初中数学概念总结(最新整理)
- 格式:pdf
- 大小:179.44 KB
- 文档页数:19
初中数学的十大概念有哪些初中数学的十大概念如下:1. 数:数是指用来计数和测量的概念,包括整数、分数、小数等形式。
数的概念是数学的基础,它包括了数的大小、数的比较等。
2. 代数:代数是用来描述和研究数与变量之间关系的一门数学分支。
初中代数主要包括代数式、方程、不等式等内容,通过代数方法可以解决各种实际问题。
3. 几何:几何是研究空间和图形的形状、大小、位置等性质的一门数学分支。
初中几何主要包括平面几何和空间几何,通过几何方法可以解决与形状、位置相关的问题。
4. 概率与统计:概率与统计是研究随机事件和数据的一门数学分支。
初中概率与统计主要包括事件的概率、统计图表、平均数、中位数等内容,通过概率与统计方法可以分析和处理随机事件和数据。
5. 函数:函数是一个把一个集合中的每一个元素映射到另一个集合中的元素的规则。
初中函数主要包括函数的概念、函数的图像、函数的性质等内容,通过函数的研究可以描述和分析各种数学问题。
6. 特殊数:特殊数是指在数学中具有一定特殊性质或特殊应用的数字。
初中特殊数主要包括质数、合数、完全数、有理数、无理数等,通过研究特殊数可以揭示数的规律和性质。
7. 图论:图论是研究图及其性质和应用的一门数学分支。
初中图论主要包括图的概念、图的表示法、图的性质等内容,通过图论可以研究和解决与网络、路径、连通性等相关的问题。
8. 数列与数列求和:数列是指由一系列数按照一定规律排列而成的有序数集。
初中数列与数列求和主要包括等差数列、等比数列、通项公式、部分和等内容,通过数列与数列求和可以计算和推导出一系列数学问题。
9. 相似与全等:相似与全等是研究两个形状之间关系的一部分几何内容。
初中相似与全等主要包括相似三角形、全等三角形等,通过相似与全等的研究可以计算和分析各种几何问题。
10. 计算与应用:计算与应用是数学的基本内容,包括四则运算、方程的求解、平方根的计算等。
初中计算与应用主要是教授解题方法和应用技巧,培养学生的数学计算能力和问题解决能力。
初中数学知识点总结最全版一、数与代数1. 有理数- 整数和分数的概念- 正数、负数、零- 有理数的加法、减法、乘法、除法- 有理数的比较大小- 绝对值的概念和性质2. 整数的性质- 素数和合数- 奇数和偶数- 整数的因数和倍数- 最大公约数和最小公倍数3. 代数表达式- 单项式和多项式- 同类项和合并同类项- 代数式的加减运算4. 一元一次方程- 方程的建立和解法- 方程的解的定义- 解一元一次方程的应用题5. 二元一次方程组- 代入法和消元法- 方程组的解的概念- 解二元一次方程组的应用题6. 不等式- 不等式的基本性质- 解一元一次不等式- 解一元一次不等式组7. 函数- 函数的概念- 函数的表示方法:表格、图像、解析式- 线性函数和二次函数的图像及性质- 函数的应用题二、几何1. 平面图形- 点、线、面的基本性质- 角的概念:邻角、对角、同位角- 三角形的分类和性质- 四边形的分类和性质- 圆的性质和圆周角2. 几何图形的计算- 面积的计算:长方形、正方形、三角形、梯形、圆 - 周长的计算:三角形、四边形、圆- 体积的计算:长方体、正方体、圆柱、圆锥3. 几何变换- 平移、旋转、对称(轴对称和中心对称)- 几何变换的性质和应用4. 解析几何- 坐标系的基本概念- 点的坐标和几何图形的坐标表示- 直线和曲线的解析表达式三、统计与概率1. 统计- 数据的收集和整理- 频数和频率- 统计图表的绘制:条形图、折线图、饼图 - 算术平均数、中位数和众数2. 概率- 概率的基本概念- 等可能事件的概率- 概率的加法和乘法法则- 简单事件和复合事件的概率计算四、综合应用题1. 数列- 等差数列的概念和性质- 等比数列的概念和性质- 数列的求和2. 应用题- 利用初中数学知识解决实际问题- 列方程解应用题- 统计与概率在实际问题中的应用3. 综合题- 结合数与代数、几何、统计与概率的知识点 - 解决综合性问题的能力培养以上总结了初中数学的主要知识点,学生在学习过程中应注重理解和应用,通过大量的练习来巩固所学知识,提高解题能力和数学思维。
初中全部数学知识点归纳总结初中数学知识点归纳总结一、数与代数1. 有理数- 整数:正整数、零、负整数- 有理数的定义:整数和分数统称为有理数- 有理数的加法、减法、乘法、除法运算法则- 有理数的大小比较2. 整式与分式- 单项式:定义、同类项、合并同类项- 多项式:定义、加减法、乘法- 因式分解:提公因式、公式法、分组分解法- 分式:定义、基本性质、分式的乘除法和加减法3. 一元一次方程与不等式- 一元一次方程的定义、解法- 不等式的概念、性质、解集表示- 一元一次不等式和不等式组的解法4. 二元一次方程组- 代入法、消元法解二元一次方程组- 三元一次方程组的解法5. 函数及其图像- 函数的概念:定义、函数关系式- 一次函数、反比例函数的图像和性质- 二次函数的图像(抛物线)和性质- 函数的应用题二、几何1. 平面图形- 点、线、面的基本性质- 角的概念:邻角、对角、平行线、垂直- 三角形:分类、性质、内角和定理- 四边形:分类、性质- 圆的基本性质、圆周角、圆心角、弦、弧、切线2. 几何图形的计算- 三角形、四边形的面积计算公式- 圆的周长和面积公式- 多边形的内角和外角和公式- 相似三角形的性质和判定- 勾股定理及其应用3. 空间几何- 立体图形的基本概念:点、线、面、体- 常见立体图形(长方体、正方体、圆柱、圆锥、球)的性质 - 立体图形的表面积和体积计算公式4. 坐标系与图形变换- 平面直角坐标系的定义和性质- 点在坐标系中的位置表示- 图形的平移、旋转、对称变换三、统计与概率1. 统计- 数据的收集、整理和描述- 频数、频率、频数分布表- 统计图表(条形图、折线图、饼图)的绘制和解读2. 概率- 随机事件的概念- 概率的定义和计算- 简单事件和复合事件的概率以上是初中数学的主要知识点归纳总结。
在实际学习过程中,学生应该通过大量的练习题来巩固和深化对这些知识点的理解和应用。
同时,解题过程中要注意培养逻辑思维能力和解题技巧,以提高解题效率和准确率。
初中数学课本基本概念整理【1】七上有理数:整数和分数的统称。
数轴:用一条直线上的点表示数,这条直线叫做数轴。
原点:在直线上任取一个点表示数0,这个点叫做原点。
相反数:只有符号不同的两个数叫做互为相反数。
绝对值:一般地,数轴上表示午数a的点与原点的距离叫做数a的绝对值,记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是。
倒数:乘积是1的两个数互为倒数。
乘方:求n个相同因数的积的运算。
幂:乘方的结果。
科学计数法:把一个大于10的数表示成a•10n的形式(其中a大于或等于1且小于10,n是正整数)单项式:数或字母的积的式子以及单独的一个字母或一个数。
系数:单项式中的数字因数叫做这个单项式的系数。
单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
多项式:几个单项式的和。
多项式的项:多项式中每个单项式叫做多项式的项。
多项式的次数:多项式里,次数最高项的的次数,叫做这个多项式的次数。
整式:样单项式与多项式的统称。
同类项:所含字母相同,并且相同字幕的指数也相同的项叫做同类项。
合并同类项:把多项式中的同类项合并成一项。
合并同类项后,所得项的系数是合并前个同类项的系数的和,且字母连同它的指数不变。
方程:含有未知数的等式。
一元一次方程:只含有一个未知数,未知数的次数都是一,等号两边都是整式。
等式的性质1:等式两边加(减)同一个数,(或式子结果仍相等。
等式的性质2:等式两边乘同一个数,或除以同一个不为的数,结果仍相等。
七下:在同一平面内,过一点有且只有一条直线与已知直线垂直。
垂线段最短直线外一点到这条直线的垂线段长度,叫点到直线的距离。
经过直线外一点,有且只有一条直线与这条直线平行。
如果两条直线都与第三条直线平行,那么这两条直线互相平行。
同位角相等,两直线平行内错角相等,两直线平行同旁内角互补,两直线平行两直线平行,同位角相等。
两直线平行,内错角相等。
两直线平行,同旁内角互补判断一件事情的语句,叫命题,命题由题设和结论组成如果题设成立那么结论一定成立,叫真命题如果题设成立结论不一定成立,叫假命题正确性得到推理证实的真命题叫定理推理一个命题的正确性叫证明0的算数平方根是0若一个正数a平方等于x,a叫x的算数平方根。
初中数学知识点总结归纳重点初中数学是学生数学学习的重要阶段,它为高中数学打下坚实的基础。
初中数学主要包括数与代数、几何、统计与概率三个部分。
以下是初中数学的重点知识点总结:一、数与代数1. 有理数- 有理数的概念:整数和分数统称为有理数。
- 有理数的运算:加法、减法、乘法、除法、乘方。
- 有理数的性质:绝对值、相反数、倒数。
2. 整数- 整数的性质:奇数、偶数、质数、合数。
- 整数的四则运算:加法、减法、乘法、除法。
- 整数的整除性:因数、倍数、最大公约数、最小公倍数。
3. 分数与小数- 分数的表示和性质:真分数、假分数、带分数。
- 分数的四则运算:加法、减法、乘法、除法。
- 小数的表示和性质:小数点的位置移动引起大小变化。
- 小数的四则运算:加法、减法、乘法、除法。
4. 代数表达式- 代数式的概念:用字母表示数的式子。
- 单项式与多项式:单项式是字母和数的乘积,多项式是若干个单项式的和。
- 代数式的运算:合并同类项、分配律、结合律、交换律。
5. 一元一次方程- 方程的概念:含有未知数的等式。
- 解一元一次方程:移项、合并同类项、系数化为1。
- 方程的应用:列方程解实际问题。
6. 二元一次方程组- 方程组的概念:含有两个未知数的一组方程。
- 解方程组的方法:代入法、消元法、图解法。
7. 不等式- 不等式的概念:表示不等关系的式子。
- 不等式的解集:找出满足不等式的所有数值。
- 解一元一次不等式:基本步骤与解方程类似,但要注意符号的变化。
8. 函数- 函数的概念:一个变量的值依赖于另一个变量的值。
- 函数的表示:图像、表格、解析式。
- 线性函数和二次函数:y=kx+b(k≠0)、y=ax²+bx+c(a≠0)。
二、几何1. 平面图形- 点、线、面的概念:点无大小,线有长度无宽度,面有长度和宽度。
- 角的概念和分类:邻角、对角、同位角等。
- 三角形的性质:边长关系、内角和定理、外角性质。
2. 四边形- 平行四边形的性质:对边平行且相等、对角相等。
初中数学知识点总结归纳(完整版)一、数的概念与运算1.自然数:正整数,包括0和正数。
2.整数:正整数、负整数和0的集合。
3.分数:约分、通分、四则运算、化为整数、化为带分数。
4.小数:百分制数、百分数与小数的相互转换、小数的运算、小数的应用、有限小数和无限小数。
5.整式与分式:字母的代数运算,整式的加减乘除,约分、倒数、整式的应用。
6.乘方与开方:幂的概念与运算,方根的概念与运算。
7.实数:有理数与无理数的关系,实数集的完备性,视数的大小比较。
二、代数1.代数式与多项式:常数、变量、系数、次数、多项式的加减乘除。
2.等式与不等式:等式的性质,方程与解,不等式的性质与解集。
3.图示法与坐标方程:带有几何意义的代数式,平面直角坐标系,点、线、曲线、正比例关系及代数图象。
4.一次函数与方程:函数的概念,函数的图象,函数的增减性、奇偶性,线性函数与一次方程,一次不等式。
5.二次根式:二次根式的概念和性质,二次根式的加减乘除、化简,含有二次根式的一元二次方程。
三、几何1.平面图形:三角形、四边形、多边形、圆,它们的性质与判定,运用平面几何知识解决问题。
2.空间图形:正方体、长方体、棱柱、棱锥、球、圆柱、圆锥、解析几何的基本概念。
3.相似与全等:相似的概念与性质,全等的概念与性质,相似三角形的判定与性质,相似三角形的应用。
4.角与三角形:角的概念与性质,角的度量、角的平分线、角的比较大小,三角形的概念与性质,三角形的判定与性质。
5.圆与圆的运动:圆的性质与计算,正多边形与圆的内接外接,圆的切线与切圆,圆与直线的位置关系。
四、函数与方程1.线性方程组:二元一次方程组,三元一次方程组,多元一次方程组。
2.二次函数与方程:二次函数的概念、图象,二次方程的解法,解的判别式,根的性质。
3.不等式:一元一次不等式,一元二次不等式,含有绝对值的不等式。
4.平面向量:向量与点、向量的运算,向量的模、单位向量,向量的线性运算。
初中数学必知的概念和定理总结数学是一门基础性学科,而在数学的学习过程中,掌握概念和定理是非常关键的。
初中数学作为学习数学的基础阶段,其中的一些重要的概念和定理对于打下数学学习的基础是至关重要的。
本文将对初中数学中必知的概念和定理进行总结。
一、概念:1. 整数:整数是由正整数、负整数和零组成的数集。
对于初中数学来说,整数是常见的数形式,通常用于计数和计算。
2. 分数:分数是由分子和分母组成的数,表示一部分与整体的关系。
在初中数学中,我们经常会遇到分数的加减乘除计算和比较大小等问题。
3. 百分数:百分数是表示百分比形式的数,以百分号“%”表示。
初中数学中,百分数常用于表示比率、比例关系和增减量等。
4. 几何图形:初中几何图形包括点、线、面等。
点是最基本的图形元素,表示位置;线是连续的点构成的图形,有长度和方向;面是由线构成的,在平面上有面积。
5. 直角三角形:直角三角形是一个内角为直角(90度)的三角形。
直角三角形是初中数学中重要的几何图形,其边长关系和三角函数等概念和定理常用于解决实际问题。
二、定理:1. 勾股定理:勾股定理是直角三角形中著名的定理,它指出:在一个直角三角形中,两个直角边的平方和等于斜边的平方。
这个定理是解决直角三角形的边长关系和求解中常用的定理之一。
2. 二分之一角正弦定理:二分之一角正弦定理是解决直角三角形的角度问题的重要定理,它表明:在一个直角三角形中,斜边与直角边的比值等于直角边与斜边的二分之一角度正弦值的比值。
3. 平行线定理:平行线定理是平面几何中的重要定理,它表明:如果两条直线被一组平行线所截,那么这两条直线之间的对应角相等。
4. 三角形内角和定理:三角形内角和定理是解决三角形内角问题的重要定理,它指出:一个三角形的三个内角的和等于180度。
5. 同位角定理:同位角定理是解决平行线与其他线之间关系的定理,它表明:当两条直线被一组平行线所截时,同位角相等。
同位角定理常用于证明平行线相关的定理和问题。
初中数学全部概念以下是总结的初中数学全部概念:一、数与代数A、数与式:1.有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④数轴上两个点表示的数,右边的总比左边的大。
正数大于0,负数小于0,正数大于负数。
绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。
两个负数比较大小,绝对值大的反而小。
有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。
②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2.实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A 的平方根。
③一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:①如果一个数X的立方等于A,那么这个数X就叫做A 的立方根。
②正数的立方根是正数、0的立方根是0、负数的立方根是负数。
1第一章 实数第二章1.1实数的有关概念及实数的分类知识要点一、规定了原点..、正方向...和单位长度....的直线叫做数轴。
数轴上所有的点与全体实数是一一对应关系。
二、⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 三、在数轴上,原点两旁且与原点距离相等的两个点所表示的数是互为相反数。
四、两个互为相反数的和等于零;互为倒数的两个数的积等于1;零没有倒数。
五、偶数一般用n 2(n 为整数)来表示,奇数一般用12+n 来表示。
六、有理数都可以表示为nm (m ,n 为整数且m ,n 互质)的形式;任何一个分数都可以化成有限小数或无限循环小数的形式。
七、绝对值⎩⎨⎧<-≥==)0()0(2a a a a a a 八、非负数 像a ,2a ,)0(≥a a 形式的数都表示非负数。
非负数性质 ①最小的非负数是0;②若几个非负数的和是0,则每2个非负数都是0。
九、近似数与有效数字 一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位,这时,从左边第一个不是0的数字起到精确的数位止,所有的数字都叫这个数的有效数字。
十.科学记数法 把一个数记成n a 10⨯的形式叫做科学记数法,其中101<≤a ,n 为整数。
命题热点本节是中考必考内容,在考点上有实数、相反数、绝对值、倒数、数轴、近似数与有效数字、科学记数法等。
在题型上多以填空、选择题出现,近年则比较注重实际应用与创新能力方面的考查。
1.2实数的运算与实数的大小比较知识要点一、实数运算 在实数范围内,可以进行加、减、乘、除、乘方和开方运算,但是,除数不能为0,开偶次方时被开方数为非负数。
其中加、减是一级运算,乘、除是二级运算,乘方、开方是三级运算,同级运算从左到右依次进行;无括号的不同级运算先算高级运算;有括号时,先算小括号,再算中括号的,后算大括号的。
第一篇数与代数第一节数与式一、实数1.实数的分类:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:- 3, ,0.231,0.737373…, , 等;无限不环循小数叫做无理数. 如:π, ,0.1010010001…(两个1之间依次多1个0)等.有理数和无理数统称为实数.2.数轴:规定了原点、正方向和单位长度的直线叫数轴。
实数和数轴上的点一一对应。
3.绝对值:在数轴上表示数a的点到原点的距离叫数a的绝对值,记作∣a∣。
正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
如:丨- _丨= ;丨3.14-π丨=π-3.14.4.相反数:符号不同、绝对值相等的两个数,叫做互为相反数。
a的相反数是-a,0的相反数是0。
5.有效数字:一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0. 6.科学记数法:把一个数写成a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法. 如:407000=4.07×105,0.000043=4.3×10-5.7.大小比较:正数大于0,负数小于0,两个负数,绝对值大的反而小。
8.数的乘方:求相同因数的积的运算叫乘方,乘方运算的结果叫幂。
9.平方根:一般地,如果一个数x的平方等于a,即x2=a那么这个数a就叫做x的平方根(也叫做二次方根式)。
一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.10.开平方:求一个数a的平方根的运算,叫做开平方.11.算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根,0的算术平方根是0.12.立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(也叫做三次方根),正数的立方根是正数;负数的立方根是负数;0的立方根是0.13.开立方:求一个数a的立方根的运算叫做开立方.14.平方根易错点:(1)平方根与算术平方根不分,如 64的平方根为士8,易丢掉-8,而求为64的算术平方根;(2)的平方根是士,误认为平方根为士 2,应知道=2.15.二次根式:(1)定义:___________________________________________________叫做二次根式.16.二次根式的化简:17.最简二次根式应满足的条件:(1)被开方数的因式是整式或整数;(2)被开方数中不含有能开得尽的因数或因式.18.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式.19.二次根式的乘法、除法公式20..二次根式运算注意事项:(1)二次根式相加减,先把各根式化为最简二次根式,再合并同类二次根式,防止:①该化简的没化简;②不该合并的合并;③化简不正确;④合并出错.(2)二次根式的乘法除法常用乘法公式或除法公式来简化计算,运算结果一定写成最简二次根式或整式.21.有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数.22.有理数减法法则:减去一个数,等于加上这个数的相反数.23.有理数乘法法则:两个有理数相乘,同号得正,异号得负,再把绝对值相乘;任何数与0相乘,积仍为0.24.有理数除法法则:两个有理数相除,同号得正,异号得负,并把绝对值相除;0除以任何非0的数都得0;除以一个数等于乘以这个数的倒数.25.有理数的混合运算法则:先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的.26.有理数的运算律:加法交换律:为任意有理数)加法结合律:(a+ b)+c=a+(b+c)(a, b,c为任意有理数)二.代数式:(1)用运算符号把数和表示数的字母连接而成的式子叫做代数式。
以下是七年级数学的一些基本概念和定理的汇总:1.整数概念:-整数是由正整数、零和负整数组成的数集-整数的加法、减法和乘法运算法则-整数的相反数、绝对值2.分数概念:-分数是表示一个整体被分成若干个等分的数-分数的横杠叫做分子,表示被分成的份数;分数的下杠叫做分母,表示整体的份数-分数的相等、约分、拓展等运算法则-分数的加法、减法和乘法运算法则3.十进制小数概念:-十进制小数是指小数点后面的数字按照十的倍数排列组合而成的数-小数点后面的每一位数字都有一个对应的位数-十进制小数的大小比较、相加、相减和乘法运算法则4.比例和比例的应用:-比例是两个或多个有关联的量之间的比较关系-比例的概念和性质,如可交换性、可分配性等-求解比例中的未知量,如已知比例中的三个量,求第四个量的方法-根据比例关系求解实际问题,如长度比、面积比、价格比等5.三角形的基本概念:-三角形是由三条边和三个内角组成的图形-三角形的分类,如按照边长的关系可分为等边三角形、等腰三角形和普通三角形-三角形的内角和为180度-定义三角形的各个元素,如顶点、底边、高、底角等6.直角三角形及其性质:-直角三角形是一种具有一个内角为90度的三角形-直角三角形的斜边、直角边和斜边上的高-特殊的直角三角形,如45-45-90三角形和30-60-90三角形-直角三角形的勾股定理:直角三角形斜边的平方等于两直角边的平方和7.多边形的概念:-多边形是由多条直线段首尾相连而成的图形-多边形的边数和顶点数等基本概念-多边形的内角和、外角和和内外角关系定理8.平行四边形的性质:-平行四边形的定义和性质,如两对边平行、对角线互相等长等-平行四边形的特殊情况,如矩形、正方形和菱形-平行四边形的面积计算公式9.合同三角形的性质:-合同三角形是指相互之间边长角度都相等的三角形-合同三角形的定理,如SAS、SSS、ASA和AAS等-利用合同三角形的性质进行图形证明和计算10.图片的放大和缩小:-图形的形状变换,如放大和缩小-放大和缩小的比例和中心-利用放大和缩小的性质计算实际问题,如线段长度的比例、面积的比例等。
初中数学知识点归纳总结一元一次方程1.概念:含有一个未知数,未知数的最高次数为1,这样的方程叫一元一次方程。
2.形式:ax + b = 0(a、b是常数,且a≠0)3.解法:移项、合并同类项、化简系数二元一次方程1.概念:含有两个未知数,未知数的最高次数为1,这样的方程叫二元一次方程。
2.形式:ax + by = c(a、b、c是常数,且a、b≠0)3.解法:消元法、代入法、行列式法一元一次不等式1.概念:含有一个未知数,未知数的最高次数为1,这样的不等式叫一元一次不等式。
2.形式:ax > b(a、b是常数,且a≠0)3.解法:同解一元一次方程,注意不等号的方向4.概念:分式是指形如a/b的表达式,其中a、b是整式,且b≠0。
5.性质:分式的分子、分母同时乘以(或除以)同一个非零整式,分式的值不变。
6.运算:加减乘除、分式的乘方点、线、面1.点:没有长度、宽度、高度的物体。
2.线:只有长度,没有宽度、高度的物体。
3.面:只有长度和宽度,没有高度的物体。
直线方程1.点斜式:y - y1 = k(x - x1)(k是直线的斜率,(x1, y1)是直线上的一点)2.截距式:y = kx + b(k是直线的斜率,b是直线在y轴上的截距)三角形1.概念:由三条线段首尾顺次连接所组成的图形叫三角形。
2.性质:三角形的内角和为180°,三角形的对边相等。
3.分类:不等边三角形、等腰三角形、等边三角形四边形1.概念:由四条线段首尾顺次连接所组成的图形叫四边形。
2.性质:四边形的内角和为360°,四边形的对边相等。
3.分类:矩形、平行四边形、梯形、菱形4.概念:平面上到一个固定点距离相等的所有点的集合叫圆。
5.性质:圆的半径相等,圆心到圆上任意一点的距离相等。
6.公式:圆的周长C = 2πr,圆的面积S = πr²概率与统计1.概念:事件发生的可能性叫概率。
2.求法:列举法、树状图法、列表法3.概念:统计学是研究数据收集、处理、分析、解释的科学。
初中数学概念、定义、定理、公式大全(最新版)初中数学概念、定义、定理、公式第二版逻辑与命题实验、观察、操作得出的结论有时不够深入、全面,甚至是错误的。
因此,判断某一事情的句子称为命题。
如果条件成立,那么结论也成立,这样的命题称为真命题。
但条件成立时,结论不一定总是正确,这样的命题称为假命题。
如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题称为互逆命题。
其中一个命题称为另一个命题的逆命题。
数系及运算正数是比大的数,负数是比小的数,零既不是正数也不是负数。
数轴上表示一个数的点与原点的距离,称为这个数的绝对值。
如果两个数的符号不同而绝对值相同,那么它们互为相反数,其中一个是另一个的相反数。
例如,3和-3是互为相反数的。
一个数的相反数是它的相反数。
例如,-5的相反数是5.两个正数相加,绝对值大的正数大;两个负数相加,绝对值大的负数反而小。
有理数加法的法则是:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两数和为0;一个数与0相加,仍得这个数。
有理数加法满足交换律和结合律。
减去一个数等于加上这个数的相反数,即a-b=a+(-b)。
两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数与0相乘都得0.有理数乘法满足交换律、结合律和分配率。
除以一个不等于0的数等于乘这个数的倒数。
幂是指相同因数的积的运算,乘方运算的结果称为幂。
正数的任何次幂都是正数。
负数的奇数次幂是负数,偶数次幂是正数。
科学计数法是一种表示大于10的数的方法,其中1≤a <10,n是正整数。
有理数混合运算的顺序是先乘方,再乘除,最后加减。
如果有括号,先进行括号内的运算。
幂的乘方,底数不变,指数相乘。
(m、n是正整数)积的乘方,把积的每一个因式分别乘方,再把所得的幂相乘。
(n是正整数)同底数幂相除,底数不变,指数相减。
初中数学基础知识点总结一、整数与有理数1. 整数的概念及性质:整数的概念、绝对值、整数的比较大小、整数的加减法、整数的乘除法、整数的幂运算。
2. 有理数的概念及性质:有理数的概念、有理数的加减法、有理数的乘除法、有理数的大小比较、绝对值与相反数。
二、整式与分式1. 代数式与整式:代数式的概念、整式的概念及性质、整式的加减法、整式的乘法。
2. 分式的概念及性质:分式的概念、分式的运算、简化与整除、分式方程。
三、方程与不等式1. 一元一次方程:方程的概念、一元一次方程的解集、一元一次方程的性质、一元一次方程的应用。
2. 一元一次不等式:不等式的概念、一元一次不等式的解集、一元一次不等式的性质、一元一次不等式的应用。
3. 一元二次方程:一元二次方程的解、一元二次方程的判别式与性质、一元二次方程的应用。
4. 一元二次不等式:一元二次不等式的解、一元二次不等式的性质、一元二次不等式的应用。
四、数列与函数1. 数列的概念及性质:数列的概念、数列的通项公式、数列的递推关系、数列的等差数列与等比数列。
2. 等差数列与等差数列:等差数列的概念、等差数列的通项公式、等差数列的求和公式、等差数列的性质、等差数列的应用。
3. 等比数列与等比数列:等比数列的概念、等比数列的通项公式、等比数列的求和公式、等比数列的性质、等比数列的应用。
4. 函数的概念与性质:函数的概念、函数的表示、函数的性质、函数的特性。
五、几何图形与几何变换1. 二维几何图形:点、线、角、三角形、四边形、圆的概念与性质。
2. 三维几何图形:长方体、正方体、棱柱、棱锥、球体的概念与性质。
3. 几何变换:平移、旋转、对称的概念与性质。
六、统计与概率1. 统计:统计的概念、频数与频率、统计图表、平均数与中位数。
2. 概率:概率的概念、概率的计算、事件的相互关系、概率与统计的应用。
七、几何证明与简单推理1. 几何证明的基本思想与方法:假设、引理、定理、证明方法。
初三数学常考知识点一、实数与代数1.有理数:整数、分数、相反数、绝对值、有理数的乘方、平方根、算术平方根等。
2.实数:实数的定义、实数的分类、实数的性质、实数的运算等。
3.代数式:代数式的定义、代数式的分类、代数式的运算等。
4.一元一次方程:一元一次方程的定义、一元一次方程的解法、一元一次方程的应用等。
5.不等式:不等式的定义、不等式的性质、不等式的解法、不等式的应用等。
6.二元一次方程组:二元一次方程组的定义、二元一次方程组的解法、二元一次方程组的应用等。
7.点、线、面:点的定义、线的定义、面的定义、点、线、面的关系等。
8.平面几何基本概念:邻补角、对顶角、同位角、内错角、同旁内角、平行线、相交线、垂直、平行的性质等。
9.三角形:三角形的定义、三角形的分类、三角形的性质、三角形的判定、三角形的计算等。
10.四边形:四边形的定义、四边形的分类、四边形的性质、四边形的判定、四边形的计算等。
11.圆:圆的定义、圆的性质、圆的方程、圆的计算、扇形、弧、弦等。
12.空间几何:长方体、正方体、球、棱柱、棱锥等空间几何图形的性质、计算和应用。
13.一次函数:一次函数的定义、一次函数的图像、一次函数的性质、一次函数的应用等。
14.二次函数:二次函数的定义、二次函数的图像、二次函数的性质、二次函数的应用等。
15.反比例函数:反比例函数的定义、反比例函数的图像、反比例函数的性质、反比例函数的应用等。
16.函数图像:函数图像的性质、函数图像的变换、函数图像的分析等。
四、统计与概率1.统计:统计的基本概念、统计的运算、数据的收集与处理、图表的制作等。
2.概率:概率的基本概念、概率的计算、概率的应用等。
五、解决问题的方法1.方程思想:列方程、求解方程、检验解等。
2.函数思想:建立函数关系、求解函数问题等。
3.几何思想:利用几何性质、定理解决问题等。
4.数形结合思想:利用数形结合的方法解决问题等。
以上是初三数学常考的知识点,希望对你有所帮助。
初中数学知识点归纳及总结初中数学是学生数学学习的重要阶段,它为高中及以后的数学学习打下坚实的基础。
初中数学主要包括数与代数、几何、统计与概率三个部分。
以下是初中数学的主要知识点归纳及总结。
一、数与代数1. 有理数- 有理数的定义:包括整数和分数,可以表示为a/b的形式,其中a、b为整数,b≠0。
- 有理数的运算:加法、减法、乘法、除法和乘方。
需要注意的是除法和乘方的运算规则。
- 绝对值:一个数的绝对值表示为它的非负值,即|a|≥0。
2. 整式与分式- 整式的加减乘除:包括单项式与多项式,需要掌握分配律、结合律和交换律。
- 分式的运算:分式的加减需要通分,乘除则需要约分。
- 整式的因式分解:包括提取公因式、使用公式法和分组分解法。
3. 线性方程与不等式- 一元一次方程:形式为ax+b=0,解法为x=-b/a。
- 二元一次方程组:通过代入法、消元法求解。
- 不等式的性质和解法:包括基本的不等式性质,如不等式的加法和乘法性质。
4. 函数- 函数的概念:描述变量之间关系的数学对象,通常表示为y=f(x)。
- 线性函数和二次函数:线性函数的图像是一条直线,二次函数的图像是一个抛物线。
- 函数的性质:包括函数的单调性、对称性等。
二、几何1. 平面几何- 点、线、面的基本性质。
- 角的概念和分类:包括邻角、对角、同位角等。
- 三角形:包括三角形的分类、性质、内角和定理。
- 四边形:包括平行四边形、矩形、菱形、正方形的性质和计算。
2. 圆的基本性质- 圆的定义和性质:包括圆心、半径、直径、弦、弧等。
- 圆的面积和周长计算公式。
- 切线和割线的性质。
3. 空间几何- 空间图形的基本概念:包括点、线、面在三维空间中的表示。
- 立体图形的性质和计算:包括长方体、正方体、圆柱、圆锥、球等。
三、统计与概率1. 统计- 数据的收集和整理:包括分类、制表、绘制图表等。
- 描述性统计量:包括平均数、中位数、众数、方差、标准差等。
初中数学知识点总结归纳(完整版)1. 数与式整数与有理数•整数与负数的概念•整数与有理数的关系•整数的加减乘除•有理数的加减乘除•有理数的绝对值与相反数分数与小数•分数的概念与性质•分数的化简与约分•分数的加减乘除•分数的比较大小•小数的概念与性质•小数与分数的相互转化•小数的加减乘除百分数与比例•百分数的概念与表示方法•百分数的转化与运算•比例的概念与性质•比例的表示与比例的简化•比例的四则运算•比例的应用:比例尺、利润、利率等平方根与立方根•平方根的概念与性质•平方根的计算与应用•立方根的概念与计算代数式与方程式•代数式的概念与性质•代数式的加减乘除与化简•方程式的概念与性质•方程式的解与解的唯一性•一元一次方程与解法•一元一次方程的应用2. 几何直线与角•直线与线段的概念与性质•直线与角的关系•角的分类与度量•角的加减运算•角的余角与补角•垂直角与同位角三角形•三角形的分类与性质•直角三角形的性质•等腰三角形的性质•等边三角形的性质•三角形的角平分线与垂直平分线•三角形的面积与周长的计算平行线与比例•平行线的性质与判定•平行线的应用:平行线的等与不等关系•比例线段与比例的概念•线段的延长、分割及等分•相似三角形与相似比例圆•圆的概念与性质•圆周角与弧长的关系•相切线与切线的性质•弦长与弧度制长方体与正方体•长方体与正方体的概念与性质•长方体与正方体的表面积与体积的计算•长方体与正方体的应用3. 数据分析与统计统计图表•统计图表的分类与绘制•条形图的绘制与应用•折线图的绘制与应用•饼图的绘制与应用•散点图的绘制与应用平均数与中位数•平均数的概念与计算•中位数的概念与计算•平均数与中位数的应用概率与事件•概率的概念与计算•事件的概念与运算•概率与事件的应用抽样调查•抽样调查的目的与方法•抽样调查的误差与样本容量•调查报告的撰写与分析4. 代数与函数一元一次方程•一元一次方程的解法•一元一次方程的应用二元一次方程组•二元一次方程组的解法•二元一次方程组的应用函数与图像•函数的概念与性质•函数的表示与计算•函数的图像与性质•平移、伸缩与翻折变换•函数的最大值与最小值幂与指数函数•幂函数与指数函数的概念与性质•幂函数与指数函数的应用图形与变化•图形的对称与性质•图形的平移、伸缩与翻折•图形的旋转与变化规律结语初中数学知识点的总结归纳,涵盖了数与式、几何、数据分析与统计以及代数与函数方面的内容。
初中数学知识点总结一、代数1.1 实数实数包括有理数和无理数。
有理数包括整数(正整数、0、负整数)和分数(正分数、负分数)。
无理数不能表示为两个整数的比值,例如 √2 和 π。
1.2 代数式代数式是由数字、字母和运算符组成的表达式。
初中阶段主要学习一元一次方程、一元二次方程、二元一次方程组和不等式(组)。
1.3 一元一次方程一元一次方程是指只有一个未知数,且未知数的最高次数为1的方程。
例如:2x +3=7。
1.4 一元二次方程一元二次方程是指只有一个未知数,且未知数的最高次数为2的方程。
例如:x 2−5x +6=0。
1.5 二元一次方程组二元一次方程组是由两个一元一次方程组成的方程组。
例如:{2x +3y =8x −y =1。
1.6 不等式(组)不等式是用“>”、“<”、“≥”、“≤”等符号表示两个数之间大小关系的式子。
不等式组是由多个不等式组成的集合。
二、几何2.1 点、线、面点是没有长度、宽度和高度的对象。
线是由无数个点连成的,有方向和长度,但没有宽度和高度。
面是由无数个线段连成的,有长度和宽度,但没有高度。
2.2 平面几何基本概念平面几何基本概念包括:线段、射线、直线、角、钝角、锐角、直角、平角、周角、三角形、四边形、五边形、六边形等。
2.3 三角形三角形是由三条线段组成的平面图形。
根据边长和角度的关系,三角形分为等边三角形、等腰三角形和普通三角形。
2.4 四边形四边形是由四条线段组成的平面图形。
根据边长和角度的关系,四边形分为矩形、正方形、平行四边形、梯形等。
2.5 圆圆是由与圆心等距的所有点组成的平面图形。
圆的基本要素包括圆心、半径、直径、弧、扇形等。
2.6 几何公式几何公式包括:三角形面积公式、平行四边形面积公式、矩形面积公式、正方形面积公式、圆面积公式等。
三、概率与统计3.1 概率概率是指某一事件发生的可能性。
概率的取值范围在0和1之间,概率越大,事件发生的可能性越大。
1第一章实数第二章1.1实数的有关概念及实数的分类知识要点一、规定了原点、正方向和单位长度的直线叫做数轴。
数轴上所有的点与全体实数是一一对应关系。
二、⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数三、在数轴上,原点两旁且与原点距离相等的两个点所表示的数是互为相反数。
四、两个互为相反数的和等于零;互为倒数的两个数的积等于1;零没有倒数。
五、偶数一般用(为整数)来表示,奇数一般用来表示。
n 2n 12+n 六、有理数都可以表示为(,为整数且,互质)的形式;nm m n m n 任何一个分数都可以化成有限小数或无限循环小数的形式。
七、绝对值⎩⎨⎧<-≥==)0()0(2a a a a a a 八、非负数 像,,形式的数都表示非负数。
a 2a )0(≥a a 非负数性质 ①最小的非负数是0;②若几个非负数的和是0,则每2个非负数都是0。
九、近似数与有效数字 一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位,这时,从左边第一个不是0的数字起到精确的数位止,所有的数字都叫这个数的有效数字。
十.科学记数法 把一个数记成的形式叫做科学记数法,其中n a 10⨯,为整数。
101<≤a n 命题热点本节是中考必考内容,在考点上有实数、相反数、绝对值、倒数、数轴、近似数与有效数字、科学记数法等。
在题型上多以填空、选择题出现,近年则比较注重实际应用与创新能力方面的考查。
1.2实数的运算与实数的大小比较知识要点一、实数运算 在实数范围内,可以进行加、减、乘、除、乘方和开方运算,但是,除数不能为0,开偶次方时被开方数为非负数。
其中加、减是一级运算,乘、除是二级运算,乘方、开方是三级运算,同级运算从左到右依次进行;无括号的不同级运算先算高级运算;有括号时,先算小括号,再算中括号的,后算大括号的。
二、实数的大小比较 三种比较方法:数轴比较法,将两实数分别表示在数轴上,右边的数总比左边的数大,两数表示同一点则相等。
差值比较法,设,是任意两实数,则;;a b b a b a >⇔>-0b a b a <⇔<-0。
商值比较法,设,是任意两正实数,则b a b a =⇔=-0a b ;;。
b a b a >⇔>1b a b a <⇔<1b a ba =⇔=1命题热点对本节知识的考查,多以填空、选择题 和计算题等题型为主,近年还出现了大量的以阅读理解与探索猜想为形式的新题型。
命题者往往在易错点设置陷阱,对学生的创新能力、自学能力有较高的要求,希望能引起3同学们的重视。
第二章 代数式2.1整式知识要点一、代数式的分类⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧无理式分式多项式单项式整式有理式代数式二、同类项 所含的字母相同并且相同字母的指数也相同的项叫做同类项,合并同类项时,只把系数相加,所含字母和字母的指数不变。
三、整式的运算(1)整式的加减 先去括号或添括号,再合并同类项。
(2)整式的乘除 幂的运算性质①(,为整数,n m n m a a a +=⋅m n );②(,为整数,);③(0≠a mn n m a a =)(m n 0≠a n n n b a ab ⋅=)(n 为整数且);④(,为整数,)。
0≠a n m n m a a a -=÷m n 0≠a 乘法公式(1)平方差:。
(2)完全平方公式:22))((b a b a b a -=-+。
(3)立方和(差):2222)(b ab a b a +±=±3322))((b a b ab a b a ±=+± 四、代数式的值 用数值代替代数式里的字母,计算后所得的结果叫做代数式的值。
命题热点中考中考查本节的内容主要有与整式相关的概念、整式的混合运算法则及灵活运用三个乘法公式进行计算,在试卷中多以填空、选择及求值等题型出现。
2.2因式分解知识要点4一、因式分解 把一个多项式化为几个整式的积的形式,叫做多项式的因式分解。
二、因式分解的基本方法 (1)提取公因式法。
(2)公式法。
(3)分组分解法。
三、因式分解的其它方法 (1)配方法。
(2)求根公式法。
(3)换元法。
四、因式分解常用的公式如下(1);))((22b a b a b a -+=-(2);222)(2b a b ab a ±=+±(3)。
))((2233b ab a b a b a +±=± 命题热点考查内容涉及本节的主要有因式分解的意义及分解方法,每份试卷上都有与因式分解相关的考题,但更多的是将因式分解作为一种方法在分式、二次根式及其它方面进行变形、求值中的运用,因此,我们应掌握因式分解及分解,更应掌握它在其它知识中的运用。
2.3分式知识要点一、分式 如果中含有字母,式子叫做分式,分式中字母取值B BA 必须使分母的值不为零。
二、分式的基本性质 (为不等于0的整MB M A B A ⨯⨯=M B M A B A ÷÷=M 式)。
三、分式的运算(1)加减法:,;c b a c b c a ±=±bd bc ad d c b a ±=±5(2)乘除法:,;bdac d c b a =⋅bc ad c d b a d c b a =⋅=÷(3)乘方: (为正整数);nn n b a b a =(n (4)符号法则:。
ba b a b a b a --=--=--=四、约分 根据分式的基本性质,把分式的分子和分母的公因式约去,叫做约分。
五、通分 根据分式的基本性质,把异分母的分式化成和原来的分式分别相等的同分母的分式,叫做通分。
命题热点本节内容中,分式的概念与基本性质、分式的运算法则、分式的计算与化简求值是命题热点,也是重点。
2.4二次根式知识要点一、二次根式 式子叫做二次根式。
)0(≥a a 二、最简二次根式 满足下列两个条件的二次根式,叫做最简二次根式:①被开方数的因数是整数,因式是整式;②被开方数中不含能开得尽方的因数或因式。
三、同类二次根式 几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式。
四、二次根式的主要性质(1))0()(2≥=a a a (2)⎪⎩⎪⎨⎧<-=>==)0()0(0)0(2a a a a a a a (3))0,0(≥≥⋅=b a b a ab6(4))0,0(>≥=a b b a a b 五、二次根式的运算(1)因式的外移和内移,如果被开方数中有的因式能开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先分解因式,变形为积的形式,再移因式到根号外面。
反之,也可以将根号外面的正因式,平方后移到根号里面去。
(2)有理化因式与分母有理化两个含有二次根式的代数式相乘,若它们的积不含二次根式,则称这两个代数式互为有理化因式。
把分母中的根号化去,叫做分母有理化。
(3)二次根式的加减法 先把二次根式化成最简二次根式,再合并同类二次根式。
(4)二次根式的乘除法 二次根式相乘(除),把被开方数相乘(除),所得的积(商)仍作积(商)的被开方数,并将运算结果化为最简二次根式。
(5)有理数的加法交换律、结合律、乘法交换律、结合律、乘法对加法的分配律,以及多项式的乘法公式,都适用于二次根式的运算。
命题热点本节知识一直是中考的重点内容,涉及题型有填空、选择、计算、阅读等,特别是二次根式及其性质,二次根式与整式、分式的混合运算。
第三章 不等式(组)知识要点一、不等式的基本性质(1)不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
7(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
二、不等式(组)的解法(1)解一元一次不等式和解一元一次方程相类似,但要特别注意不等式的两边都乘以(或除以)同一个负数时,不等号的方向必须改变。
(2)解不等式组一般先分别求出不等式组中各个不等式的解集,再求出它们的公共部分,就得到不等式组的解集。
三、设,那么:(1)不等式组的解集是;(2)不b a <⎩⎨⎧>>bx a x b x >等式组的解集是;(3)不等式组的解集是;⎩⎨⎧<<b x a x a x <⎩⎨⎧<>b x a x b x a <<(4)不等式组的解集是空集。
⎩⎨⎧><b x a x 命题热点中考试卷中,本节内容的考点主要有:不等式的基本性质,一元一次不等式(组)的解法及在数轴上表示其解集,求不等式组的特殊解,与其它代数的综合应用,简单的不等式应用题等。
第四章 方程(组)4.1整式方程知识要点一、等式和方程的有关概念,等式的基本性质。
二、一元一次方程(1)解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和将未知数的系数化为1;(2)方程的解有以下三种情况:①当时,方程有且仅有b ax =0≠a 一个解;②当时,方程无解;③当时,方程ab x =0,0≠=b a 0,0==b a 有无穷多个解。
8三、一元二次方程的一般形式是,其解法)0(02≠=++a c bx ax 主要有:直接开平方法、配方法、因式分解法、公式法。
四、一元二次方程的求根公式是)0(02≠=++a c bx ax 。
)04(24222,1≥--±-=ac b aac b b x 注意:求根公式成立的条件为(1),(2)。
0≠a 042≥-ac b 命题热点中考对本节内容的考查重点在根的意义、一元一次方程及一元二次方程的解法。
主要题型有填空、选择,但主要都是考查学生的运算且难度不大。
4.2分式方程知识要点一、分式方程的概念。
二、解分式方程的基本思想方法是:分式方程整式方程→换元去分母三、解分式方程产生增根的原因,验根的方法。
命题热点各地中考中对本节知识的考查重点是分式方程的解法及增根问题,近年还出现分式方程的根、一元二次方程根与系数的关系及实际应用题相结合的新题型。
4.3方程组知识要点一、解二元(或三元)一次方程组的基本思路是消元,变二元(或三元)为一元(或二元),常用的方法是加减消元法和代入消元法。
二、解二元二次方程组的基本思想是“消元”与“降次”,基本要求有以下两类:(1)方程组中有一个方程是一次方程的(第一型的二元二9次方程组),一般用代入法求解;(2)方程组中有一个方程可以分解成两个一次方程的(第二型的二元二次方程组),可将原方程组化为两个简单的方程组。