可变截面涡轮增压工作原理
- 格式:doc
- 大小:162.00 KB
- 文档页数:3
涡轮工作原理
涡轮是一种能够产生驱动力的装置,它的工作原理基于牛顿第三定律,即作用力与反作用力大小相等、方向相反。
涡轮通常由一系列叶片组成,这些叶片被固定在一个旋转的轴上。
当流体(例如气体或液体)通过涡轮时,它会在叶片上施加力,并产生一个推力,将轴推动起来。
要理解涡轮的工作原理,可以想象一下扇叶的工作方式。
当你打开电扇,扇叶开始旋转,将空气推向你。
涡轮的原理与此类似,只是它不是通过电机驱动,而是通过外部流体以及涡轮自身的旋转来产生驱动力。
当流体通过涡轮时,它会因为叶片的形状而发生弯曲,并在后方产生一个向下的压力。
根据牛顿第三定律,这个压力将会产生一个反向的力,使得涡轮开始旋转。
旋转的涡轮可以将流体的动能转化为机械能,从而驱动其他设备。
涡轮的工作原理还可以应用于涡轮增压器和涡轮发动机等设备中。
在涡轮增压器中,废气经过涡轮,使其旋转并从而使进气增压。
而在涡轮发动机中,涡轮则用来驱动空气压缩机和涡轮轴,从而提供动力。
总而言之,涡轮是一种通过外部流体作用力产生驱动力的装置。
利用涡轮的工作原理,可以将流体的动能转化为机械能,实现各种不同的应用。
涡轮增压发动机工作原理涡轮增压发动机工作原理中,涡轮增压是一种机械式增压方式,通过利用气体动力学的原理,从而增加气缸内的空气进气量,从而提高发动机的输出功率和扭矩。
通常,涡轮增压发动机在低于中高速范围,如从1000rpm到4000rpm,效果达到最佳状态。
涡轮增压器的原理是利用燃油中的能量释放出气体压力,从而驱动涡轮转子旋转,转动的涡轮将压缩空气送入发动机燃烧室,从而增加燃料燃烧的效率。
接下来,我们将会详细解析涡轮增压发动机的工作原理。
一、涡轮增压发动机的基本结构涡轮增压发动机包括涡轮增压器、进气歧管、燃烧室、排气管和涡轮悬吊组件,涡轮增压器可分为中央涡轮增压器和双涡轮增压器两种。
前者只有一个涡轮,随着汽车转速的上升,涡轮的旋转速度亦会增加,从而增加进气压力;后者则拥有两个涡轮,其中一个涡轮只负责低转速段的增压工作,而另一个涡轮主要承担高转速段的增压任务。
涡轮增压器通过涡轮组件和废气涡轮组件结合而成,其安装在汽车引擎进气歧管里面,因而发挥着增压的作用。
涡轮组件作为增压器的核心部件,由轮叶、轴和壳体三部分组成。
轮叶通过涡轮间隙与壳体相隔,而轮叶的切口则与涡轮增压器中的废气涡轮组件的叶片相交叠,从而利用排气气流带动涡轮转子的旋转。
废气涡轮组件则是协同工作的一部分,其利用吸气过程中的废气引导叶片旋转,从而带动涡轮组件的旋转工作。
涡轮增压器与汽车引擎的其他部件之间,则有一个压缩空气输入与燃油混合输出的进口和出口处相连。
经涡轮压缩后的新鲜空气将进入压缩空气之后的连通管道中,之后再进入汽车发动机的进气歧管,在这里与喷油器所喷射出的燃油混合并进入汽车发动机的燃烧室进行燃烧。
二、涡轮增压发动机增加功率的原理由于涡轮增压器向发动机提供的新鲜空气比常规进气系统中的空气更加稠密,因此涡轮增压发动机可以在相同的燃料供应条件下,产生更多的动力输出。
因为闵贺尔定理表明动力等于扭矩乘以发动机转速,因此涡轮增压系统可以增加扭矩产生,而这也意味着更多的动力输出。
变的是截面详解VGT可变截面涡轮增压器2010-11-29 11:01 来源:Che168随着技术的发展,人们对于汽车发动机的要求也越来越苛刻,不仅要拥有强劲的动力,还必须拥有极高的效率和足够清洁的排放。
这就要求发动机在各种工况下都能要达到其最高效的工作状态,因此就必须满足发动机各个工作状态下对于进气量的需求。
这就要求发动机的各部件都能够通过“可变”来满足在不同工况下的条件。
比如我们所熟悉的可变气门正时/升程技术,可变进气歧管技术都是如此。
那么在柴油发动机上常见的VGT可变截面涡轮增压技术,又有些什么作用呢?下面我们就一起来了解一下。
『废气带动涡轮,涡轮再带动叶轮对空气进行增压,从而有效增大进气量』涡轮增压技术是发动机上常见的技术之一,它的原理其实非常简单:涡轮增压器就相当于一个由发动机排出的废气所驱动的空气泵。
在发动机的整个燃烧过程中,大约会有1/3的能量进入了冷却系统,1/3的能量用来推动曲轴做工,而最后1/3则随废气排出。
拿一台功率200千瓦的发动机举例,按照上面提到的比例,它在排气上的消耗的动力大约会有70千瓦。
这部分功率有一大部分随着高温的废气以热能的形式消耗掉,而废气本身的动能可能只有十几千瓦。
但是千万别小看这十几千瓦,要知道家用的落地扇功率不过60瓦左右!也就是说,即使十几千瓦也足够驱动两百多台电风扇了!可想而知,用废气涡轮驱动空气所带来的增压效果非常可观。
『BMW的并联双涡轮技术』虽然发动机全负荷状态下时排气能量非常可观,但当发动机转速较低时,排气能量却小的可怜,此时涡轮增压器就会由于驱动力不足而无法达到工作转速,这样造成的结果就是,在低转速时,涡轮增压器并不能发挥作用,这时候涡轮增压发动机的动力表现甚至会小于一台同排量的自然吸气发动机,这就是我们经常说的“涡轮迟滞(Turbo lag)”现象。
『大众1.4TSI发动机的小尺寸涡轮拥有较低的启动惯量』对于传统的涡轮增压发动机来说,解决涡轮迟滞现象的一个方法就是使用小尺寸的轻质涡轮,首先,小涡轮会拥有较小的转动惯量,因此在发动机低转速时,在发动机较低转速下涡轮就能达到最佳的工作转速,从而有效改善涡轮迟滞的现象。
可变截面涡轮增压系统VGT简介柴油车技术突围——揭秘VGT技术VGT是英文Variable geometry turbocharger的缩写,中文说法是“可变截面涡轮增压系统”。
这个名称很多人都看到过,但到底这个“可变截面”对于涡轮增压、乃至发动机有何实际意义呢?涡轮迟滞是涡轮增压发动机最需要解决的问题在此之前,我们要简单了解一下涡轮增压发动机的原理和特性。
增压发动机区别于普通自然吸气发动机,它是通过增压器进行强制进气的,这样可以大大提升进入气缸内的空气密度,从而达到小排量大功率的目的。
涡轮增压发动机的增压器由排气能量驱动,很显然这需要一定的排气能量。
当发动机转速较低时,排气能量往往比较小,此时有可能无法驱动增压器。
当增压器不工作时,涡轮增压发动机的动力甚至会小于一台同排量的自然吸气发动机,这就是我们常说的涡轮迟滞。
这是涡轮增压发动机的一大顽疾,几乎所有工程师都在致力于解决这个问题。
涡轮迟滞与增压能量之间的平衡成为一对矛盾体涡轮迟滞与增压涡轮的尺寸有关。
增压涡轮越大,涡轮就越难以被驱动,涡轮迟滞就越明显,反之如果增压涡轮很小,迟滞就会大幅度缓解。
然而与此同时,涡轮尺寸又与增压能量相关,小尺寸的涡轮虽然可以缓解涡轮迟滞,但在需要增压器工作时它能提供的增压值不大,不利于提升发动机的动力。
因此涡轮尺寸、涡轮迟滞与增压值之间存在着一定的平衡关系。
大多数常规发动机都只能采用折中的办法来设计,这样很难做到既彻底避免涡轮迟滞,同时又可以获得较大升功率。
VGT是解决这个矛盾最有效的方案VGT就是起这个作用的。
其奥秘在于它的增压器可以改变截面积,这就相当于改变了增压涡轮的大小。
在转速较低时,增压涡轮会采用较小的截面积,即使转速很低的状态下涡轮也可以顺利启动,大大缓解了涡轮迟滞。
在高转速状态下,增压涡轮会采用较大的截面积,这样可以大幅度提升增压值,从而提升发动机的最大功率和扭矩。
华泰圣达菲2.0L发动机的“升功率”是国内同级别柴油SUV中最高的,它的动力表现已经达到或超过众多2.5升甚至2.8升的柴油SUV,VGT在这里同样功不可没。
目录柴油车技术突围——揭秘VGT技术1变的是截面详解VGT可变截面涡轮增压器2柴油车技术突围——揭秘VGT技术涡轮迟滞是涡轮增压发动机最需要解决的问题 VGT是英文Variable geometryturbocharger的缩写,中文说法是“可变截面涡轮增压系统”。
简单了解一下涡轮增压发动机的原理和特性,增压发动机区别于普通自然吸气发动机,它是通过增压器进行强制进气的,这样可以大大提升进入气缸内的空气密度,从而达到小排量大功率的目的。
涡轮增压发动机的增压器由排气能量驱动,很显然这需要一定的排气能量。
当发动机转速较低时,排气能量往往比较小,此时有可能无法驱动增压器。
当增压器不工作时,涡轮增压发动机的动力甚至会小于一台同排量的自然吸气发动机,这就是我们常说的涡轮迟滞。
这是涡轮增压发动机的一大顽疾,几乎所有工程师都在致力于解决这个问题。
涡轮迟滞与增压能量之间的平衡成为一对矛盾体 涡轮迟滞与增压涡轮的尺寸有关。
增压涡轮越大,涡轮就越难以被驱动,涡轮迟滞就越明显,反之如果增压涡轮很小,迟滞就会大幅度缓解。
然而与此同时,涡轮尺寸又与增压能量相关,小尺寸的涡轮虽然可以缓解涡轮迟滞,但在需要增压器工作时它能提供的增压值不大,不利于提升发动机的动力。
因此涡轮尺寸、涡轮迟滞与增压值之间存在着一定的平衡关系。
大多数常规发动机都只能采用折中的办法来设计,这样很难做到既彻底避免涡轮迟滞,同时又可以获得较大升功率。
VGT是解决这个矛盾最有效的方案 VGT就是起这个作用的。
其奥秘在于它的增压器可以改变截面积,这就相当于改变了增压涡轮的大小。
在转速较低时,增压涡轮会采用较小的截面积,即使转速很低的状态下涡轮也可以顺利启动,大大缓解了涡轮迟滞。
在高转速状态下,增压涡轮会采用较大的截面积,这样可以大幅度提升增压值,从而提升发动机的最大功率和扭矩。
华泰圣达菲2.0L发动机的“升功率”是国内同级别柴油SUV 中最高的,它的动力表现已经达到或超过众多2.5升甚至2.8升的柴油SUV,VGT在这里同样功不可没。
vgt可变截面涡轮增压器工作原理在汽车的世界里,有一种神奇的小玩意儿叫做可变截面涡轮增压器,听上去有点高大上,其实就是帮你的小车在加速时提供更多动力的东西。
想象一下,平时你在路上开车,踩油门的时候,车子乖乖地跟着你的脚步走,但如果需要快速超车,这时涡轮增压器就像一位超级英雄,随时待命,瞬间给你带来强劲的动力,让你飙起来的感觉真是爽到爆。
这个增压器就像一个调皮的孩子,随时根据需要变换自己的“形态”。
简单来说,它的工作原理就像变魔术一样,涡轮的截面可以根据发动机的转速和负载来调整。
低速的时候,涡轮的截面小,增加进气压力,让车子能够轻松起步。
到高速时,截面增大,让更多空气流进发动机,动力直接翻倍!是不是听起来很酷?就好比你在不同场合下换衣服,走到哪儿都能打扮得体。
涡轮增压器的运行也不是随便的,它和发动机之间有着密切的合作关系。
发动机一旦转速上升,涡轮增压器就会迅速反应,像是听到了号令的士兵,立刻开始工作。
你可想而知,像这样的技术含量有多高。
为了让涡轮转得更快,排气气体就像个加速器,推动着它飞速转动,形成强大的吸气效果。
这样的配合简直默契得不能再默契,开起来就像在跳舞,既轻松又流畅。
说到涡轮增压器,肯定不能不提它的“情绪管理”。
对,你没听错,涡轮也有情绪!当车速较慢时,涡轮增压器可能会感到“焦虑”,它得拼命压缩空气来提升效率,生怕你开慢了没劲。
但只要一加速,涡轮立刻兴奋起来,冲向你想要的速度,简直是精神焕发,令人振奋。
车子瞬间变得灵活,像是小豹子一样在马路上飞奔,耳边呼呼作响,让你不禁大喊一声:“太刺激了!”不过,涡轮增压器也不是一帆风顺的,有时候它也会遇到麻烦。
比如说,过热、过度使用,或者缺乏润滑油,这些都是涡轮增压器的“老毛病”。
就像人一样,累了就得休息,保养是非常重要的。
很多车主在享受涡轮带来的快感时,往往忽视了它的护理,结果造成了不必要的损伤。
你想想,如果你对你的车子不尽心,那它也很可能给你带来意想不到的“惊喜”。
涡轮增压器原理涡轮增压原理探讨NA动力提升方法一般的NA(自然进气)发动机的做法,逃不开加大节气门口径,或换多喉直喷等,使高转速时可以在同油门深度下,获得更多的空气量。
但这种方法在某一转数后,作用就有限了。
毕竟NA 发动机的空气是靠真空吸入的。
在汽缸容积固定不变的情况下,真空吸入空气有一个相对的限度。
有的NA 发动机改用高角度凸轮轴(Hi Cam,借此增加进排气门重叠角度),可以在高转速下获得高动力,但缺点是低转的扭矩较差,而且如果角度过大,会有发动机怠速不稳的现象。
所以现在不少的新车都用上可变气门正时技术,再配合可变凸轮轴等技术(如VVTL-i、i-VTEC、MIVEC)……以期在低转扭矩和高转马力之间取得很好的平衡。
但即便是用尽以上方法,发动机的进气效率顶多提高60%。
NA 发动机始终无法避免其宿命——空气是被动地被吸入汽缸内的。
也就是说,引擎所需的空气完全依靠活塞下行时产生的负压而进入,即便汽缸吸满了空气,缸中气压也就小于或等于一个大气压。
所以NA 发动机的升功率始终远不如能将空气与燃油强制送入的汽缸中,可轻松获得一倍以上马力的增压发动机。
涡轮增压系统原理解构涡轮系统是增压发动机中最常见的增压系统之一。
如果在相同的单位时间里,能够把更多的空气及燃油的混合气强制挤入汽缸(燃烧室)进行压缩燃爆动作(小排气量的引擎能“吸入”和大排气量相同的空气,提高容积效率),便能在相同的转速下产生较自然进气发动机更大的动力输出。
涡轮增压利用废气驱动,基本没有额外的能量损耗(对发动机没有额外的负担),便能轻易地创造出大马力,是非常聪明的设计。
情形就像你拿一台电风扇向汽缸内吹,硬是把风往里面灌,使里面的空气量增多,以得到较大的马力,只是这个扇子不是用电动马达,而是用引擎排出的废气来驱动。
一般而言,引擎在配合这样的一个“强制进气”的动作后,起码都能提升30%-40% 的额外动力,如此惊人的效果就是涡轮增压器令人爱不释手的原因。
汽车改装之——可变截面涡轮增压技术今天小编在网上看到一句很有道理的话“跑道上的车的状态是很复杂的,只有多调整,体会各种设定下车的姿态和感觉,才能真正明白怎么调车”。
其实改车就如同在跟车对话,当你听得懂它的时候,就能调校出一部好的改装车了。
改车是一个发挥主观能动性的过程,如何更好地提高原车性能,不光是机械系统的问题,也需要我们发挥辩证思维不断的尝试,同样的东西,在不同人手下也是千变万化。
优秀的汽车改装技师,不仅需要过硬的技术,扎实的理论基础,还需要热情、细心、爱心与探索的精神。
今天我们来讲一讲可变截面涡轮技术,我们知道,涡轮大小、涡轮进气量和涡轮迟滞是三个统一的矛盾体。
普通涡轮增压器在全负荷状态下时进气量非常可观,但当发动机转速较低时,就会由于废气驱动力不足而无法达到工作转速,这样造成的结果就是,在低转速时,涡轮增压器并不能发挥作用,这时候涡轮增压发动机的动力表现甚至会小于一台同排量的自然吸气发动机。
对于传统的涡轮增压发动机来说,解决涡轮迟滞现象的一个方法就是使用小尺寸的轻质涡轮。
首先,小涡轮会拥有较小的转动惯量,因此在发动机低转速时,也能驱动涡轮能达到工作转速,从而有效改善涡轮迟滞的现象。
不过,使用小涡轮也有它的缺点:当发动机高转速时,小涡轮由于排气截面较小,会使排气阻力增加,即产生排气回压,因此发动机最大功率和最大扭矩会受到一定的影响。
而对于产生回压较小的大涡轮来说,虽然高转速下可以拥有出色增压效果,发动机也会拥有更强的动力表现,但是低速下涡轮更难以被驱动,因此涡轮迟滞也会更明显。
为解决上述矛盾,让涡轮增压发动机在高低转速下都能保证良好的增压效果,VGT(Variable Geometry Turbocharger)或者叫VNT可变截面涡轮增压技术便应运而生。
在柴油发动机领域,VGT可变截面涡轮增压技术早已得到了很广泛的应用。
由于汽油发动机的排气温度要远远高于柴油发动机,达到1000°C左右(柴油发动机为400°C左右),而VGT 所使用的硬件材质很难承受如此高温的环境,因此这项技术也迟迟未能在汽油机上应用。
汽车改装之——可变截面涡轮增压技术今天小编在网上看到一句很有道理的话“跑道上的车的状态是很复杂的,只有多调整,体会各种设定下车的姿态和感觉,才能真正明白怎么调车”。
其实改车就如同在跟车对话,当你听得懂它的时候,就能调校出一部好的改装车了。
改车是一个发挥主观能动性的过程,如何更好地提高原车性能,不光是机械系统的问题,也需要我们发挥辩证思维不断的尝试,同样的东西,在不同人手下也是千变万化。
优秀的汽车改装技师,不仅需要过硬的技术,扎实的理论基础,还需要热情、细心、爱心与探索的精神。
今天我们来讲一讲可变截面涡轮技术,我们知道,涡轮大小、涡轮进气量和涡轮迟滞是三个统一的矛盾体。
普通涡轮增压器在全负荷状态下时进气量非常可观,但当发动机转速较低时,就会由于废气驱动力不足而无法达到工作转速,这样造成的结果就是,在低转速时,涡轮增压器并不能发挥作用,这时候涡轮增压发动机的动力表现甚至会小于一台同排量的自然吸气发动机。
对于传统的涡轮增压发动机来说,解决涡轮迟滞现象的一个方法就是使用小尺寸的轻质涡轮。
首先,小涡轮会拥有较小的转动惯量,因此在发动机低转速时,也能驱动涡轮能达到工作转速,从而有效改善涡轮迟滞的现象。
不过,使用小涡轮也有它的缺点:当发动机高转速时,小涡轮由于排气截面较小,会使排气阻力增加,即产生排气回压,因此发动机最大功率和最大扭矩会受到一定的影响。
而对于产生回压较小的大涡轮来说,虽然高转速下可以拥有出色增压效果,发动机也会拥有更强的动力表现,但是低速下涡轮更难以被驱动,因此涡轮迟滞也会更明显。
为解决上述矛盾,让涡轮增压发动机在高低转速下都能保证良好的增压效果,VGT(Variable Geometry Turbocharger)或者叫VNT可变截面涡轮增压技术便应运而生。
在柴油发动机领域,VGT可变截面涡轮增压技术早已得到了很广泛的应用。
由于汽油发动机的排气温度要远远高于柴油发动机,达到1000°C左右(柴油发动机为400°C左右),而VGT 所使用的硬件材质很难承受如此高温的环境,因此这项技术也迟迟未能在汽油机上应用。
可变截面涡轮增压技术
可变截面涡轮增压技术是一种用于提高内燃机效率和动力输出的先进技术。
它通过改变涡轮增压器进气道的截面积,以适应不同工况下的进气要求,从而提供更高的增压效率和更广阔的工作范围。
传统的涡轮增压器在设计时通常采用固定的进气道截面积,这导致在不同转速和负荷条件下,进气流速和增压效率无法达到最佳状态。
因此,可变截面涡轮增压技术应运而生。
该技术的核心是一个可调节的进气道截面积,通常通过可变几何涡轮增压器(VGT)或电动涡轮增压器(EVT)来实现。
VGT通过改变涡轮进气和排气室之间的导流板位置来调节截面积,而EVT则通过电动机驱动的可调节涡轮来实现。
根据不同的工况需求,可变截面涡轮增压技术可以实现两种模式的切换:低转速高增压模式和高转速低增压模式。
在低转速下,增压器的进气道截面积会被调整为较小,以提供更高的增压比和更大的扭矩输出。
而在高转速下,进气道截面积则会被调整为较大,以提供更大的进气流量和更高的功率输出。
可变截面涡轮增压技术的优势在于它可以显著提高内燃机的瞬态响应和动力输出。
在加速时,通过快速调整进气道截面积,可实现更快
的增压响应,从而减少涡轮滞后和增压峰值延迟,提供更顺畅的动力输出。
此外,该技术还可以提高燃烧效率,减少排放和燃油消耗。
总的来说,可变截面涡轮增压技术是一项重要的发动机技术创新,它可以提高内燃机的效率和动力性能,同时也有助于减少环境污染。
随着对环保和燃油经济性要求的不断提高,可变截面涡轮增压技术将在未来的汽车工业中得到广泛的应用和发展。
汽车涡轮增压的常见故障及改进措施【摘要】涡轮增压简称Turbo,如果在轿车尾部看到Turbo或者T,即表明该车采用的发动机是涡轮增压发动机。
本文介绍了涡轮增压器的历史发展和构造原理,对它的保养及使用进行了阐述,同时,通过分析常见故障,对改进措施以及发展方向有了一定的看法。
【关键词】涡轮增压废气常见故障改进措施目录【前言】 (1)一.涡轮增压器的作用和构造以及工作原理 (1)1.1作用 (1)1.2构造 (3)1.3工作原理 (4)二.汽车涡轮增压器的维护及使用常识 (6)2.1涡轮增压器的维护 (6)2.2涡轮增压发动机的使用 (8)三.汽车涡轮增压器的分类及优缺点 (10)3.1汽车涡轮增压器的分类 (10)3.2汽车涡轮增压器的优缺点 (11)四.涡轮增压器的常见故障及案例分析 (12)4.1故障现象 (12)4.2故障检修 (13)4.3废气涡轮增压器漏油 (14)4.4案例分析 (15)五.涡轮增压器的改进措施 (16)5.1现代化设计方法和制造技术方面 (16)5.2新材料的应用方面 (16)六.涡轮增压器的历史和发展 (17)6.1涡轮增压器的历史 (19)6.2涡轮增压器的发展 (16)6.3柴油机涡轮增压技术现状 (19)【结束语】 (20)参考文献 (21)汽车涡轮增压的常见故障及改进措施前言涡轮增压器,一个近十年出现的词语。
人们只知道汽车排量后面带T的车辆就是带有涡轮增压器的发动机,汽车的加速就会快,性能也好。
涡轮增压器会产生更大的扭矩以满足驾驶乐趣。
为了满足发动机不同转速下的需求,1989年出现了可变增压的涡轮增压器(VNT)。
在发动机低速时,涡轮增压器减小喉口,提高增压;在发动机全速运转时,涡轮增压器喉口增大,保证增压不会超出需求。
喉口可用真空管控制。
优点是提高了发动机低速时的加速性能。
目前,涡轮增压器已经占到了50%,在亚洲、美国也都在增长。
现代涡轮增压器也改变了人们对柴油机的看法,涡轮增压器已经成为提高动力性能的主流方向。
涡轮增压的原理涡轮增压的原理是利用废气通过涡轮的高速旋转来驱动压气机,进而将更多的空气压缩进入气缸中,提高发动机的气缸充气效率。
涡轮增压系统由涡轮和压气机两部分组成。
涡轮由废气流经的轴流涡轮、离心涡轮和两个涡轮之间的导向叶片组成,压气机由离心式压气机或轴流式压气机组成。
涡轮增压系统的工作原理是:发动机燃烧燃料后产生的废气通过排气管排出,在排气管中的废气流经涡轮的轴流涡轮和离心涡轮,使涡轮高速旋转。
旋转涡轮驱动压气机旋转,通过压气机的叶片将大量的空气压缩,并引入气缸内。
在涡轮增压的作用下,进气量增加,气缸内的燃料燃烧效果更好,从而提高了发动机的功率和扭矩输出。
涡轮增压的原理实际上是通过利用废气能量来提供新鲜空气的压力。
废气流经涡轮时,传递能量给涡轮使其高速旋转,再通过压气机将空气压缩并送入气缸中,实现增压效果。
这种增压方式相比于机械增压更加高效,因为涡轮增压不需要额外的机械传动装置,而是通过废气的能量转换来实现空气增压,减少了能量的损失。
涡轮增压有助于提高发动机的功率和扭矩输出,特别适用于小排量发动机。
通过增加进气压力,涡轮增压系统可以在相同排气量的情况下提供更多的空气燃料混合物给发动机,从而增加燃烧能力,提高燃烧效率。
涡轮增压还可以实现较高的增压比,提供更强的动力输出,提升了汽车的加速性能和行驶性能。
然而,涡轮增压系统也存在一些问题。
由于废气压力的变化会影响到涡轮增压系统的工作效率,因此需要通过有效的排气和增压控制系统进行精确控制。
另外,由于涡轮增压过程中会产生较高的温度,需要通过增压系统的冷却装置来降低温度,确保发动机的正常工作。
综上所述,涡轮增压的原理是通过利用废气的能量来驱动涡轮和压气机,提高发动机的气缸充气效率。
通过增加进气压力,涡轮增压系统可以在相同排气量的情况下提供更多的空气燃料混合物,提高发动机的功率和扭矩输出,提升汽车的性能。
涡轮的工作原理
涡轮的工作原理是基于流体动力学原理的。
涡轮是一种由转子和固定导向叶片组成的设备。
在涡轮中,流体(通常是气体或液体)通过导向叶片的引导,进入转子区域并被旋转的转子加速。
转子的旋转运动将流体的动能转化为机械能,例如机械轴
的旋转或者驱动涡轮机械设备。
涡轮的工作过程可分为两个阶段:进气和推力。
在进气阶段,流体通过导向叶片,进入转子区域。
导向叶片的设计使流体以较高的速度进入转子,并且流体的动能逐渐增加。
转子的旋转运动则会进一步加速流体,并且改变流体的动能、动量和方向。
在推力阶段,流体离开转子,并通过推力喷管排出。
喷管的设计使流体的速度被进一步增加,并产生推力。
推力的大小取决于流体的速度变化和质量流量。
涡轮的旋转运动提供了驱动流体加速的力量。
总的来说,涡轮的工作原理可以归结为将流体的动能转化为机械能的过程。
导向叶片和转子的设计使流体能够高效地加速和转动,并产生推力。
这个原理被广泛应用于涡轮机械设备中,如涡轮发动机、涡轮增压器、涡轮泵等。
涡轮增压工作原理涡轮增压(turbocharging)是一种发动机技术,旨在提高发动机的性能和功率,从而满足驾驶者的需求。
涡轮增压的主要原理是通过热能转换,将一部分发动机排出的废气(排气温度较低)转化为增压气体,通过对应的增压系统将压力提高后送入发动机进气系统,使发动机获得更多的空气,从而改善发动机的进气和排气效率,从而带来更好的性能。
涡轮增压技术包括三个部分:一个涡轮增压器,一个热能回收器以及一个控制单元。
涡轮增压器是涡轮增压系统的核心部件,主要由涡轮、增压器本体和涡轮鼓风机组成。
涡轮鼓风机由多级叶轮和多级桨轮组成,其中涡轮叶轮负责将废气转换为增压气体,而涡轮桨轮负责将增压气体排入发动机进气系统,从而改善发动机的进气和排气效率。
热能回收器一般设在涡轮鼓风机前,用于回收废气的热能,从而提高涡轮增压器的效率。
控制单元则负责控制涡轮增压系统的各个部件,以响应发动机的变化,从而保持发动机的性能和功率。
涡轮增压系统的作用主要在于改善发动机的进气和排气效率,从而提高发动机的性能和功率。
涡轮增压系统可以有效利用汽油发动机排出的废气,将排出的废气经过涡轮增压器转换为增压气体,从而提高发动机的进气和排气速度,改善发动机的进气和排气效率,使其达到更高的能效率,从而获得更好的性能和功率。
此外,涡轮增压系统还有另外一个值得一提的作用:加速器效应。
由于涡轮增压系统可以将发动机排出的废气(温度较低)转换为增压气体,当发动机达到较高的转速时,这种增压气体可以迅速推动发动机,从而获得更高的功率,有效提升发动机的加速度。
涡轮增压技术是一种高效的发动机技术,主要通过提高发动机的进气和排气效率,从而改善发动机的性能和功率。
涡轮增压技术包括涡轮增压器、热能回收器和控制单元,它们在提高发动机性能和功率方面发挥着重要作用,同时还有良好的加速效应。
因此,涡轮增压技术已成为当今发动机技术发展的核心方向,在未来也将继续发挥重要作用。
涡轮工作原理
涡轮工作原理是指利用流体的动能来驱动涡轮旋转的一种技术。
涡轮通常由多个叶片组成,这些叶片安装在一个轴上,当流体经过叶片时,会给叶片施加一个作用力。
根据牛顿第三定律,叶片向下受到的作用力会使涡轮产生一个向上的反作用力,从而使涡轮旋转。
涡轮通常用于能量转换和传递。
在涡轮机中,液体或气体流经涡轮时,它们的动能会转化为涡轮的旋转动能。
涡轮旋转的速度取决于流体的速度和涡轮叶片的设计。
涡轮机的旋转动能可以用来驱动机械设备,如风力发电机或船舶的推进器。
此外,涡轮还可以用于增压器和涡轮增压器中,以增加内燃机的气缸充气压力,提高发动机的功率输出。
涡轮工作的基本原理是质量守恒定律和动量守恒定律。
根据质量守恒定律,涡轮进入和出口的质量流量相等。
根据动量守恒定律,涡轮进入和出口的动量流量相等。
根据这两个定律,可以推导出涡轮的工作原理。
具体来说,当流体进入涡轮时,首先经过导流叶片,导流叶片的作用是使流体以一定的速度进入涡轮叶片。
然后,流体经过工作叶片,工作叶片的作用是改变流体的流向和速度。
在工作叶片中,流体的动能会转化为涡轮的旋转动能。
最后,流体离开涡轮,继续流向下一个部件。
总之,涡轮工作原理是通过流体的动能转化为涡轮的旋转动能,
实现能量转换和传递的一种技术。
它在能源和动力系统中有着广泛的应用,如发电、汽车和飞机等领域。
题目可变几何涡轮增压器的研究与设计可变几何涡轮增压器的研究与设计摘要:普通发动机在低速时不能产生所期望的高增压压力。
普通涡轮增压器与车用柴油机的匹配,在实际应用中主要存在问题为:低速转矩不足;低速和部分负荷时经济性差;起动、加速性能差;瞬态响应性迟缓;冒烟严重。
对可变几何涡轮增压器(VGT)展开研究,可以解决常规涡轮增压柴油机存在低速转矩不足、部分负荷经济性差以及瞬态响应迟缓等问题这些问题对发动机都有着十分重大的意义,如果将解决了这些问题,对发动机性能的提升将会是十分巨大的,这也正是可变几何发动机的巨大潜力所在。
增压器的设计内容复杂,一般方法需要梳理和总结。
本文系统总结增压器设计的一般方法,利用这些方法和国家标准设计出可变几何涡轮增压器的各个参数。
关键词:增压器;涡轮增压器设计;可调喷嘴环控制;可变几何涡轮增器(VGT);The variable geometry turbocharger research and designAbstract:Ordinary turbocharged system exist many problems; engine speed cannot produce expected high pressurization pressure. Specific to ordinary turbocharger and automotive diesel engine matching, in actual application the main existing problems is: low torque is insufficient;Low Performance in the partial load moment; Startup, acceleration performance is poor; The transient response large delay;Smoked excessively Research for variable geometry turbochargers (VGT), which can solve the existing conventional turbocharged diesel engine torque insufficiency at low speed, part load performance is poor, and slow transient response etc. These problems in engine are very important sense, if will solve these problems, the ascension of engine performance will be improve largely, and this is why variable geometry engine in the huge potential.The general method of turbocharger design, requires to comb and to summarize. This paper summarizes the general method of turbocharger design. Design the various parameters of the variable geometry turbocharger, by of these methods and national standard.Keywords: supercharger; Turbocharger design; Adjustable nozzle ring; Variable geometry turbochargers(VGT);目录摘要及关键词 (I)Abstract and keywords (I)1 绪论 (1)1.1增压技术以及主要的增压类型 (1)1.2涡轮增压器的发展现状 (2)1.2.1 涡轮增压器历史 (2)1.2.2 现今车用涡轮增压器的特点 (3)1.2.3 车用涡轮增压器零部件改动与革新 (4)1.3传统涡轮增压器与可变几何涡轮增压器 (5)1.3.1 传统涡轮增压器的问题 (5)1.3.2 解决这些问题曾经采用过的方法 (6)1.3.3 可变几何涡轮增压器 (7)1.3.4 可变几何涡轮增压器的优势 (9)1.3.5 可变几何涡轮增压器的国内外研究现状: (9)1.4本文研究内容 (11)2 一般径流涡轮增压器的设计方法 (12)2.1设计思路 (12)2.1.2 径流涡轮增压器基本工作原理 (12)2.2静子初步设计 (13)2.2.1 涡壳 (13)2.2.2 导流叶片 (15)2.2.3 叶轮设计 (17)2.2.4 叶轮进口设计 (18)2.2.5 比转速在设计中的应用 (23)2.2.6 本章小结 (25)3 涡轮增压器和发动机的匹配 (26)3.1常规涡轮增压器与发动机的匹配 (26)3.1.1 发动机与涡轮的匹配 (26)3.1.2 压气机与涡轮的匹配 (26)3.1.3 发动机与增压器的匹配 (27)3.2VGT与发动机的匹配要求 (27)3.3可变喷嘴环和发动机匹配 (28)3.4本章小结 (29)4涡轮增压器设计 (30)4.1设计基本初始数据 (30)4.2涡轮轮径与原始最大叶高的选择 (30)4.2.1 涡轮进气参数的确定 (30)4.2.2 轮径的算选与确定............................................ 31 4.3 涡轮叶片按高度分档的方案选择 ................................... 32 4.4 叶片扭曲规律的选择 ............................................. 34 4.5 叶栅设计与叶片造型 ............................................. 34 4.5.1 沿叶高各截面叶栅的设计...................................... 34 4.5.2 导叶和动叶数目的选取........................................ 35 4.5.3 叶片各截面轴向宽度B 的选取.................................. 35 4.5.4 攻角和落后角的选取.......................................... 36 4.5.5 叶形进、出气半径1r 和2r 的选取 ................................ 36 4.5.6导叶径向线的选取 ............................................ 36 4.6 涡轮叶片的强度计算 ............................................. 36 4.7 本章小结 ....................................................... 38 5 总结与结论 ......................................................... 38 6 结束语 ............................................................. 39 参考文献 ............................................................. 41 附件1 实习报告附件2 柴油机外形图(CAD, 1#) 附件3 涡轮涡壳(CAD, 3#) 附件4 涡轮叶片(CAD, 3#)符号说明A 面积,m2B 叶栅轴向宽度,mC 压气机D 直径,mE 杨氏模量,PaF,f 截面积,m2G 质量流量,kg/m3J 热功当量,W/m2·KH 绝对总焓,JL 高度或长度,mM 马赫数P压力,NQ 热通量,w/m2Re雷诺数T 绝对温度,Ka 音速,m/sb 叶形的弦长,mc 比热;绝热流速,m/sg 重力加速度,m/s2h 焓,Ji进气攻角,n 转速,rpmn g比转速,P压强,J/kgr 半径,ms 熵,J/Kt 栅距,m2u 圆周速度,m2/sv比容,kJ/kg·°C,w 相对速度z 叶片数希腊文ω每秒钟转速,rad/mη效率α绝对气流角β相对气流角π增压比或膨胀比ρ密度,kg/m3ξ损失系数θ导风轮叶片张角λ速度比γ比重ν运动粘性系数,m2/sμ动力粘性系数,kg/m·s 上角标* 滞止度“_”表示流面微分下脚标ax 轴向ad 绝热状态C 压气机cr 临界状态mean 平均值max 最大min 最小n 法向o 进口状态P 定压;叶栅压力s 等熵,叶片吸力面t 顶部T 涡轮v 定容ω表示相对坐标0 涡轮进口状态1 涡轮导叶出口2 涡轮动叶出口1 绪论1.1增压技术以及主要的增压类型增压的主要作用就是提高发动机进气量,从而提高发动机的功率和扭矩,让车子更有劲。
可变截面涡轮叶片的工作原理今天咱们来聊聊可变截面涡轮叶片这个超酷的东西。
你知道汽车或者一些发动机里有个涡轮增压器吧?这涡轮增压器里的可变截面涡轮叶片就像是一个超级聪明的小助手呢。
咱先从涡轮增压器的基本工作说起哈。
涡轮增压器就是想办法让发动机进气更多,这样燃烧就更猛,发动机也就更有劲儿。
普通的涡轮增压器呢,它的涡轮叶片是固定的。
就好像是一个人只能用一种姿势干活儿,有时候就不是那么灵活。
可变截面涡轮叶片就不一样啦。
它就像一个会变身的小超人。
当发动机在低转速的时候,这时候进气量不需要太大。
可变截面涡轮叶片就会把自己的通道变得窄窄的。
你可以想象成它把进气的小嘴巴给缩小了。
这样呢,废气经过涡轮叶片的时候,流速就会变得特别快。
就好比你用手捏着水管口,水就会喷得更远一样的道理。
这个时候,涡轮就能够比较轻松地被废气推动起来,开始快速转动啦,然后就能给发动机提供足够的增压压力,让发动机在低转速的时候也不会觉得没力气。
那当发动机转速升高了呢?这时候需要更多的空气啦。
可变截面涡轮叶片就开始放大招了,它会把自己的通道变得宽宽的。
就像把小嘴巴变成了大嘴巴,这样就能让更多的废气通过。
更多的废气通过就意味着能给涡轮提供更大的动力,涡轮就能转得更快,然后给发动机提供超级大量的新鲜空气。
这时候发动机就像打了鸡血一样,动力嗷嗷地往上窜。
你看,这可变截面涡轮叶片是不是很机灵呀?它就像是根据发动机的心情在随时调整自己的工作状态呢。
再从涡轮叶片的结构上来说说吧。
它的结构设计得特别巧妙。
那些可以改变截面的部分就像是一些小关节一样,可以灵活地移动。
这背后可是有很精密的控制系统的哦。
这个控制系统就像是叶片的大脑,时刻监测着发动机的各种状态,像是转速啦、进气压力啦之类的。
一旦发现发动机的状态有变化,就会立刻指挥可变截面涡轮叶片做出调整。
比如说,你在马路上开车,刚刚起步的时候,发动机转速低,可变截面涡轮叶片就把自己调整到适合低转速的状态,让你能平稳地起步。
从原理上看,柴油机的VGT技术和保时捷的VTG并没有本质的区别,基本的原理和结构都是相似的。
下面,我们就通过保时捷的VTG技术来了解一下可变截面涡轮增压器的工作原理。
图中涡轮外围的红色叶片就是导流叶片
一般的涡轮并没有导流叶片的结构
VGT技术的核心部分就是可调涡流截面的导流叶片,从图上我们可以看到,涡轮的外侧增加了一环可由电子系统控制角度的导流叶片,导流叶片的相对位置是固定的,但是叶片角度可以调整,在系统工作时,废气会顺着导流叶片送至涡轮叶片上,通过调整叶片角度,控制流过涡轮叶片的气体的流量和流速,从而控制涡轮的转速。
当发动机低转速排气压力较低的时候,导流叶片打开的角度较小。
根据流体力学原理,此时导入涡轮处的空气流速就会加快,增大涡轮处的压强,从而可以更容易推动涡轮转动,从而有效减轻涡轮迟滞的现象,也改善了发动机低转速时的响应时间和加速能力。
而在随着转速的提升和排气压力的增加,叶片也逐渐增大打开的角度,在全负荷状态下,叶片则保持全开的状态,减小了排气背压,从而达到一般大涡轮的增压效果。
此外,由于改变叶片角度能够对涡轮的转速进行有效控制,这也就实现对涡轮的过载保护,因此使用了VGT技术的涡轮增压器都不需要设置排气泄压阀。
需要指出的是,VGT可变截面涡轮增压器只能通过改变排气入口的横切面积改变涡轮的特性,但是涡轮的尺寸大小并不会发生变化。
如果从涡轮A/R值去理解的话,可变截面涡轮的原理会更加直观。
也有的厂商将这项技术成为VNT,比如沃尔沃和奥迪,它们在本质上是一样的
A/R值是涡轮增压器的一项重要指标,用以表达涡轮的特性,在改装市场的涡轮增压器销售册上也常有标明。
A表示Aera区域,指的是涡轮排气侧入口处最窄的横切面积(也就是可变截面涡轮技术中的“截面”),R(Radius)则是代表半径意思,指的是入口处最窄的横切面积的中心点到涡轮本体中心点的距离,而两者的比例就是A/R值。
相对而言,压气端叶轮受A/R值的影响并不大,不过A/R值却对排气端涡轮有着十分重要的意义。
导流叶片的开度能够影响导向涡轮叶片的气流速度,低转速时开度小(左图),提高空气流速,高转速时开度大(右图),减
小排气负压
当A/R值越小时,表示废气通过涡轮的流速较高,这种特性可以有效减轻涡轮迟滞,涡轮也就能在较低的转速区域取得较高的增压,而发动机高转速时则会产生较大的排气背压,使高转速时功率受到限制。
反之,当A/R值越大时,涡轮的响应速度就越慢,低转速时涡轮迟滞明显,不过在高转速时,拥有较小的排气背压,且能够更好的利用排气能量,从而获得更强的动力表现。
而VGT技术所实现的截面可变就是指改变A值。
当叶片角度较小时,排气入口的横切面积便会相应减小,因此A值会随之变化,从而拥有小涡轮响应快的特点。
而当叶片角度增大时,A值随之增大,这时A/R值增大,从而在高转速下获得更强的动力输出。
总而言之,透过变更叶片的角度,VTG系统可随时改变排气涡轮的A/R值,从而兼顾大/小涡轮的优势特性。
小结:
尽管结构和原理都很简单,但VGT可变截面涡轮技术对于增压效果的提升非常显著,在目前主流的涡轮增压柴油发动机上,这项技术已经得到了非常普遍的应用。
不过,由于硬件材质的限制,这项技术在排气温度较高的汽油发动机上才刚刚起步,保时捷和博格华纳的合作可以说开创了先河。
不过,随着材料科技的进步,这项技术在未来的汽油发动机上必将会得到更广泛的应用。
在我们即将进行的拆解的哈弗2.0VGT柴油发动机,也同样搭载了这项技术,届时我们也将详细解析VGT涡轮增压器的内部结构,敬请期待。