专题四 “将军饮马”模型
- 格式:pptx
- 大小:3.20 MB
- 文档页数:21
将军饮马问题的11个模型及例题将军饮马问题是一个经典的逻辑问题,涉及到将军如何用有限数量的马和酒到达目的地。
本文将介绍将军饮马问题的11个模型及相应的例题。
1. 直线模型将军与目的地之间没有障碍物,可以直线前进。
此时,将军只需将马拉到目的地即可。
例题1:将军与目的地之间距离为10公里,马的速度为每小时5公里,将军能否在2小时内到达目的地?2. 单个障碍物模型在将军与目的地之间存在一个障碍物,将军可以绕过该障碍物。
例题2:将军与目的地之间距离为15公里,马的速度为每小时4公里,障碍物位于距离将军起点5公里处,将军能否在3小时内到达目的地?3. 多个障碍物模型在将军与目的地之间存在多个障碍物,将军需要逐一绕过这些障碍物。
例题3:将军与目的地之间距离为20公里,马的速度为每小时6公里,障碍物位于距离将军起点分别为5公里、10公里和15公里的位置,将军能否在4小时内到达目的地?4. 跳跃模型将军可以让马跳过障碍物,从而直接到达目的地。
例题4:将军与目的地之间距离为12公里,马的速度为每小时8公里,将军在距离起点6公里处设置一个障碍物,将军能否在2小时内到达目的地?5. 限时模型将军需要在规定的时间内到达目的地。
例题5:将军与目的地之间距离为30公里,马的速度为每小时10公里,将军需要在3小时内到达目的地,是否可能?6. 守备模型目标地点有守备军,将军需要巧妙规避守备军。
例题6:将军与目的地之间距离为25公里,马的速度为每小时7公里,目的地有一支守备军位于距离目标地点10公里处,将军能否在4小时内到达目的地?7. 短平快模型将军不借助马匹,直接徒步走到目的地。
例题7:将军与目的地之间距离为8公里,将军的步行速度为每小时2公里,将军能否在4小时内到达目的地?8. 时间窗模型将军只能在规定时间范围内到达目的地。
例题8:将军与目的地之间距离为18公里,马的速度为每小时6公里,将军需要在3小时到4小时之间到达目的地,是否可能?9. 兵变模型将军需要利用敌军马匹达到目的地。
特殊的平行四边形中的最值模型--将军饮马模型“白日登山望烽火,黄昏饮马傍交河”,这是唐代诗人李颀《古从军行》里的一句诗,由此却引申出一系列非常有趣的数学问题,通常称为“将军饮马”。
将军饮马问题从本质上来看是由轴对称衍生而来,同时还需掌握平移型将军饮马,主要考查转化与化归等的数学思想。
在各类考试中都以中高档题为主,本专题就特殊的平行四边形背景下的将军饮马问题进行梳理及对应试题分析,方便掌握。
在解决将军饮马问题主要依据是:两点之间,线段最短;垂线段最短;涉及的基本方法还有:利用轴对称变换化归到“三角形两边之和大于第三边”、“三角形两边之差小于第三边”等。
模型1.求两条线段和的最小值(将军饮马模型)【模型解读】在一条直线m上,求一点P,使PA+PB最小;(1)点A、B在直线m两侧:(2)点A、B在直线同侧:【最值原理】两点之间线段最短。
上图中A'是A关于直线m的对称点。
1(2022·山东德州·统考中考真题)如图,正方形ABCD的边长为6,点E在BC上,CE=2,点M是对角线BD上的一个动点,则EM+CM的最小值是()A.62B.35C.213D.413【答案】C【分析】连接AM,AE,根据正方形的对称性可得AM=CM,进而可知EM+CM=EM+AM,再利用A,M,E三点共线时,EM+AM的值最小,将EM+AM转化为AE,最后运用勾股定理即可解答.【详解】如图,连接AM,AE,∵A、C关于BD对称,∴AM=CM,∴EM+CM=EM+AM当A,M,E三点共线时,EM+AM=AE的值最小,即EM+CM的值最小,∵AB=6,BE=BC-CE=4,由勾股定理得:AE=AB2+BE2=62+42=213,即EM+CM的最小值为213,故选C.【点睛】本题考查了运用轴对称解决最短路径问题、勾股定理的应用、正方形的性质,明确当A,M,E三点共线时,EM+AM有最小值是解题的关键.2(2022·内蒙古赤峰·统考中考真题)如图,菱形ABCD,点A、B、C、D均在坐标轴上,∠ABC=120°,点A-3,0,点E是CD的中点,点P是OC上的一动点,则PD+PE的最小值是()A.3B.5C.22D.332【答案】A【分析】直线AC上的动点P到E、D两定点距离之和最小属“将军饮马”模型,由D关于直线AC的对称点B,连接BE,则线段BE的长即是PD+PE的最小值.【详解】如图:连接BE,∵菱形ABCD,∴B、D关于直线AC对称,,∵直线AC上的动点P到E、D两定点距离之和最小∴根据“将军饮马”模型可知BE长度即是PD+PE的最小值.,∵菱形ABCD,∠ABC=120°,点A-3,0,∴∠CDB=60°,∠DAO=30°,OA=3,∴OD=3,AD=DC=CB=23∴△CDB是等边三角形∴BD=23∵点E是CD的中点,∴DE=1CD=3,且BE⊥CD,∴BE=BD2-DE2=3故选:A.2【点睛】本题考查菱形性质及动点问题,解题的关键是构造直角三角形用勾股定理求线段长.3(2023·湖北鄂州·二模)如图,矩形ABCD中,AB=4,AD=3,点E在AB上,且BE=1,点M,F分别为边DC,BC上的动点,将△BEF沿直线EF翻折得到△NEF,连接AM,MN,则AM+MN的最小值为()A.5B.35C.35-2D.35-1【答案】D【分析】作A关于CD的对称点H,连接EH,根据条件求出EH的长度,当H、M、N、E四点共线时,HM+MN最小,即可求出答案.【详解】解:作A关于CD的对称点H,连接EH,∵AD=3,∴AH=2AD=6,∵△BEF沿直线EF翻折得到△NEF,∴△BEF≅△NEF,∴BE=NE=1,∵AB=4,BE=1,∴AE=AB-AE=4-1=3,∵四边形ABCD为矩形,∴∠DAB=90°,在Rt△HAE中,HE=AH2+AE2=62+32=35,当H、M、N、E四点共线时,HM+MN最小,最小为HE-NE=35-1,∴AM+MN的最小值为35-1.故选:D.【点睛】本题主要考查矩形的性质,折叠的性质,勾股定理,解答的关键是作出辅助线.4(2023·辽宁抚顺·统考三模)如图,正方形ABCD的边长为3,E为BC边上的动点,连接EA,将EA绕点E顺时针旋转90°得到线段EF,连接FD,则FD+2FE的最小值是.【答案】35【分析】作FH⊥BC交BC的延长线于点H,连接CF并延长,连接AF,首先证明出△ABE≌△EHF AAS,进而得到AB=EH,BE=FH,然后得到△CFH是等腰直角三角形,得到点F在∠DCF的角平分线上运动,作点D关于CF的对称点G,然后得到当点A,F,G三点在一条直线上时,DF+AF有最小值AG,最后利用勾股定理求解即可.【详解】如图所示,作FH⊥BC交BC的延长线于点H,连接CF并延长,连接AF,∵将EA绕点E顺时针旋转90°得到线段EF,∴∠AEF=90°,AE=EF,∵正方形ABCD的边长为3,∴∠B=90°,∴∠BAE+∠AEB=∠CEF+∠AEB=90°,∴∠BAE=∠CEF,又∵∠B=∠EHF,∴△ABE≌△EHF AAS,∴AB=EH,BE=FH,∵AB=BC,∴BC=EH,∴BE=CH,∴CH=FH,又∵FH⊥CG,∴△CFH是等腰直角三角形,∴∠FCH=45°,∴∠DCF=45°,∴点F在∠DCF的角平分线上运动,∵AE=EF,∠AEF=90°,∴△AEF是等腰直角三角形,∴AF=2EF,∴FD+2FE=FD+AF,作点D关于CF的对称点G,∵点F在∠DCF的角平分线上运动,∴点G在BC的延长线上,∴DF=FG,∴DF+AF=GF+AF≥AG,∴当点A,F,G三点在一条直线上时,DF+AF有最小值AG,∵点D和点G关于CF对称,∴CG=CD=3,∴BG=BC+CG=6,∴在Rt△ABG中,AG=AB2+BG2=35.∴FD+2FE的最小值是35.【点睛】本题考查了旋转的性质,正方形的性质,等腰直角三角形的判定与性质,勾股定理,轴对称求最短路径.能够将线段的和通过轴对称转化为共线线段是解题的关键.1.(2023·湖南湘西·统考三模)如图所示,正方形ABCD的边长为2,点E为边BC的中点,点P 在对角线BD上移动,则△PCE周长的最小值是()A.5B.5+1C.25D.25+2【答案】B【分析】作点E关于BD的对称点为E ,连接CE 交BD于点P,可得PE =PE,BE =BE,根据勾股定理求出CE ,可得△PCE周长=PE+PC+CE=PE +PC+CE,即可求解.【解析】解:作点E关于BD的对称点为E ,连接CE 交BD于点P,如图所示,∵E关于BD的对称点为E ,∴PE =PE,BE =BE,∵正方形ABCD的边长为2,点E为边BC的中点,∴BC=2,BE=EC=1,∴BE =1,∴CE =BE +BC=12+22=5,∵△PCE周长=PE+PC+CE,又∵PE +PC=PE+PC≥E C,∴△PCE周长=PE+PC+CE=PE +PC+CE≥E C+CE=5+1,∴△PCE周长最小值为5+ 1,故选:B.【点睛】本题考查了轴对称的性质,正方形的性质,勾股定理,解题的关键是作出辅助线,熟练掌握轴对称的性质.2.(2023春·成都市九年级期中)如图,在矩形ABCD中,AB=6,BC=5,E、F分别是边AB、BC上的动点,且EF=4,M为EF中点,P是边AD上的一个动点,则CP+PM的最小值是.【答案】11【分析】作点C关于AD的对称点G,连接PG、GD、BM、GB,则当点P、M在线段BG上时,GP+PM +BM最小,从而CP+PM最小,在Rt△BCG中由勾股定理即可求得BG的长,从而求得最小值.【解析】如图,作点C关于AD的对称点G,连接PG、GD、BM、GB由对称的性质得:PC=PG,GD=CD∵GP+PM+BM≥BG∴CP+PM=GP+PM≥BG-BM 则当点P、M在线段BG上时,CP+PM最小,且最小值为线段BG-BM∵四边形ABCD是矩形∴CD=AB=6,∠BCD=∠ABC=90° ∴CG=2CD=12EF=2∵M为线段EF的中点,且EF=4∴BM=12在Rt△BCG中,由勾股定理得:BG=CG2+BC2=122+52=13∴GM=BG-BM=13-2=11即CP+PM的最小值为11.【点睛】本题是求两条线段和的最小值问题,考查了矩形性质,折叠的性质,直角三角形斜边上中线的性质,两点间线段最短,勾股定理等知识,有一定的综合性,关键是作点C关于AD的对称点及连接BM,GP+ PM+BM的最小值转化为线段CP+PM的最小值.3.(2022·湖南娄底·中考真题)菱形ABCD的边长为2,∠ABC=45°,点P、Q分别是BC、BD上的动点,CQ+PQ的最小值为.【答案】2【分析】过点C作CE⊥AB于E,交BD于G,根据轴对称确定最短路线问题以及垂线段最短可知CE为FG+CG的最小值,当P与点F重合,Q与G重合时,PQ+QC最小,在直角三角形BEC中,勾股定理即可求解.【解析】解:如图,过点C作CE⊥AB于E,交BD于G,根据轴对称确定最短路线问题以及垂线段最短可知CE为FG+CG的最小值,当P与点F重合,Q与G重合时,PQ+QC最小,BC=2∵菱形ABCD的边长为2,∠ABC=45°,∴Rt△BEC中,EC=22∴PQ+QC的最小值为2故答案为:2【点睛】本题考查菱形性质,勾股定理,轴对称的性质,掌握轴对称的性质求线段和的最小值是解题关键.模型2.平移型将军饮马(将军过桥模型)【模型解读】已知,如图1将军在图中点A处,现要过河去往B点的军营,桥必须垂直于河岸建造,问:桥建在何处能使路程最短?考虑MN长度恒定,只要求AM+NB最小值即可.问题在于AM、NB彼此分离,所以首先通过平移,使AM 与NB连在一起,将AM向下平移使得M、N重合,此时A点落在A'位置(图2).问题化为求A'N+NB最小值,显然,当共线时,值最小,并得出桥应建的位置(图3).图1图2图3【最值原理】两点之间线段最短。
将军饮马问题将军饮马问题=轴对称问题=最短距离问题(轴对称是工具,最短距离是题眼)。
所谓轴对称是工具,即这类问题最常用的做法就是作轴对称。
而最短距离是题眼,也就意味着归类这类的题目的理由。
比如题目经常会出现线段 a+b 这样的条件或者问题。
一旦出现可以快速联想到将军饮马问题,然后利用轴对称解题。
1.将军饮马故事“将军饮马”问题是数学问题中的经典题目,主要转化成“两点之间线段最短问题”原题:如图,一位将军,从A地出发,骑马到河边给马饮水,然后再到B地,问怎样选择饮水的地点,才能使所走的路程最短?•A•B模型一:一条定直线,同侧两定点在直线l的同侧有两点A,B,在L上求一点P,使得PA+PB值最小。
一般做法:作点 A(B)关于直线的对称点,连接 A’B,A’B 与直线交点即为所求点。
A’B即为最短距离。
理由:A’为 A 的对称点,所以无论 P 在直线任何位置都能得到 AP=A’P。
所以 PA+PB=PA’+PB。
这样问题就化成了求 A’到 B 的最短距离,直接相连就可以了。
例一:某供电部门准备在输电主干线L上连接一个分支线路,分支点为M,同时向新落成的A、B两个居民小区送电。
已知两个居民小区A、B分别到主干线的距离AA1=2千米,BB1=1千米,且A1B1=4千米。
(1)如果居民小区A、B位于主干线L的两旁,如图(1)所示,那么分支点M 在什么地方时总路线最短?最短线路的长度是多少千米?(2)如果居民小区A、B位于主干线L的同旁,如图(2)所示,那么分支点M 在什么地方时总路线最短?此时分支点M与A1的距离是多少千米?模型二:一条定直线,一定点,一动点如图,已知直线L 和定点A ,在直线K 上找一点M,在直线L 上找一点P ,使得AP+PB 值最小。
模型三:一定点,两条定直线如图,在∠OAB 内有一点 P ,在 OA 和 OB 各找一个点 M 、N ,使得△PMN 周长最短(题 眼)。
一般做法:作点 P 关于 OA 和 OB 的对称点 P1、P2。
将军饮马模型将军饮马模型一、背景知识:【传说】早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.将军每天从军营 A 出发,先到河边饮马,然后再去河岸同侧的军营 B 开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“ 将军饮马”的问题便流传至今.【问题原型】将军饮马造桥选址费马点【涉及知识】两点之间线段最短,垂线段最短;三角形两边三边关系;轴对称;平移;【解题思路】找对称点,实现折转直二、将军饮马问题常见模型1.两定一动型:两定点到一动点的距离和最小例1:在定直线l上找一个动点 P,使动点 P 到两个定点 A 与 B 的距离之和最小,即 PA+PB 最小 .作法:连接 AB ,与直线l 的交点Q,Q 即为所要寻找的点,即当动点P 跑到了点 Q 处,PA+PB 最小,且最小值等于AB.原理:两点之间线段最短。
证明:连接 AB ,与直线l 的交点Q,P为直线 l 上任意一点,在⊿ PAB 中,由三角形三边关系可知:AP+PB ≧ AB( 当且仅当 PQ 重合时取﹦ )例2:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB 的和最小 .关键:找对称点作法:作定点 B 关于定直线l的对称点 C,连接 AC ,与直线 l 的交点 Q 即为所要寻找的点,即当动点 P 跑到了点 Q 处, PA+PB 和最小,且最小值等于 AC. 原理:两点之间,线段最短证明:连接 AC ,与直线l 的交点Q,P为直线 l 上任意一点,在⊿ PAC 中,由三角形三边关系可知:AP+PC≧ AC( 当且仅当 PQ 重合时取﹦ )2.两动一定型例3:在∠ MON 的内部有一点 A ,在 OM 上找一点 B ,在 ON 上找一点 C,使得△ BAC 周长最短.作法:作点 A 关于 OM 的对称点 A’,作点 A 关于 ON 的对称点 A’’,连接 A’ A ’’,与 OM 交于点 B,与 ON 交于点 C,连接 AB , AC ,△ ABC 即为所求.原理:两点之间,线段最短例 4:在∠ MON 的内部有点 A 和点 B ,在 OM 上找一点 C ,在 ON 上找一点 D ,使得四边形 ABCD 周长最短.作法: 作点 A 关于 OM 的对称点 A ’,作点 B 关于 ON 的对称点 B ’,连接 A ’ B ,’与 OM 交于点 C ,与 ON 交于点 D ,连接 AC , BD , AB ,四边形 ABCD 即为所求.原理: 两点之间,线段最短3. 两定两动型最值例 5:已知 A 、B 是两个定点, 在定直线 l 上找两个动点 M 与 N ,且 MN 长度等于定长 d (动点 M 位于动点 N 左侧),使 AM+MN+NB 的值最小 .提示:存在定长的动点问题一定要考虑平移作法一: 将点 A 向右平移长度 d 得到点 A ’, 作 A ’关于直线l 的对称点 A ’’,连接 A ’’B ,交直线 l于点 N ,将点 N 向左平移长度dM。
、背景知识:【传说】早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦? 一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.将军每天从军营A 出发,先到河边饮马,然后再去河岸同侧的军营B 开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它. 从此以后,这个被称为“将军饮马” 的问题便流传至今.【问题原型】将军饮马造桥选址费马点【涉及知识】两点之间线段最短,垂线段最短;三角形两边三边关系;轴对称;平移;【解题思路】找对称点,实现折转直、将军饮马问题常见模型1.两定一动型:两定点到一动点的距离和最小例1:在定直线I上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB最小.作法:连接AB 与直线I 的交点Q,Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB 最小,且最小值等于AB.原理:两点之间线段最短。
证明:连接AB,与直线I的交点Q P为直线I上任意一点例2 :在定直线I上找一个动点P,使动点P到两个定点A与B的距离之和最小即PA+PB 的和最小.关键:找对称点作法:作定点B关于定直线I的对称点C,连接AC,与直线I的交点Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB和最小,且最小值等于AC.原理:两点之间,线段最短证明:连接AC,与直线I的交点Q P为直线I上任意一点,在"PAC中,由三角形三边关系可知:AP+P&AC (当且仅当PQ重合时取=)2.两动一定型例3 :在/ MON 的内部有一点A,在0M上找一点B,在ON上找一点C,使得△ BAC周长最短.作法:作点A关于0M的对称点A',作点A关于ON的对称点A'',连接A' A',与0M交于点B,与ON 交于点C,连接AB AC, △ABC即为所求.原理:两点之间,线段最短例4:在/MON的内部有点A和点B,在OM上找一点C,在ON上找一点D,使得四边形周长最短.作法:作点A关于OM的对称点A,作点B关于ON的对称点B',连接A B ',与交于点C,与ON交于点D,连接AC, BD AB,四边形ABCD即为所求.原理:两点之间,线段最短3.两定两动型最值例5:已知A B是两个定点,在定直线I上找两个动点M与N,且MN长度等于定长d (动点M位于动点N 左侧),使AM+MN+N 的值最小.提示:存在定长的动点问题一定要考虑平移作法一:将点A向右平移长度d得到点A,作A'关于直线I的对称点A'',连接A''B,交直线I于点N,将点N 向左平移长度d, 得到点M作法二:作点A关于直线I的对称点A,将点A1向右平移长度d得到点A2,连接A B ,交直线I于点Q, 将点Q向左平移长度d,得到点Q。
将军饮马模型一、背景知识:【传说】早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“将军饮马”的问题便流传至今.【问题原型】将军饮马造桥选址费马点【涉及知识】两点之间线段最短,垂线段最短;三角形两边三边关系;轴对称;平移;【解题思路】找对称点,实现折转直二、将军饮马问题常见模型1.两定一动型:两定点到一动点的距离和最小例1:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB 最小.作法:连接AB,与直线l的交点Q,Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB最小,且最小值等于AB.原理:两点之间线段最短。
证明:连接AB,与直线l的交点Q,P为直线l上任意一点,在⊿PAB中,由三角形三边关系可知:AP+PB≧AB(当且仅当PQ重合时取﹦)例2:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB的和最小.关键:找对称点作法:作定点B关于定直线l的对称点C,连接AC,与直线l的交点Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB和最小,且最小值等于AC.原理:两点之间,线段最短证明:连接AC,与直线l的交点Q,P为直线l上任意一点,在⊿PAC中,由三角形三边关系可知:AP+PC≧AC(当且仅当PQ重合时取﹦)2.两动一定型例3:在∠MON的内部有一点A,在OM上找一点B,在ON上找一点C,使得△BAC周长最短.作法:作点A关于OM的对称点A’,作点A关于ON的对称点A’’,连接A’ A’’,与OM 交于点B,与ON交于点C,连接AB,AC,△ABC即为所求.原理:两点之间,线段最短例4:在∠MON的内部有点A和点B,在OM上找一点C,在ON上找一点D,使得四边形ABCD周长最短.作法:作点A关于OM的对称点A’,作点B关于ON的对称点B’,连接A’ B’,与OM交于点C,与ON交于点D,连接AC,BD,AB,四边形ABCD即为所求.原理:两点之间,线段最短3.两定两动型最值例5:已知A、B是两个定点,在定直线l上找两个动点M与N,且MN长度等于定长d(动点M位于动点N左侧),使AM+MN+NB的值最小.提示:存在定长的动点问题一定要考虑平移作法一:将点A向右平移长度d得到点A’,作A’关于直线l的对称点A’’,连接A’’B,交直线l于点N,将点N向左平移长度d,得到点M。
【最新整理,下载后即可编辑】将军饮马模型一、背景知识:【传说】早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“将军饮马”的问题便流传至今.【问题原型】将军饮马造桥选址费马点【涉及知识】两点之间线段最短,垂线段最短;三角形两边三边关系;轴对称;平移;【解题思路】找对称点,实现折转直二、将军饮马问题常见模型1.两定一动型:两定点到一动点的距离和最小例1:在定直线l上找一个动点P,使动点P到两个定点A与B 的距离之和最小,即PA+PB最小.作法:连接AB,与直线l的交点Q,Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB最小,且最小值等于AB.原理:两点之间线段最短。
证明:连接AB,与直线l的交点Q,P为直线l上任意一点,在⊿PAB中,由三角形三边关系可知:AP+PB≧AB(当且仅当PQ 重合时取﹦)例2:在定直线l上找一个动点P,使动点P到两个定点A与B 的距离之和最小,即PA+PB的和最小.关键:找对称点作法:作定点B关于定直线l的对称点C,连接AC,与直线l 的交点Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB 和最小,且最小值等于AC.原理:两点之间,线段最短证明:连接AC,与直线l的交点Q,P为直线l上任意一点,在⊿PA C中,由三角形三边关系可知:AP+PC≧AC(当且仅当PQ 重合时取﹦)2.两动一定型例3:在∠MON的内部有一点A,在OM上找一点B,在ON 上找一点C,使得△BAC周长最短.作法:作点A关于OM的对称点A’,作点A关于ON的对称点A’’,连接A’ A’’,与OM交于点B,与ON交于点C,连接AB,AC,△ABC即为所求.原理:两点之间,线段最短例4:在∠MON的内部有点A和点B,在OM上找一点C,在ON上找一点D,使得四边形ABCD周长最短.作法:作点A 关于OM 的对称点A’,作点B 关于ON 的对称点B’ ,连接A’ B’,与OM 交于点C ,与ON 交于点D ,连接AC ,BD ,AB ,四边形ABCD 即为所求.原理:两点之间,线段最短3. 两定两动型最值例5:已知A 、B 是两个定点,在定直线l 上找两个动点M 与N ,且MN 长度等于定长d (动点M 位于动点N 左侧),使AM+MN+NB 的值最小.提示:存在定长的动点问题一定要考虑平移作法一:将点A 向右平移长度d 得到点A’, 作A’关于直线l 的对称点A’’,连接A’’B ,交直线l 于点N ,将点N 向左平移长度d ,得到点M 。
将军饮马模型LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】将军饮马问题将军饮马问题=轴对称问题=最短距离问题(轴对称是工具,最短距离是题眼)。
所谓轴对称是工具,即这类问题最常用的做法就是作轴对称。
而最短距离是题眼,也就意味着归类这类的题目的理由。
比如题目经常会出现线段 a+b 这样的条件或者问题。
一旦出现可以快速联想到将军饮马问题,然后利用轴对称解题。
1.将军饮马故事“将军饮马”问题是数学问题中的经典题目,主要转化成“两点之间线段最短问题”原题:如图,一位将军,从A地出发,骑马到河边给马饮水,然后再到B地,问怎样选择饮水的地点,才能使所走的路程最短?AB模型一:一条定直线,同侧两定点在直线l的同侧有两点A,B,在L上求一点P,使得PA+PB值最小。
一般做法:作点 A(B)关于直线的对称点,连接 A’B,A’B 与直线交点即为所求点。
A’B即为最短距离。
理由:A’为 A 的对称点,所以无论 P 在直线任何位置都能得到 AP=A’P。
所以 PA+PB=PA’+PB。
这样问题就化成了求 A’到 B 的最短距离,直接相连就可以了。
例一:某供电部门准备在输电主干线L上连接一个分支线路,分支点为M,同时向新落成的A、B两个居民小区送电。
已知两个居民小区A、B分别到主干线的距离AA1=2千米,BB1=1千米,且A1B1=4千米。
(1)如果居民小区A、B位于主干线L的两旁,如图(1)所示,那么分支点M 在什么地方时总路线最短最短线路的长度是多少千米(2)如果居民小区A、B位于主干线L的同旁,如图(2)所示,那么分支点M 在什么地方时总路线最短此时分支点M与A1的距离是多少千米模型二:一条定直线,一定点,一动点 如图,已知直线L 和定点A ,在直线K 上找一点M,在直线L 上找一点P ,使得AP+PB 值最小。
模型三:一定点,两条定直线如图,在∠OAB 内有一点 P ,在 OA 和 OB 各找一个点 M 、N ,使得△PMN 周长最短(题眼)。
将军饮马问题模型的概述:唐朝诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题:将军在观望烽火之后从山脚下的A点出发,走到河边让战马饮水后再到B 点宿营。
问如何行走才能使总的路程最短。
模型一(两点在河的异侧):将军在观望烽火之后从山脚下的A点出发,走到河边让战马饮水后再到B 点宿营,将在何处渡河使行走距离最短并求最短距离。
方法:如右图,连接AB,与线段L交于点M,在M处渡河距离最短,最短距离为线段AB的长。
模型二(两点在河的同侧):将军在观望烽火之后从山脚下的A点出发,需先走到河边让战马饮水后再到B点宿营,将在何处渡河使行走距离最短并求最短距离。
方法:如右图,作点B关于直线L的对称点B',连接AB',与直线L的交点即为所求的渡河点,最短距离为线段AB'的长。
模型三:如图,将军同部队行驶至P处,准备在此驻扎,但有哨兵发现前方为两河AB、BC的交汇处,为防止敌军在对岸埋伏需派侦察兵到河边观察,再返回P处向将军汇报情况,问侦察兵在AB、BC何处侦查才能最快完成任务并求最短距离。
数学描述:如图在直线AB、BC上分别找点M、N,使得∆PMN周长最小。
方法:如右图,分别作点P关于直线AB、BC的对称点P'、P'',连接P'P'',与两直线的交点即为所求点M、N,最短距离为线段P'P''的长。
模型四如图,深夜为防止敌军在对岸埋伏,将军又派一队侦察兵到河边观察,并叮嘱观察之后先去存粮位置点Q处查看再返回P处向将军汇报情况,问侦察在AB、BC何处侦查才能最快完成任务并求最短距离。
数学描述:如图在直线AB、BC上分别找点M、N,使得四边形PQNM周长最小。
方法:如右图,分别作点P、点Q关于直线AB、BC的对称点P'、Q',连接P'Q',与两直线的交点即为所求点M、N,最短距离为线段(PQ+P'Q')的长。
中考专题系列之最值——将军饮马一、什么是将军饮马?【问题引入】“白日登山望烽火,黄昏饮马傍交河”,这是唐代诗人李颀《古从军行》里的一句诗。
而由此却引申出一系列非常有趣的数学问题,通常称为“将军饮马”。
【问题描述】如图,将军在图中点A处,现在他要带马去河边喝水,之后返回军营,问:将军怎么走能使得路程最短?A B将军军营河【问题简化】如图,在直线上找一点P使得P A+PB最小?【问题分析】这个问题的难点在于P A+PB是一段折线段,通过观察图形很难得出结果,关于最小值,我们知道“两点之间,线段最短”、“点到直线的连线中,垂线段最短”等,所以此处,需转化问题,将折线段变为直线段.【问题解决】作点A关于直线的对称点A’,连接P A’,则P A’=P A,所以P A+PB=P A’+PB当A’、P、B三点共线的时候,P A’+PB=A’B,此时为最小值(两点之间线段最短)【思路概述】作端点(点A或点B)关于折点(上图P点)所在直线的对称,化折线段为直线段.二、将军饮马模型系列【一定两动之点点】在OA、OB上分别取点M、N,使得△PMN周长最小.B B此处M、N均为折点,分别作点P关于OA(折点M所在直线)、OB(折点N所在直线)的对称点,化折线段PM+MN+NP为P’M+MN+NP’’,当P’、M、N、P’’共线时,△PMN周长最小.【例题】如图,点P是∠AOB内任意一点,∠AOB=30°,OP=8,点M和点N分别是射线OA和射线OB上的动点,则△PMN周长的最小值为___________.P O B AMN【分析】△PMN周长即PM+PN+MN的最小值,此处M、N均为折点,分别作点P关于OB、OA对称点P’、P’’,化PM+PN+MN为P’N+MN+P’’M.P''A当P’、N、M、P’’共线时,得△PMN周长的最小值,即线段P’P’’长,连接OP’、OP’’,可得△OP’P’’为等边三角形,所以P’P’’=OP’=OP=8.A【两定两动之点点】在OA、OB上分别取点M、N使得四边形PMNQ的周长最小。
将军饮马问题16大模型将军饮马问题源于中国古代的一个寓言故事,讲述的是三位将军跟随他们的军队来到一座河边准备渡河,但只有一条小船,这条小船一次只能搭载两人。
如果将军A和将军B在船上,将军C在岸边,将军C将会受到辱骂,如果将军A和将军C在船上,将军B在岸边,将军B也会受到辱骂,问题是如何让这三位将军都安全地渡河而不受辱骂。
这个问题启发了许多数学家和逻辑学家,有各种不同的解法。
下面将介绍将军饮马问题的16种不同模型。
模型1:最直接的解法最直接的解法是将将军A和将军B一同乘坐小船去对岸,然后将将军A带船返回,将将军C载到对岸。
模型2:穷举法穷举法是一种比较笨拙但可以解决问题的方法,即穷尽所有可能的情况。
这种方法虽然有效,但耗时较长。
模型3:递归法递归法是将问题分解成较小规模的子问题,并逐步解决。
这种方法可以节省时间和精力,但需要较高的逻辑思维能力。
模型4:数学推导法通过数学推导,可以将将军饮马问题转化为数学模型,从而得出解答。
这种方法需要较强的数学功底。
模型5:逻辑推理法逻辑推理法是通过逻辑推理和思维分析,得出解决将军饮马问题的方法。
这种方法强调思维的逻辑性和推理能力。
模型6:图论模型图论是数学的一个分支,可以用来描述将军饮马问题中的交叉关系和路径规划。
通过构建相应的图模型,可以更清晰地解决问题。
模型7:概率模型概率模型是通过概率计算和推测,找出解决将军饮马问题的可能性和概率分布。
这种方法适用于对问题进行全面分析和评估。
模型8:动态规划法动态规划法是针对多阶段决策问题的一种解决方法,可以在问题空间中寻找最优解。
这种方法适用于将军饮马问题的场景。
模型9:模拟法模拟法是通过模拟将军饮马问题的场景,以实验测算的方式找出最佳解决方案。
这种方法可以直观地展示问题的复杂性和解决路径。
模型10:启发式算法启发式算法是通过启发性的思考和优化方法,寻找将军饮马问题的最佳解决方案。
这种方法可以在复杂问题中找到较好的解决途径。
将军饮马模型一、背景知识:【传说】早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“将军饮马”的问题便流传至今.【问题原型】将军饮马造桥选址费马点【涉及知识】两点之间线段最短,垂线段最短;三角形两边三边关系;轴对称;平移;【解题思路】找对称点,实现折转直二、将军饮马问题常见模型1.两定一动型:两定点到一动点的距离和最小例1:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB最小.作法:连接AB,与直线l的交点Q,Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB最小,且最小值等于AB.原理:两点之间线段最短。
证明:连接AB,与直线l的交点Q,P为直线l上任意一点,在⊿PAB中,由三角形三边关系可知:AP+PB≧AB(当且仅当PQ重合时取﹦)例2:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB的和最小.关键:找对称点作法:作定点B关于定直线l的对称点C,连接AC,与直线l的交点Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB和最小,且最小值等于AC.原理:两点之间,线段最短证明:连接AC,与直线l的交点Q,P为直线l上任意一点,在⊿PAC中,由三角形三边关系可知:AP+PC≧AC(当且仅当PQ重合时取﹦)2.两动一定型例3:在∠MON的内部有一点A,在OM上找一点B,在ON上找一点C,使得△BAC周长最短.作法:作点A关于OM的对称点A’,作点A关于ON的对称点A’’?,连接A’A’’,与OM交于点B,与ON交于点C,连接AB,AC,△ABC即为所求.原理:两点之间,线段最短例4:在∠MON的内部有点A和点B,在OM上找一点C,在ON上找一点D,使得四边形ABCD周长最短.作法:作点A关于OM的对称点A’,作点B关于ON的对称点B’?,连接A’B’,与OM交于点C,与ON交于点D,连接AC,BD,AB,四边形ABCD即为所求.原理:两点之间,线段最短3.两定两动型最值例5:已知A、B是两个定点,在定直线l上找两个动点M与N,且MN长度等于定长d(动点M位于动点N 左侧),使AM+MN+NB的值最小.提示:存在定长的动点问题一定要考虑平移作法一:将点A向右平移长度d得到点A’,作A’关于直线l的对称点A’’,连接A’’B,交直线l于点N,将点N向左平移长度d,得到点M。
将军饮马问题,掌握这⼗个数学模型就够了“将军饮马”问题是初中数学中⾮常重要的数学知识和⼏何模型,也是求线段最值问题的最常⽤数学模型。
将军饮马问题是⼀个有故事的数学问题,故事⼤意如下:唐朝诗⼈李颀的诗《古从军⾏》开头两句说:'⽩⽇登⼭望烽⽕,黄昏饮马傍交河。
'诗中隐含着⼀个有趣的数学问题。
传说亚历⼭⼤城有⼀位精通数学和物理的学者,名叫海伦,⼀天,⼀位罗马将军专程去拜访他,向他请教⼀个百思不得其解的问题。
将军每天从军营A出发,先到河边饮(yìn)马,然后再去河岸同侧的B地开会,应该怎样⾛才能使路程最短?从此,这个被称为'将军饮马'的问题⼴泛流传。
将军饮马问题的最基础模型探究:这个问题的解决并不难,据说海伦略加思索就解决了它。
抽象为数学模型:直线l同侧有两个定点A、B,请在直线l上找⼀点C,使AC+BC最⼩。
假设点A、B在直线l的异侧就好了,这样我们就可以利⽤【点到点最值模型:两点之间线段最短】找到点C的位置了。
即连接AB交直线l于点C。
因此,我们可以找点A关于直线l的对称点,连接A’B交直线l于点C,点C即为所求!如果将军在河边的另外任⼀点C'饮马,所⾛的路程就是AC'+C'B,但是AC'+C'B=A'C'+C'B>A'B=A'C+CB=AC+CB.故在点C处饮马,路程最短。
要点概述:1.初中数学线段最值问题可以总结为三类,点与点、点与线和线与线之间的最值,⼀般需要⽤到以下知识点:2.将军饮马问题的核⼼思想,它的核⼼思想是“化折为直”,“化折为直”是初中数学最重要的⼀个解题思想,将军饮马,费马点,胡不归,阿⽒圆等最值问题,都⽤到“折化直”的数学转换思想。
化折为直的⽅法有轴对称,平移,构造⼦母相似三⾓形,三⾓函数转换等等,将军饮马问题⼤都采⽤的是轴对称来实现“折化直”的⽬标。
将军饮马模型最值问题【模型引入】什么是将军饮马?“白日登山望烽火,黄昏饮马傍交河”,这是唐代诗人李颀《古从军行》里的一句诗。
而由此却引申出一系列非常有趣的数学问题,通常称为“将军饮马”。
【模型描述】如图,将军在图中点A处,现在他要带马去河边喝水,之后返回军营,问:将军怎么走能使得路程最短?【模型抽象】如图,在直线上找一点P使得PA+PB最小?P这个问题的难点在于PA+PB是一段折线段,通过观察图形很难得出结果,关于最小值,我们知道“两点之间,线段最短”、“点到直线的连线中,垂线段最短”等,所以此处,需转化问题,将折线段变为直线段.【模型解析】作点A关于直线的对称点A’,连接PA’,则PA’=PA,所以PA+PB=PA’+PB当A’、P、B三点共线的时候,PA’+PB=A’B,此时为最小值(两点之间线段最短)这类问题的解法主要是通过轴对称,将与定点相关的线段进行变化,将问题转化为定点到定点的距离问题或定点到定直线的距离问题,然后通过两点之间线段最短或点到直线之间垂线段最短,解决此类最值问题。
【模型展示】【模型一】两定一动之点点(两定点一动点,转化成点与点距离最值问题)如图,在直线上找一点P使得PA+PB最小作点A关于直线的对称点A’,连接PA’,则PA’=PA,所以PA+PB=PA’+PB当A’、P、B三点共线的时候,PA’+PB=A’B,此时为最小值(两点之间线段最短)【经典例题】例1、如图,△ABC中,∠ACB=90°,AC=4,BC=6,CD平分∠ACB交AB于点D,点E是AC的中点,点P是CD上一动点,则PA+PE的最小值是为________.例2、如图,在中,,是的两条中线,是上一个动点,则下列线段的长度等于最小值的是( )A .B .C .D .例3、如图,∠AOB 的边OB 与x 轴正半轴重合,点P 是OA 上的一动点,点N (3,0)是OB 上的一定点,点M 是ON 的中点,∠AOB =30°,要使PM +PN 最小,则点P 的坐标为______.例4、如图,在Rt △ABC 中,∠ACB =90°,AC =6.AB =12,AD 平分∠CAB ,点F 是AC 的中点,点E 是AD 上的动点,则CE +EF 的最小值为A .3B .4C .D .例5、如图,在ABC 中AB AC =,4BC =,面积是20,AC 的垂直平分线EF 分别交AC 、AB 边于E 、F 点,若点D 为BC 边的中点,点M 为线段上一动点,则CDM 周长的最小值为( ).A .6B .8C .10D .12()E AFCDB例6、如图,ABC ∆三个顶点的坐标分别为()11A ,,()42B ,,()34C ,.(1)画ABC ∆关于y 轴成轴对称的111A B C ∆,并直接写出顶点1A的坐标. (2)在x 轴上找一点P ,使PAB ∆的周长最小,在x 轴上标明点P ,并直接写出PAB ∆最小周长.【模型二】一定两动之点点(一定点两动点,转化成点与点距离最值问题)在OA 、OB 上分别取点M 、N ,使得△PMN 周长最小.此处M 、N 均为折点,分别作点P 关于OA (折点M 所在直线)、OB (折点N 所在直线)的对称点,化折线段PM +MN +NP 为P ’M +MN +NP ’’,当P ’、M 、N 、P ’’共线时,△PMN 周长最小.【经典例题】例1、如图,点P 是∠AOB 内任意一点,∠AOB =30°,OP =8,点M 和点N 分别是射线OA 和射线OB 上的动点,则△PMN 周长的最小值为___________.BBP OBAMN例2、如图,点P 是∠AOB 内任意一点,∠AOB=30°点M 和点N 分别是射线OA 和射线OB 上的动点,△PMN 周长的最小值是6cm ,则OP 的长是________.例3、如图,在四边形ABCD 中,∠C=50 °,∠B=∠D=90 °,E ,F 分别是BC ,DC 上的点,当 AEF 周长最小时,∠EAF 的度数为( )A .50 °B .60°C .70°D .80°例4、如图,∠AOB =45°,点P 是∠AOB 内的定点且OP =2,若点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是__________.【模型三】一定两动之点线(一定点两动点,转化成点与直线距离最值问题) 在OA 、OB 上分别取M 、N 使得PM +MN 最小。