空间向量的夹角和距离公式.
- 格式:ppt
- 大小:1.08 MB
- 文档页数:16
空间向量的夹角与距离求解公式1.空间向量的夹角与距离求解公式【知识点的认识】1.空间向量的夹角公式→→设空间向量푎=(a1,a2,a3),푏=(b1,b2,b3),→→cos<푎,푏>=→→푎⋅푏→→|푎|⋅|푏|=푎1푏1+푎2푏2+푎3푏3푎12+푎22+푎32⋅푏12+푏22+푏32注意:→→→→(1)当 cos<푎,푏>= 1时,푎与푏同向;→→→→(2)当 cos<푎,푏>=― 1时,푎与푏反向;→→→→(3)当 cos<푎,푏>= 0时,푎⊥푏.2.空间两点的距离公式设A(x1,y1,z1),B(x2,y2,z2),则→퐴퐵=(푥2―푥1,푦2―푦1,푧2―푧1)→d A,B=|퐴퐵| =→퐴퐵⋅→퐴퐵=(푥2―푥1)2+(푦2―푦1)2+(푧2―푧1)2.【解题思路点拨】1.求空间两条直线的夹角建系→写出向量坐标→利用公式求夹角2.求空间两点的距离建系→写出点的坐标→利用公式求距离.【命题方向】(1)利用公式求空间向量的夹角→→例:已知A(2,﹣5,1),B(2,﹣2,4),C(1,﹣4,1),则向量퐴퐵与퐴퐶的夹角为()1/ 3A.30°B.45°C.60°D.90°→→→分析:由题意可得:퐴퐵=(0,3,3),퐴퐶=(―1,1,0),进而得到퐴퐵⋅→→→→→퐴퐶与|퐴퐵|,|퐴퐶|,再由cos<퐴퐵,퐴퐶>=→→퐴퐵⋅퐴퐶→→可得答案.|퐴퐵||퐴퐶|解答:因为A(2,﹣5,1),B(2,﹣2,4),C(1,﹣4,1),所以→→퐴퐵=(0,3,3),퐴퐶=(―1,1,0),→所以퐴퐵⋅→→→퐴퐶═0×(﹣1)+3×1+3×0=3,并且|퐴퐵|=3 2,|퐴퐶| = 2,→→所以 cos<퐴퐵,퐴퐶>=→→퐴퐵⋅퐴퐶→→|퐴퐵||퐴퐶|=332×2=12,→→∴퐴퐶的夹角为 60°퐴퐵与故选C.点评:解决此类问题的关键是熟练掌握由空间中点的坐标写出向量的坐标与向量求模,以及由向量的数量积求向量的夹角,属于基础试题.(2)利用公式求空间两点的距离例:已知空间直角坐标系中两点A(3,﹣1,2),B(0,﹣1,﹣2),则A,B 两点间的距离是()A.3B. 29C.25D.5分析:求出AB 对应的向量,然后求出AB 的距离即可.解答:因为空间直角坐标系中两点A(3,﹣1,2),B(0,﹣1,﹣2),→→所以퐴퐵=(﹣3,0,﹣4),所以|퐴퐵|=(―3)2+02+(―4)2= 5.故选D.点评:本题考查空间两点的距离求法,考查计算能力.2/ 33/ 3。
空间向量夹角公式大全空间向量是三维空间中的向量,它们具有长度和方向。
在空间中,向量之间的夹角是一个重要的概念,它可以帮助我们理解向量之间的关系,以及在实际问题中的应用。
本文将介绍空间向量夹角的相关概念和公式,帮助读者更好地理解和运用空间向量的知识。
1. 向量的夹角概念。
在二维平面中,我们可以通过向量的数量积来计算它们之间的夹角。
而在三维空间中,向量的夹角的计算则需要借助向量的数量积和向量的模长来进行。
具体而言,设有两个向量a和b,它们之间的夹角θ满足以下公式:cosθ = (a·b) / (|a| |b|)。
其中,a·b表示向量a和b的数量积,|a|和|b|分别表示向量a和b的模长。
这个公式可以帮助我们计算任意两个向量之间的夹角,从而更好地理解它们之间的关系。
2. 向量夹角的计算方法。
在实际问题中,我们可能需要计算两个向量之间的夹角,以便解决一些几何或物理问题。
为了方便计算,我们可以通过向量的坐标表示来求解夹角。
具体而言,设向量a和b的坐标分别为(a1, a2, a3)和(b1, b2, b3),则它们之间的夹角θ可以通过以下公式计算:cosθ = (a1b1 + a2b2 + a3b3) / (sqrt(a1^2 + a2^2 + a3^2) sqrt(b1^2 + b2^2 + b3^2))。
这个公式可以帮助我们在实际问题中快速准确地计算出向量之间的夹角,从而更好地应用空间向量的知识。
3. 向量夹角的性质。
除了计算向量夹角的公式外,向量夹角还具有一些重要的性质。
首先,向量夹角的范围是[0, π],即夹角的取值范围在0到180度之间。
其次,当两个向量夹角为0时,它们是共线的;当夹角为π/2时,它们是垂直的;当夹角为π时,它们是相反的。
这些性质可以帮助我们更好地理解和判断向量之间的关系。
4. 应用举例。
最后,我们通过一个具体的应用举例来展示空间向量夹角的计算和应用。
假设有两个向量a(1, 2, 3)和b(4, 5, 6),我们需要计算它们之间的夹角。