判别矩阵的一致性ppt课件
- 格式:ppt
- 大小:44.50 KB
- 文档页数:10
function [w,CR]=mycom(A,m,RI)[x,lumda]=eig(A);r=abs(sum(lumda));n=find(r==max(r));max_lumda_A=lumda(n,n);max_x_A=x(:,n);w=A/sum(A);CR=(max_lumda_A-m)/(m-1)/RI;end本matlab程序用于层次分析法中计算判断矩阵给出的权值已经进行一致性检验。
其中A为判断矩阵,不同的标度和评定A将不同。
m为A的维数RI为判断矩阵的平均随机一致性指标:根据m的不同值不同。
当CR<0.1时符合一致性检验,判断矩阵构造合理。
下面是层次分析法的简介,以及判断矩阵构造方法。
一.层次分析法的含义层次分析法(The analytic hierarchy process)简称AHP,在20世纪70年代中期由美国运筹学家托马斯·塞蒂(T.L.Saaty)正式提出。
它是一种定性和定量相结合的、系统化、层次化的分析方法。
由于它在处理复杂的决策问题上的实用性和有效性,很快在世界范围得到重视。
它的应用已遍及经济计划和管理、能源政策和分配、行为科学、军事指挥、运输、农业、教育、人才、医疗和环境等领域。
二.层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一样的。
(1)层次分析法的原理层次分析法是将决策问题按总目标、各层子目标、评价准则直至具体的备投方案的顺序分解为不同的层次结构,然后得用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递阶归并各备择方案对总目标的最终权重,此最终权重最大者即为最优方案。
这里所谓“优先权重”是一种相对的量度,它表明各备择方案在某一特点的评价准则或子目标,标下优越程度的相对量度,以及各子目标对上一层目标而言重要程度的相对量度。
层次分析法比较适合于具有分层交错评价指标的目标系统,而且目标值又难于定量描述的决策问题。
矩阵相似的若干判别法及应用LT目录摘要 (I)Abstract (II)前言 (3)第一章基本概念 (4)1.1 矩阵 (4)1.1.1 矩阵的概念 (4)1.1.2 矩阵的性质 (4)1.2 矩阵相似 (5)1.2.1矩阵相似的概念 (5)1.2.2 矩阵相似的性质 (6)第二章矩阵相似的判别 (7)2.1 特征值与特征向量法判定 (7)2.1.1 特征值和特征向量的定义及求法..................................... 错误!未定义书签。
2.1.2 特征值和特征向量的基本性质与矩阵相似的判定 (7)2.2用初等变法换判定 (10)2.3 应用分块矩阵相似判定 (12)第三章矩阵相似的应用 (15)3.1 利用相似变换把方阵对角化 (15)3.2 矩阵相似性质的简单应用 (15)3.3 矩阵相似在实际生活中的应用 (16)结论 (18)参考文献 (19)致谢 (21)摘要相似矩阵是高等代数课程范围内,一个很重要的基本问题,并且矩阵相似是矩阵中很重要的一种关系.本文从矩阵的基本理论出发,以定性分析法,以综述的形式总结了几个重要的判定矩阵相似的定理和结论.通过矩阵的特征值与特征向量、矩阵的对角化、可逆矩阵、矩阵的初等变换和分块矩阵对矩阵相似进行判别,并运用例证对每一种判别法加以说明;另外,还对相似矩阵的一些应用进行了介绍,以便对矩阵的相似有更进一步的了解.关键词:特征值;特征向量;相似矩阵;判别;分块矩阵AbstractThe similarity of matrix is one of the most important problem within the area of the advanced algebra. In addition, the similarity of matrix is an elementary relationship between the matrixes.This paper reviews several important criteria which are used to judge the similarity of matrix. These criteria are generally based on the calculation of the Eigen value and Eigen vector, the diagonalization of matrix, the invertible transformation of matrix, the elementary transformation of matrix, and the partition of the matrix. Further, the examples follow and elucidate the counterpart criteria. At the end, the application of the similarity of matrix is given to deepen the understanding.Keywords: Eigen value;Eigen vector;Similarity of matrix;Distinguish;Partitioned matrix前言在数学中,矩阵就是一个平面上的数阵,矩阵理论的起源可追溯到18世纪,在以后的发展中,又相应的产生了许多理论知识,例如初等矩阵,矩阵的秩,矩阵的特征值与特征向量等.其中,矩阵相似理论也是在矩阵的发展之后才进一步发展和应用的起来的.矩阵相似的好处很多,最大的好处是通过相似可以让任何一个矩阵变为若当标准型.相似矩阵间有很多相同的性质,比如秩,矩阵对应的行列式,迹(对角线元素之和),特征值,特征多项式,初等因子都相同.一个矩阵很重要的一点就是它的特征值,通过相似变换,可以转而研究一个结构简单得多的矩阵的特征值的性质.利用矩阵相似的一些性质,可以让我们在解决一些特殊和复杂的问题时更加的简便,而且矩阵相似在实际生活中同样有着巨大的作用.本文主要介绍了矩阵的各种性质和特点,什么是矩阵相似,以及矩阵相似的判断和矩阵相似的一些应用.在第一章中,我们主要介绍了矩阵以及由它延伸出来的相关理论知识,例如矩阵的相似及它的一些简单的性质;在第二章中,着重介绍和总结了矩阵相似的三种判别方法.借助矩阵的特征值与特征向量将矩阵对角化,进而来对矩阵进行相似的判别,是对相似矩阵性质的综合运用,理论及方法都较为简单便于理解和掌握;初等变换法逻辑性强、理论系统;利用分块矩阵判别矩阵的相似,是对特型矩阵相似的一种判别法,较为简洁,但有局限性.第一章 基本概念1.1 矩阵矩阵是现代数学中极其重要、应用非常广泛的一个重要内容.利用这一数学工具,可以把所研究的多数据、多数量关系的问题化成简明的易于理解和分析的形式.1.1.1 矩阵的概念定义1.1 由t ⨯s 个数),2,1,,,2,1(n j m i a ij ==排成的s 行t 列的数表⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a a a a a A 212222111211 我们把它称为s 行t 列矩阵,简t s ⨯阵矩,其中ij a 称为矩阵A 的第i 行第j 列元素;如果矩阵A 的行数和列数相等,则我们也把矩阵A 叫做方阵A .定义 1.2 如果一个矩阵的元素全为零,我们就称之为零矩阵,记为mn O ,我们也可以简单的记为O .定义1.3 如果方阵A 中的元素能够满足条件)(0j i a ij ≠=,则我们就把方阵叫做对角阵.定义 1.4 如果一个n n ⨯矩阵除了主对角线上的元素,别的元素都是0,且主对角线是1的元素⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡100010001 我们把它称之为n 级单位矩阵,记作n I ,一般情况下简写为I .1.1.2 矩阵的性质定义1.5 设ms ik a A )(=,sn kj b B )(=,那么矩阵mn ij c C )(=,其中∑==++++=sk kj ik sj is j i j i j i ij b a b a b a b a b a c 1332211 (1-1)我们将其称之为A 与B 的乘积,记为AB C =.注意,在乘法预算中方阵,要求前面方阵的行与后面方阵的列数位相同 定义 1.6 由方阵A 中的元素保持其原来相对的位置不变而构成的行列式称为方阵A 的行列式,记作A 或A det .定义1.7 对于数域P 上的n 阶方阵A ,如果满足0≠A ,则我们称其为非退化的;反之我们称它为退化的.定义1.8 对于n 级方阵A ,如果有一个n 级方阵B ,使得I BA AB == (1-2) 成立,我们就称方阵A 是可逆的,这里的I 是n 级单位矩阵.我们就称方阵A 是可逆的,这里的I 是n 级单位矩阵.定义1.9 如果有n 级方阵B 适合(1-2),那么我们就把方阵B 叫做方阵A 的逆矩阵,记作1-A .引理1.1 0≠A 是n 阶方阵可逆的充要条件.定义1.10 设ij A 是矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a a a a a A 212222111211 中元素ij a 的代数余子式,则矩阵 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n n n n A A A A A A A A A A 212221212111* 就是矩阵A 的伴随矩阵.定理1.1 如果A 方阵是非退化的,那么它是可逆的;反之方阵A 可逆,则它也一定是非退化的有 *11A dA =- (0≠=A d ). (1-3) 定义1.11 矩阵的行秩是指以矩阵每一行的元素作为行向量而构成的行向量组的秩;矩阵的列秩是指以矩阵每一列的元素作为列向量而构成的列向量组的秩. 定理1.2 矩阵的行秩和列秩相等.因为矩阵的行秩和列秩相等,所以我们将行秩和列秩统称为矩阵的秩,矩阵A 的秩记为)(A R .1.2 矩阵相似相似的矩阵有很多共同的性质,所以只要从与A 相似的矩阵中找到一个特别简单的矩阵,只需通过对这个简单矩阵性质的研究就可以知道A 的性质.1.2.1 矩阵相似的概念定义1.12[1] 有A ,B 方阵在数域F 上,若是F 上有n 阶可逆方阵T 使等式:AT T B 1-=成立,那么就说B 与A 相似,并且写作.~B A定义1.13[1] 设)(λij a )...,2,1,,...,2,1(n j m i ==是数域F 上的多项式,以)(λij a 为元素的n m ⨯矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=)(...)()(............)(...)()()(...)()()(212222111211λλλλλλλλλλmn m m n n a a a a a a a a a A 称为λ矩阵.记[]()(n m P A ⨯∈λλ[]n m P ⨯λ表示数域∈P 的λ矩阵的全体).定义1.14 方阵上的相似关系~与数域K 上的n 阶方阵之间的关系是互推的,对任何n n K A ⨯∈,存在集合[]{}B A K B B A n n ~,|~⨯∈=则我们可称矩阵A 形成的相似(~)等价类.1.2.2 矩阵相似的性质性质1.1 反身性:由于AI I A 1-=所以每一个n 级方阵都是和自己相似的.即A A ~.性质1.2 对称性:如果B A ~,那么 A B ~ ;如果B A ~ ,那么 有X ,使TX X B 1-=令1-=X Y就有BY Y XBX A 11--==所以A B ~.性质1.3 传递性:如果B A ~,C B ~,那么C A ~.事实上,由AT T B 1-=和BU U C 1-=得)()(111TU A TU ATU T U C ---== (2-1) 由等式AT T B 1-=可知,对于n 维向量空间上的两个线性变换的基它们相似.矩阵相似还有具有如下一些性质. (1)相似矩阵的行列式相等; (2)相似矩阵有相同的秩;(3)相似矩阵有相同的可逆性,且它们可逆时,它们的逆矩阵也相似; (4)相似矩阵的幂仍相似;(5)相似矩阵有相同的特征值.第二章 矩阵相似的判别研究矩阵相似的好处很多,最大的好处是通过相似变换可以让任何一个矩阵变为若当标准型.若当标准型是尽可能最简单的一种矩阵,这种矩阵在运算上有许多方便之处.另一种好处是矩阵相似有许多相同的属性,这样可以将对形式复杂矩阵的研究转化为对简单形式矩阵的研究.本章给出三种判别矩阵相似的方法.2.1 特征值与特征向量法判定矩阵的特征值与特征向量作为一个极为重要的数学概念,它在数学中有着最为广泛的应用.应用特征值与特征向量将矩阵对角化,进而做矩阵相似的判断,是较为常用的、基本的判别矩阵相似的方法.2.1.1 特征值和特征向量定义及求法矩阵的特征值与特征向量是线性代数中的两个基本概念,是判定矩阵相似的工具之一.定义2.1[1] 我们假设A 为n 阶方阵,如果有复数λ及n 维非零列向量,x 得x Ax λ= (1-1)或者0)(=-x A E λ(1-2)那么把λ看作是A 的特征向量,而x 则是λ的特征向量. 求n 阶矩阵A 的特征值与特征向量有一般如下步骤: 第一步:我们应先求出矩阵的特征多项式||E A λ-;第二步: 那么接下来我们应需要知道||A E -λ0=的所有根值n λλλ,,,21 并且n λλλ,,,21 便是矩阵的所有特征值;假如i λ是特征方程的单根,则称i λ为A 的单特征值;若是j λ是特征方程的k 重根,那么A 的k 重特征值是j λ,并且j λ的重数是k .第三步:对A 的相异特征值中的每个特征值i λ,再求得齐次线性方程组0)(=-A E i λ (1-3)的一个基础解系j ik i i ξξξ,,,21 ,则有j ik i i ξξξ,,,21 即为对应于特征值i λ的特征空间的一个基,则有A 的属于i λ的全部特征向量为 j j ik k i i c c c x ξξξ+++= 2211 其中j k c c c ,,,21 是不全部为零的任意常数.2.1.2 特征值和特征向量的基本性质与矩阵相似的判定性质2.1 设n n ij a A ⨯=)(的全部特征值为n λλλ,,,21 ,则存在着||,21121A a n ni ii n ==+++∑=λλλλλλ在这里咱们可以利用性质1.3.1去简化特征值的问题的一些相关的运算. 性质 2.2 如果λ是方阵A 的特征值,x 是相应的特征向量矩阵,然后任意正整数k ,有x 是k A 的特征值的特征向量且特征值为k λ.性质2.3 假使λ是可逆矩阵A 的一个特征值,若λλ1,0≠为1-A 的一个特征值,且λ||A 为*A 的一个特征值.性质 2.4 如果有i x ),,2,1(m i =是方阵A 的相互存在差别的特征值m λλλ,,,21 的特征向量,那么存在着线性无关的向量组m x x x ,,,21 .并且,如果i λ的线性无关特征向量为i ik i i x x x ,,,21 ),,2,1(m i =,那么向量组,,,,11211i k x x x m mk m m k x x x x x x ,,,,,,,,21222212为线性无关.性质2.5 假使0λ是方阵A 的k 重特征值,那么0λ有不多过k 的个数的性无关的特征向量.定理 2.1[6]设存在着两个n 阶的方阵A 与B ,它们有n 个互不相同的特征值,并且它们两个的特征值是完全一样的,那么则矩阵A 与矩阵B 相似. 证明 假使n λλλ,,, 21是A 的n 个互不相同的特征值,那么存在着可逆的 方阵1P ,使得⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=Λ=-n AP P λλλ 21111 又因为方阵B 的特征值也是n λλλ,,, 21,那么则会有2P 可逆矩阵,使得⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=Λ=-n BP P λλλ21212 所以212111BP P AP P --=.而()()1211121121112-----=P P A P P P AP P P ,即存在可逆矩阵P P P =-121,使得B AP P =-1,而矩阵A 与矩阵B 相似.定理2.2 存在着n 阶方阵A ,且它的每一个i S 重特征值i λ,能使得秩()i i S n A E -=-λ那么A 相似于对角矩阵,否则不相似.例2.1 证明矩阵⎪⎪⎪⎭⎫ ⎝⎛---=122212221A 与⎪⎪⎪⎭⎫⎝⎛----=30241112065B 相似.解 A 的特征多项式为()()()311122212221--+=------=-λλλλλλλA E所以A 的全部特征值为3,1,1321==-=λλλA 的属于特征值3,1,1-的全部特征向量分别为⎪⎪⎪⎭⎫ ⎝⎛-=0111α ⎪⎪⎪⎭⎫ ⎝⎛-=1112α ⎪⎪⎪⎭⎫ ⎝⎛-=1103α.若令(123,,)P ααα=⎪⎪⎪⎭⎫ ⎝⎛-=300011001,则有⎪⎪⎪⎭⎫ ⎝⎛-=-3000100011AP P ,而B 的特征值为 ()()()311--==-λλλλB E所以B 的全部特征值为3,1,1321==-=λλλB 的属于特征值3,1,1-的特征向量为⎪⎪⎪⎪⎭⎫ ⎝⎛-=13211β ⎪⎪⎪⎭⎫ ⎝⎛-=1222β ⎪⎪⎪⎭⎫ ⎝⎛-=1433β令⎪⎪⎪⎪⎭⎫ ⎝⎛---=1114232321Q ,则有⎪⎪⎪⎭⎫ ⎝⎛-=-3000100011BQ Q .显然 BQ Q AP P 11--=,()()11111-----==QP B QP BQP PQ A记⎪⎪⎪⎭⎫⎝⎛==-1011111231QP U ,有BU U A 1-=,所以A 与B 相似.例题2.2 证明下方矩阵是否相似于对角矩阵.(1)⎪⎪⎪⎭⎫ ⎝⎛=16-3-05-3-064A (2)⎪⎪⎪⎭⎫ ⎝⎛=300130013B解 (1)由于()()()212+-=λλλA f ,所以A 的特征值是11=λ(重数1S 2=),22-=λ(重数12=S ).又由()1231S n A E r -=-==-,()==--22A E r 113S n -=- 可知矩阵A 相似于对角矩阵.(2)因为()()33-=λλB f ,所以B 的特征值是3=λ(重数3=S ),又由于()03323=-=-≠==-S n r A E r ,故B 不相似于对角阵.2.2 用初等变换法判定引理2.1 如果)(λA 是数域P 上的一个λ方阵,那么有数域P 上的可逆λ方阵)(λV ,使得)(λA )(λV 为上三角方阵.引理 2.2 如果A ,B 是数域上的两个n 级方阵,那么A 与B 相似的充要条件是数域P 上会有两个可逆的λ方阵)(),(λλV U ,能让A E VB E U -=-λλλλ)())(( (1-1) 并且A 与B 相似时有B AT T =-1,使得)(A U T i =是)(λU 在A =λ时的左值.定理 2.3[12] 假使A ,B 是数域上的两个n 级方阵,那么方阵A 与B 相似的充要条件是在数域P 上有可逆的λ矩阵)(),(),(21λλλV V U ,成立12()()()()()U E B V E A V λλλλλ-=- (1-2) 有方阵A 与B 相似时有B AT T =-1,并且)(A U T i =是)(λU 在A =λ时的左值. 证明 充分性:当存在)(),(),(21λλλV V U ,可逆,我们把(1-2)式两端同时都在右边乘上12)(-λV 有,)()())((121A E V V B E U -=--λλλλλ令121)()()(-=λλλV V V ,那么)(λV 可逆,且A E VB E U -=-λλλλ)())((,由引理2.2可知,A 与B 相似. 必要性:可在(1-1)式中让E V V V ==)(),()(21λλλ那么可得(1-2)式.在A 与B 相似时,我们可以通过引理2.2得出B AT T =-1,那么)(A U T i =是)(λU 在A =λ时的左值.定理2.4[6] 如果有两个n 阶矩阵A ,B 存在于数域P 上,则存在可逆的λ方阵)(),(),(),(2121λλλλV V U U 在数域P 上,他们是矩阵A 与B 相似的充分必要条件 可以使得:)())(()())((2211λλλλλλV A E U V B E U -=- (1-3) 当方阵A 与B 相似时会有有B AT T =-1,同时有)(A U T i =是)()()(112λλλU U U -=在A =λ时的左值.证明 充分性:假使)(),(),()(2121λλλλV V U U 可逆,当我们把(1-3)式两端同时左乘上12)(-λU 得到)()()())(()(21112λλλλλλV A E V B E U U -=--令)()()(112λλλU U U -=则)(λU 可逆,并且有)()()())((21λλλλλV A E V B E U -=-由定理2.3得A 与B 相似.必要性: 可以在(1-2)式中让E U U U ==)(),()(21λλλ那么可得(1-3)式.在A 与B 相似时,通过引理 2.2得B AT T =-1,那么)(A U T i =是)()()(112λλλU U U -=在A =λ时的左值.例题 2.3 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=011121111,211111110B A .判断A 与B 两个方阵是否相似,并且当相似时求可逆矩阵P ,使得B AP P =-1. 解⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+--+-−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+--+-−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+--−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--+--−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=--++-+++10011023133001101231330011123100111121011112121111111223223)](23[2)]1(32[2)](31[)]2(31[)]1(21[λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλA E ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+----+---−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----+---−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=-+-+-+1000010112212001111000010101110011110011010121001111)|(22)]1(12[2)](31[)]1(21[λλλλλλλλλλλλλλλλλλE B E ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+-+-+--+--+-−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+-+-+--+--+-−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+-+-+--+--+-−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+-+--+--+-−−−−→−--++-++-+10010011111012243423133100001111011122434133231000010110111224341332310000101101012243413323222223222232)]1(2[222232)]1(32[222232)]12(31[)]24(21[22λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλ所以,A 与B 相似. 令⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+-+-+-=000111122434)(222λλλλλλλU则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100111123000000244000000111)(2λλλU 令⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==011111101100111123000000244211111110000000111423212322100111123000000244000000111)(2A A A U P l 则⎢⎢⎢⎣⎡-011111101 ⎥⎥⎥⎦⎤100010001⎢⎢⎢⎣⎡-→110210101 ⎥⎥⎥⎦⎤--101011001⎢⎢⎢⎣⎡-→110210101 ⎥⎥⎥⎦⎤--110011001 ⎢⎢⎢⎣⎡→100010001 ⎥⎥⎥⎦⎤----110211111 故⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-1102111111P 所以B AP P =-12.3 分块矩阵相似判定在上一节我们通过利用矩阵的特征值与特征向量定理研究了矩阵的相似,那么这一小节我们来了解矩阵中的分块矩阵是否相似,现有两个分块矩阵着⎪⎪⎭⎫⎝⎛B C A 0和⎪⎪⎭⎫ ⎝⎛B A 00,在著名的Roth (罗斯)定理中表示⎪⎪⎭⎫ ⎝⎛B C A 0和⎪⎪⎭⎫⎝⎛B A 00相似的一个充要条件是方阵方程C XB AX =- (1-1) 有解.定理2.5[10] 如果已知有A ,B 两个矩阵,并且有2A A =与B B =2,那么B AC +C C =则是分块矩阵⎪⎪⎭⎫ ⎝⎛B C A 0与⎪⎪⎭⎫⎝⎛B A 00相似的充分必要条件. 证明 必要性 已知分块矩阵⎪⎪⎭⎫⎝⎛B A 00,要是它中的A 和B 两个方阵都幂等的,那么它也必然为幂等的方阵.所以如果⎪⎪⎭⎫ ⎝⎛B C A 0和⎪⎪⎭⎫ ⎝⎛B A 00相似,那么⎪⎪⎭⎫⎝⎛B C A 0也是幂等方阵的,也就是20⎪⎪⎭⎫ ⎝⎛B C A =⎪⎪⎭⎫⎝⎛B C A 0 把两边矩阵分别展开得到C CB AC =+.充分性 已知A 和B 这两个幂等方阵,因此它们可以分解为11000,000--⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=Q IQ Q B P IP P A (1-2) 把它们代入(1-1)式中,得知PCQ IQ PXQ PXQ IP =⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡000000 (1-3)我们让⎥⎦⎤⎢⎣⎡=4321Y Y Y Y PXQ ⎥⎦⎤⎢⎣⎡=4321F F F F PCQ (1-4)通过(1-4)式可知⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡4321323121000000F F F F Y Y Y Y Y Y (1-5)那么01=F 和04=F 是方程有解的充要条件,我们通过(1-2),(1-4),则可明确的知道等价于0=ACB 和0)()(=--B I C A I n m所以这两个方程也等价于C CB AC =+.由此可知,在C CB AC =+条件下,方程(1-1)有解,所以两个分块方阵0A C B ⎛⎫ ⎪⎝⎭和⎪⎪⎭⎫⎝⎛B A 00相似,证明完毕. 例题 2.4 设存在两矩阵C 和D ,并且D C ~其中B A ~,求证⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛D B C A 00~00. 证 因为B A ~,且矩阵.~D C 所以⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--C A Y X Y E E X C O A E X Y E 00000000000001111 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-D B YCY AXX Y X 0000001 又由于⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-----Y E E XY E E X E X Y E 0000000000001111111 故.00~00⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛D B C A第三章 矩阵相似的应用3.1 利用相似变换把方阵对角化定义3.1 相对应n 阶方阵A ,假使存在可逆矩阵P ,让B AP P =-1变为对角矩阵,那么我们就称矩阵A 可对角化,且可对角化为B .定理3.1 如果n 阶矩阵A 可对角化,那么它对角矩阵相似. ⇔A 中存在着n 个线性无关的特征向量.推论 3.1 如果n 阶矩阵A 存在n 个不同的特征值,那么矩阵A 与对角矩阵相似.例题3.1 利用相似变换将矩阵A 对角化..2-4242-2-22-1⎪⎪⎪⎭⎫ ⎝⎛=A解λλλλ-------=-242422221E A()()0722=+--=λλ得.7,2321-===λλλ当221==λλ时,齐次线性方程组()20A E X -=的基础解系为121,0P -⎛⎫ ⎪= ⎪ ⎪⎝⎭2201P ⎛⎫ ⎪= ⎪ ⎪⎝⎭当37λ=-时,齐次线性方程组()70A E X +=的基础解系为3122P ⎛⎫ ⎪= ⎪ ⎪-⎝⎭因为,02-10201122-≠所以321,,P P P 线性无关,即A 有3个线性无关的特征向量,所以,利用线性变换221102012P -⎛⎫ ⎪= ⎪ ⎪-⎝⎭,可将矩阵A 对角化为200020007⎛⎫⎪Λ= ⎪⎪-⎝⎭,即矩阵A 与矩阵Λ相似.3.2 矩阵相似性质的简单应用应用矩阵相似的简单性质我们可以在方阵乘法的运算中可以简化运算的过程,大量的节省时间,极大的方便了我们.例3.2 设⎪⎪⎪⎭⎫ ⎝⎛=1-1-2-020021A ,求证100A .解(1)先算出A 方阵特征值与特征向量.由)2)(1)(1(112020021)(-+-=+---=-=λλλλλλλA E A f A所以,A 的3个互异特征值为,2,1,1321==-=λλλ故A 可以对角化,对每个(),3,2,1=i i λ求得分别属于211-321===λλλ,,的特征向量为.35121-01100321⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=ααα,,(2) 令=P 1(α,2α,,3511100210)3⎪⎪⎪⎪⎭⎫ ⎝⎛--=α 有.2000100011⎪⎪⎪⎭⎫ ⎝⎛-=-AP P (3) 因为11001100100100()010002P A P P AP --⎛⎫ ⎪== ⎪ ⎪⎝⎭所以100110010011110001210030100010101100025002010113A P P -⎛⎫⎛⎫- ⎪ ⎪⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪==- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭-- ⎪ ⎪⎝⎭⎝⎭ 10110113100100100100012111220002120020.501051120(12)033-⎛⎫⎛⎫ ⎪ ⎪-+⎛⎫ ⎪ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭--- ⎪ ⎪⎝⎭⎝⎭3.3 矩阵相似在实际生活中的应用矩阵相似有许多相同的属性,如秩矩阵,行列式,微量(对角),特征值,特征多项式,主要因素是相同的.一个矩阵很重要的一点就是它的特征值.通过相似变换的性质特点,可以使复杂运算变成更加简单的求值计算.例3.3 一实验生产线每年二月为熟练和非熟练工人的数量统计,然后把61熟练工人支持其他生产部门,招募新的非熟练工人完成的空缺.旧的和新的非熟练工人通过培训和时间,年终考核将有52成为熟练的工人.假使过了n 年在二月份的一次统计中熟练工人与非熟练工人在总人数中为百分之n x 与百分之n y ,我们把它写为向量.⎥⎦⎤⎢⎣⎡n n y x(1)求⎥⎦⎤⎢⎣⎡++11n n y x 和⎥⎦⎤⎢⎣⎡n n y x 的关系式并写成方阵:⎥⎦⎤⎢⎣⎡++11n n y x .⎥⎦⎤⎢⎣⎡=n n y x A (2)求证A 有⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=11-1421ηη,这两个不相关的特征向量,然后在分别算出他们的特征值;解 (1)根据上述已知有⎪⎪⎩⎪⎪⎨⎧⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛++=++n n n n n n n y x y y x x x 615361526511 化简得⎪⎩⎪⎨⎧+=+=++n n n n n n y x y y x x 531015210911对其用矩阵表示即为,531015210911⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡++n n n n y x y x 于是 .5310152109⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=A (2) 令,),(⎥⎦⎤⎢⎣⎡==111-421ηηP 则由05≠=P 知,21ηη,这两个特征向量线性无关.因.1411ηη=⎥⎦⎤⎢⎣⎡=A 所以这个特征向量1η属于矩阵A .并且相应的11=λ为特征值. 因22212121ηη=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--A 故2η为A 的特征向量,且相应的特征值.212=λ结论本文以矩阵及矩阵的性质和矩阵相似的一些相关的性质为主要理论依据,从矩阵和矩阵相似的相关性质与应用处着手,主要论述了矩阵相似的几个判别方法,并在第三章中将矩阵相似的一些应用展示给了大家,通过将矩阵和矩阵相似的一些相关理论进行整理分析,找出了它们之间的转化关系.同时,在研究过程中,培养了应用数学的意识和能力.运用矩阵相似的性质和判别法,解决了几类较为基本的矩阵相似的应用问题.参考文献[1] 张禾瑞,郝鈵新,张禾瑞郝鈵新编.高等代数[M].北京:高等代数出版社,2007:327-328. [2] 冯天祥,李世宏.矩阵的QR分解[J].西南民族学院学报,20:4(2001),418-421.[3] 雷雪萍.高等代数中一道习题的推广[J].大学数学,2006,22(4):161-163.[4] 屠伯埙,四元数矩阵的UL分解[J].复旦学报(自然科学版),1988,(2),121-128.[5] 杨奇;孟道骥编.线性代数教程[M].南开大学出版社,216-225.[6] 吴强. 基于矩阵初等变换的矩阵分解法[J].数学理论与应用,20:4(2000), 105-107. [7] 黄宝强主编.线性代数[M].同济大学出版社.223-226.[8] 姚允龙编.数学分析[M].上海:复旦大学出版社,2002:75-89.[9] 贺爱玲,马玉明,刘慧,陈业红.关于矩阵相似的一个注记.山东轻工业学院学报[J].2005,19(3):57-60.[10] 程士珍.两个方块矩阵相似性的研究[J].数学的实践和认识2005,35(3):191-194.[11] 王新民.矩阵环F[A]中元素的可逆性[J].数学的实践与认识,2002,38(23);223-226.[12] 王新民.袁强.关于矩阵相似的条件及其相似变换矩阵.聊城大学学报[J].2009,22(2):14-16.[13] 张天德,韩振来.数学分析同步辅导[M].天津:天津科学技术出版社,2010:26—29.[14] Liujia.Similarity matrix and itsapplication.China western science andtechnology [J].2010,9(26):46-48.[15] Jefferson. Linear Algebra[J].USA:Create Space.2008,(124-205).致谢四年的大学生活即将结束,回头望去,百感交集.四年里,陪伴我的是敬爱的老师、亲爱的同学,所以,我要感谢母校黑河学院,您是养育我的土壤;我要感谢我的老师,是你们让我有了实现自我的能力和勇气;我要感谢我的同学们,是你们给了我家一样的感觉.另外,我要感谢我的指导老师由金玲老师,由于她的悉心指导,使我能够圆满地完成论文的撰写.在这段时间里,我深深的体会到由金玲老师的耐心与细致,以及她严谨的治学态度,这一切都将成为我今后生活、工作的榜样.再次由衷的感谢我的指导老师,您辛苦了!。
层次分析法(Analytic Hierarchy Process,简称AHP)是对一些较为复杂、较为模糊的问题作出决策的简易方法,它特别适用于那些难于完全定量分析的问题。
它是美国运筹学家T. L. Saaty 教授于70 年代初期提出的一种简便、灵活而又实用的多准则决策方法。
§1 层次分析法的基本原理与步骤人们在进行社会的、经济的以及科学管理领域问题的系统分析中,面临的常常是一个由相互关联、相互制约的众多因素构成的复杂而往往缺少定量数据的系统。
层次分析法为这类问题的决策和排序提供了一种新的、简洁而实用的建模方法。
运用层次分析法建模,大体上可按下面四个步骤进行:(i)建立递阶层次结构模型;(ii)构造出各层次中的所有判断矩阵;(iii)层次单排序及一致性检验;(iv)层次总排序及一致性检验。
下面分别说明这四个步骤的实现过程。
1.1 递阶层次结构的建立与特点应用AHP 分析决策问题时,首先要把问题条理化、层次化,构造出一个有层次的结构模型。
在这个模型下,复杂问题被分解为元素的组成部分。
这些元素又按其属性及关系形成若干层次。
上一层次的元素作为准则对下一层次有关元素起支配作用。
这些层次可以分为三类:(i)最高层:这一层次中只有一个元素,一般它是分析问题的预定目标或理想结果,因此也称为目标层。
(ii)中间层:这一层次中包含了为实现目标所涉及的中间环节,它可以由若干个层次组成,包括所需考虑的准则、子准则,因此也称为准则层。
(iii)最底层:这一层次包括了为实现目标可供选择的各种措施、决策方案等,因此也称为措施层或方案层。
递阶层次结构中的层次数与问题的复杂程度及需要分析的详尽程度有关,一般地层次数不受限制。
每一层次中各元素所支配的元素一般不要超过9 个。
这是因为支配的元素过多会给两两比较判断带来困难。
下面结合一个实例来说明递阶层次结构的建立。
例1 假期旅游有、、3 个旅游胜地供你选择,试确定一个最佳地点。