W(万元)与销售价格x(元/千克) (2≤x ≤10)之间的函数关系式.题27图【分析】从图像可以看出函数是一次函数,所以可以根据待定系数法求出函数的解析式,然后再根据题意表示出利润和销售价格之间的函数关系. 【答案】解:(1)设函数的解析式为y 2=kx+b ,把(2,12)和(10,4)代入函数的解析式可得:212104k b k b ⎧+=⎨+=⎩,解得114k b ⎧=-⎨=⎩,所以函数的解析式为y 2=-x+14.(2)由题意可得:0.5x+11=-x+14,所以x=2,所以当销售价格为2元时,产量等于市场需求量.(3)设当销售单价为x 时,产量为y , 则由题意得:W=(x -2)y=(x -2)(0.5x+11) =0.5x 2+10x -22=()2110722x +-(2≤x ≤10) 【涉及知识点】二次函数、一次函数【点评】本题属于综合性的问题,设计的知识点比较多,此类问题是每年中考问题中的必考点.【推荐指数】★★★★★ 28.(2010江苏淮安,28,12分)如题28(a)图,在平面直角坐标系中,点A 坐标为(12,0),点B 坐标为(6,8),点C 为OB 的中点,点D 从点O 出发,沿△OAB 的三边按逆时针方向以2个单位长度/秒的速度运动一周.(1)点C 坐标是( , ),当点D 运动8.5秒时所在位置的坐标是( , ); (2)设点D 运动的时间为t 秒,试用含t 的代数式表示△OCD 的面积S,并指出t 为何值 时,S 最大;(3)点E 在线段AB 上以同样速度由点A 向点B 运动,如题28(b)图,若点E 与点D 同时 出发,问在运动5秒钟内,以点D ,A ,E 为顶点的三角形何时与△OCD 相似(只考虑以点A .O 为对应顶点的情况):题28(a)图 题28(b)图【分析】(1)若求点的坐标,可以过该点作x 轴的垂线,所以可以借助于平行线等分线段定理解决,求出D 和C 的坐标;(2)此问题是分类得问题,当点D 在不同的边上时,三角形的面积是不同的,然后根据图形之间的关系求出函数解析式,然后根据求最值的问题解决;(3)与(2)一样,只不过借助于三角形相似来解决.【答案】解:(1)C (3,4)、D (9,4)(2)当D 在OA 上运动时,14242S t t =⨯⨯=(0<t <6); 当D 在AB 上运动时,过点O 作OE ⊥AB ,过点C 作CF ⊥AB ,垂足分别为E 和F ,过D 作DM ⊥OA ,过B 作BN ⊥OA ,垂足分别为M 和N ,如图:设D 点运动的时间为t 秒,所以DA=2t -12,BD=22-2t , 又因为C 为OB 的中点, 所以BF 为△BOE 的中位线, 所以12CF OE =, 又因为11822AB OE OA ⋅=⨯, 所以485OE =,所以245CF =, 因为BN ⊥OA ,DM ⊥OA , 所以△ADM ∽△ABN , 所以212108t DM-=, 所以8485t DM -=, 又因为△△△△BCD OCD OAB OAD S S S S =--, 所以△1184812412812(222)22525OCD t S t -=⨯⨯-⨯⨯-⨯-⨯, 即△2426455OCD t S =-+(6≤t <11), 所以当t=6时,△OCD 面积最大,为△2462642455OCD S ⨯=-+=; 当D 在OB 上运动时,O 、C 、D 在同一直线上,S=0(11≤t ≤16). (3)设当运动t 秒时,△OCD ∽△ADE ,则O CO DA DA E=,即521222tt t=-,所以t=3.5; 设当运动t 秒时,△OCD ∽△AED ,则O C O D A E A D=,即522122t t t =-,所以225300t t +-=,所以154t -+=,254t --=(舍去),所以当t 为3.5秒或54-+.【涉及知识点】一次函数的最值、平面直角坐标系、相似三角形【点评】本题是综合性比较强的问题,它巧妙的运用运动的观点,把相似三角形和平面直角坐标系以及一次函数等知识结合起来,属于难度较大的问题.【推荐指数】★★★★★。
2013年淮安数学中考试题数 学(满分150分,考试时间120分钟)一、选择题(本大题共8小题,每小题3分,满分24分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2013淮安,1,3分)在-1、0、-2、1四个数中,最小的数是( ) A 、-1 B 、0 C 、-2 D 、1 【答案】:C2.(2013淮安,2,3分)计算()32a 的结果是( )A 、6aB 、8aC 、2a 3D 、8a 3 【答案】:B3.(2013淮安,3,3分)不等式组1≥<x x 的解集是( ) A 、0≥x B 、1<x C 、10<<x D 、10<≤x 【答案】:D4.(2013淮安,4,3分)若反比例函数xky =的图象过点(5、-1),则实数k 的值是( ) A 、-5 B 、51- C 、51D 、5【答案】:A5.(2013淮安,5,3分)若扇形的半径为6,圆心角为1200,则此扇形的弧长是( ) A 、π3 B 、π4 C 、π5 D 、π6 【答案】:B6.(2013淮安,6,3分)如图,数轴上A 、B 两点表示的数分别为2和5.1,则AB 两点之 间表示整数的点共有( )A 、6个B 、5个C 、4个D 、3个【答案】:CB A 025.17.(2013淮安,7,3分)若等腰三角形有两条边的长分别是3和1,则此等腰三角形的周长是 ( )A 、5B 、7C 、5或7D 、6 【答案】:C8.(2013淮安,8,3分)如图,点A 、B 、C 是⊙O 上的三点,若∠OBC =500,则∠A 的度数是( )A 、400B 、500C 、800D 、1000OBCA【答案】:A 二、填空题9.(2013淮安,9,3分)sin 300= 【答案】:2110.(2013淮安,10,3分)方程012=+x的解是 【答案】:x=-211.(2013淮安,11,3分)点A (-3,0)关于y 轴的对称点的坐标是 【答案】:(3,0)12.(2013淮安,12,3分)一组数据3、9、4、9、6的众数是 【答案】:913.(2013淮安,13,3分)若n 边形的每一个外角等于600,则n = 【答案】:614.(2013淮安,14,3分)如图,三角板的直角顶点在直线l 上,若∠1=400,则∠2=l12【答案】:50°15.(2013淮安,15,3分)如图,在ABC 中点D 、E 分别是AB 、AC 的中点,若DE =3,则BC =【答案】:6B CADE16.(2013淮安,16,3分)二次函数12+=x y 的图象的顶点是 【答案】:(0,1)17.(2013淮安,17,3分)若菱形的两条对角线长分别为2和3,则此菱形的面积是 【答案】:318.(2013淮安,18,3分)观察一列单项式:x 、23x 、35x 、x 7、29x 、311x 、……,则第2013个单项式是 【答案】:40253x 三、解答题19.(2013淮安,19,10分)计算 (1)()3450--+-π 1221132--∙⎪⎭⎫ ⎝⎛-++a a a a a 【答案】:(1)解:原式=1+2-3=0(2)解:原式=3a +1)2(212--∙-+-a a a a a =3a +a =4a 20.(2013淮安,20,6分)解不等式221+≥+xx ,并把解集在数轴上表示出来。
【答案】:解:移项得 122-≥-xx 合并同类项12≥x 把系数化为1 2≥x ∴原不等式的解集为2≥x·21.(2013淮安,21,8分)如图,在边长为1个单位长度的小正方形组成的网格中,点A 、B 、C 都是格点。
(1)、将△ABC 向左平移6个单位长度得到△A 1B 1C 1,请画出△A 1B 1C 1.(2)、将△ABC 绕点O 按逆时针方向旋转1800得到△A 2B 2C 2,请画出△A 2B 2C2【答案】:解:(1)如图△A 1B 1C 1.为所求 (2)如图△A 2B 2C .2为所求22.(2013淮安,22,8分)如图,在平行四边形ABCD 中,过AC 中点O 作直线,分别交AD 、BC 于点E 、F求证:△AOE ≌△COFOFEDCBA【答案】:证明:∵O 为AC 中点 ∴OA=OCC 2A 2A 1B 1B 2C 1∵四边形ABCD 为平行四边形 ∴AD ∥BC∴∠EAO=∠FCO ,∠AEO=∠COF ∴ △AOE ≌△COF23.(2013淮安,23,10分)某中学为合理安排体育活动,在全校喜欢乒乓球、排球、羽毛球、足球、篮球五种球类运动的1000名学生中,随机抽取了若干名学生进行调查,了解学生最喜爱的的一种球类运动,每人只能在这五球类运动中选择一种,调查结果统计如下:球类名称 乒乓球 排球 羽毛球 足球 篮球 人数a123618b解答下列问题:(1)本次调查中的样本容量是 (2)a = 、b =(3)试估计上述1000名学生中最喜欢羽毛球运动的人数。
【答案】:(1)120 (2)30、24 (3)解:1000×12036=300(人) 24.(2013淮安,24,10分)一个不透明的袋子中装有大小,质地完全相同的3只球,球上分别标有2、3、5三个数字。
(1)从这个袋子中任意摸一只球,所标数字是奇数的概率为(2)从这个袋子中任意摸一只球,记下所标数字,不放回,再从袋子中任意摸一只球,记下所标数字,将第一次记下的数字作为十位数字,第二次记下的数字作为个位数字,组成一个两数,求所组成的两位数是5的倍数的概率(请用“画树状图”或“列表”的方法写出过程) 【答案】:(1)32 (2)解:开始第一个球532第二个球32 5 5235332 35 52 25 23 组成的两位数由树状图可知,所有可能的情况共有6种,所组成的两位数是5的倍数的情况有2种, 可知P (组成的两位数是5的倍数)=62=31. 25.(2013淮安,25,10分)小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件,如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元,按此优惠条件,小丽一次性购买这种服装付了1200元,请问她购买了多少件这种服装?【答案】:解:因为80×10=800(元)<1200元,所以小丽买的服装数大于10件。
设她购买了x 件这种服装 . 根据题意得 x [80-2(x-10)]=1200 解得 x 1=20 x 2=30 因为 1200÷50=24<30 所以 x 2=30不合题意舍去 答:她购买了20件这种服装26.(2013淮安,26,10分)如图,AB 是⊙O 的直径,C 是上的一点,直线MN 经过点C ,过点A 作直线MN 的垂线,垂为点D ,且∠BAC =∠DAC . (1)猜想直线MN 与⊙O 的位置关系,并说明理由, (2)若CD =6,cos ∠ACD =53,求⊙O 的半径。
【答案】:(1)答:MN 与⊙O 相切 理由:连接OC ∵OA=OC ∴∠BAC =∠OCA ∵∠BAC =∠DAC ∴∠OCA =∠DAC∴AD ∥OC ∵AD ⊥MN ∴OC ⊥MN ∵OC 为⊙O 的半径 ∴MN 与⊙O 相切(2)解: ∵AD ⊥MN ∴∠ADC=90° ∴AC=ACDCD∠cos =10∴AD==8 ∵AB 是⊙O 的直径 ∴∠ACB=90° ∴∠ACB=∠ADC ∵∠BAC =∠DAC ∴△ABC ∽△ACD ∴ADACAC AB =∴AB=AD AC 2=350∴⊙O 的半径为32527.(2013淮安,27,12分)甲、乙两地之间有一条笔直的公路L ,小明从甲地出发沿公路L 步行前往乙地,同时小亮从乙地出发沿公路L 骑自行车前往甲地,小亮到达甲地停留一段时间,原路原速返回,追上小明后两人一起步行到乙地,设小明与甲地的距离为y 1米,小亮与甲地的距离为y 2米,小明与小亮之间的距离为s 米,小明行走的时间为x 分钟,y 1 、y 2与x 之间的函数图象如图1所示,s 与x 之间的函数图象(部分)如图2所示。
(1)求小亮从乙地到甲地过程中y 2(米)与x (分钟)之间的函数关系式;(2)求小亮从甲地返回到与小明相遇的过程中s (米)与x (分钟)之间的函数关系式; (3)在图2中,补全整个过程中s (米)与x (分钟)之间的函数图象,并确定a 的值。
【答案】:(1)解:y 2=)4032(50)3224(3000125)2410(0)100(2000200≤〈≤〈-≤〈≤≤+-x xx x x x x(2)解:小明的速度为2000÷40=50米/分 小亮的速度为2000÷10=200米/分 根据题意得200(x —24)=50x 解得 x=32所以当24<x≤32时s =50x —200(x —24)= —150x+4800 (3)根据题意得50a +200a =2000 解得 a =81200图2S(米)24· 32·图1 (米)图2S(米)28.(2013淮安,28,12分)如图,在△ABC 中,∠C =90°,BC =3,AB =5,点P 从点B 出发,以每秒1个单位长度沿B →C →A →B 的方向运动,点Q 从点C 出发,以每秒2个单位长度沿C →A →B 的方向运动,到达点B 后立即原速返回,若P 、Q 两点同时运动,相遇后同时停止,设运动时间为t 秒。
(1)当t = 时,点P 与点Q 相遇,(2)在点P 从点B 到点C 的运动过程中,当t 为何值时,△PCQ 为等腰三角形, (3)在点Q 从点B 返回点A 的运动过程中,设△PCQ 的面积为s 平方单位 ①、求s 与t 之间的函数关系式,②、当s 最大时,过点P 作直线交AB 于点D ,将△ABC 沿直线PD 折叠,使点A 落在直线PC 上,求折叠后的△APD 与△PCQ 重叠部分的面积。
【答案】:解:(1)由题意可知2t+t=3+2×4+2×5 解得t= 7当t =7时,点P 与点Q 相遇 ; (2)当Q 在AC 上时∵∠C=90° ∴只有PC=CQ 此时3—t=2t 解得 t=1当Q 在AB 上时PQ >PC 且CQ >PC ∴只有PQ=CQ过Q 作QH ⊥BC 于H ,则CH=21PC=21(3—t ),BH=9—2t ∴BH=BC —BH=223t∵QH ⊥BC ,AC ⊥BC ∴HQ ∥AC∴△BQH ∽△BAC ∴BCBH ABBQ =即3223529t t +=- 解得 t=1739∴t=1或1739时△PCQ 为等腰三角形;(3)①在点Q 从点B 返回点A 的运动过程中有29<t <7,此时点P 在AC 边上, 且PC=t —3,BQ=2t —9 ∴AQ=AB —BQ=14—2t 过Q 作QM ⊥AC 于M , 则△AQM ∽△ABC∴BC QMAB AQ =∴QM=5642t -∴=QM PC ⋅21= —5636532-+t t②由①得S== —5636532-+t t = —53(t —5)2+512 当 t=5时S 最大 t=5时PC=t —3=2=AC 21,BQ=2t —9=1 ABCQP H BPM C QA延长PQ 、CB 交于点E , 由题意可知PD 垂直平分AC ∴PD ∥BC∵AP=PC∴BD=AD=AB 21=25 ∴QD=BD-BQ=23 ∵PD=BC 21=23=QD ∴∠DQP=∠DPQ∵∠DQP=∠EQB ,∠DPQ=∠E ∴∠EQB=∠E∴BE=BQ=1∴CE=BC+BE=4∵∠DNP=∠ENC∴△CNE ∽△DNP ∴38==PD CE DN CN ∴S △CNP =118S △PCD =118×21PC·PD=1112E BC D A Q P N。