初中数学解题模型专题讲解10---“将军饮马”模型详解与拓展
- 格式:pdf
- 大小:199.69 KB
- 文档页数:5
将军饮马模型“将军饮马”问题主要利用构造对称图形解决求两条线段和差、三角形周长、四边形周长等一类最值问题,会与直线、角、三角形、四边形、圆、抛物线等图形结合,在近年的中考和竞赛中经常出现,而且大多以压轴题的形式出现. 模型1:直线与两定点模型作法结论lB A当两定点A 、B 在直线l 异侧时,在直线l 上找一点P ,使P A +PB 最小.lPAB连接AB 交直线l 于点P ,点P即为所求作的点.P A +PB 的最小值为ABl AB当两定点A 、B 在直线l 同侧时,在直线l 上找一点P ,使得P A +PB 最小.lPB'AB作点B 关于直线l 的对称点B ', 连接AB '交直线l 于点P ,点P 即为所求作的点.P A +PB 的最小值为AB 'l AB当两定点A 、B 在直线l 同侧时,在直线l 上找一点P ,使得PA PB -最大.lPAB连接AB 并延长交直线l 于点P ,点P 即为所求作的点.PA PB -的最大值为ABlAB当两定点A 、B 在直线l 异侧时,在直线l 上找一点P ,使得PA PB -最大.l B'AB P作点B 关于直线I 的对称点B ',连接AB '并延长交直线l 于点P ,点P 即为所求作的点.PA PB -的最大值为AB 'l AB当两定点A 、B 在直线l 同侧时,在直线l 上找一点P ,使得PA PB -最小.l PAB连接AB ,作AB 的垂直平分线交直线l 于点P ,点P 即为所求作的点.PA PB -的最小值为0模型实例例1:如图,正方形ABCD 的面积是12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,则PD +PE 最小值是 .EBC ADP解答:如图所示,∵点B 与点D 关于AC 对称,∴当点P 为BE 与AC 的交点时,PD +PE 最小,且线段BE 的长. ∵正方形ABCD 的面积为12,∴其边长为23∵△ABE 为等边三角形,∴BE =AB =23PD +PE 的最小值为3例2:如图,已知△ABC 为等腰直角三角形,AC =BC =4,∠BCD =15°,P 为CD 上的动点,则PA PB -的最大值是多少?DPPA'B解答:如图所示,作点A 关于CD 的对称点A ′,连接A ′C ,连接A ′B 并延长交CD 于点P ,则点P 就是PA PB -的值最大时的点,PA PB -=A ′B .∵△ABC 为等腰直角三角形,AC =BC 等于4,∴∠ACB =90°. ∵∠BCD =15°,∴∠ACD =75°.∵点A 、A ′关于CD 对称,∴AA ′⊥CD ,AC =CA ′, ∵∠ACD =∠DCA ′=75°,∴∠BCA ′=60°.∵CA ′=AC =BC =4,∴△A ′BC 是等边三角形,∴A ′B =BC =4.∴PA PB -的最大值为4. 练习1.如图,在△ABC 中,AC =BC =2,∠ACB =90°,D 是BC 边的中点,E 是AB 边上一动点,则EC +ED 的最小值是 .DACB E解:解:过点C 作CO ⊥AB 于O ,延长CO 到C ',使O C '=OC ,连接D C ',交AB 于E ,连接C 'B ,此时DE+CE=DE+E C '=D C '的值最小.连接B C ',由对称性可知∠C 'BE=∠CBE=45°,∴∠CB C '=90°,∴B C '⊥BC , ∠BC C '=∠B C 'C=45°,∴BC=B C '=2,∵D 是BC 边的中点,∴BD=1, 根据勾股定理可得:D C '=5,故EC+ED 的最小值是5. 2.如图,点C 的坐标为(3,y ),当△ABC 的周长最短时,求y 的值.xyB (2,0)A (0,3)O解:解:(1)作A 关于x=3的对称点A′,连接A′B 交直线x=3与点C . ∵点A 与点A′关于x=3对称,∴AC=A′C .∴AC+BC=A′C+BC .当点B 、C 、A′在同一条直线上时,A′C+BC 有最小值,即△ABC 的周长有最小值. ∵点A 与点A′关于x=3对称,∴点A′的坐标为(6,3).设直线BA′的解析式y=kx+b,将点B和点A′的坐标代入得:k=34,b=−32.∴y=34x-32.将x=3代入函数的解析式,∴y的值为3 43.如图,正方形ABCD中,AB=7,M是DC上的一点,且DM=3,N是AC上的一动点,求|DN-MN|的最小值与最大值.C解:解:当ND=NM时,即N点DM的垂直平分线与AC的交点,|DN-MN|=0,因为|DN-MN|≤DM,当点N运动到C点时取等号,此时|DN-MN|=DM=3,所以|DN-MN|的最小值为0,最大值为3于D ,点C 、点D 即为所求.PB OAQ点P 、Q 在∠AOB 内部,在OB 边上找点D ,OA 边上找点C ,使得四边形PQDC 周长最小.分别作点P 、Q 关于OA 、OB 的对称点P ′、Q ′,连接P ′Q ′,分别交OA 、OB 于点C 、D ,点C 、D 即为所求.PC +CD +DQ 的最小值为P ′Q ′,所以四边形PQDC 周长的最小值为PQ +P ′Q ′模型实例如图,∠AOB=30°,∠AOB 内有一定点P ,且10OP =.在OA 上有一点Q ,OB 上 一点R .若立△PQR 周长最小,则最小周长是多少?解答如图,作点P 分别关于OA 、OB 的对称点E 、F ,连接EF ,分别交OA 、OB 于点Q 、R ,连接OE 、OF 、PE 、PF .EQ OP =,FR RP =.△PQR 的周长的最小值为EF 的长.由对称性可得∠EOQ=∠POQ ,∠FOR=∠POR , ∠EOF=2∠AOB=60°. △EOF 是正三角形.10EF OE OP ===.即△PQR 周长最小值为10.模型2/角与定点1.已知,40MON °?,P 为MON Ð内一定点,A 为OM 上的点,B 为ON 上的点,当△PAB 的周长取最小值时:OBAP(1)找到A 、B 点,保留作图痕迹;(2)求此时APB Ð等于多少度.如果∠MON =θ,∠APB 又等于多少度?ON1.解答(1)做点P 分别关于OM ON 、的对称点E F 、,连接EF 分别交OM ON 、于点A B 、.点A B 、即为所求,此时△PAB 的周长最小.(2)∵点E 与点P 关于直线OM 对称,点F 与点P 关于ON 对称, ∴∠E =∠APE ,∠F =∠BPF ,∠CPD =180°-∠MON =140°. ∴在△EFP 中,∠E +∠F =180°-140°=40°, ∴∠CPA +∠BPD =40°.∴∠APB =100°.如果∠MON =θ, ∴∠CPD =180°-θ,∠E +∠F =θ. 又∵∠PAB =2∠E ,∠PBA =2∠F ∴∠PAB +∠PBA =2(∠E +∠F )=2θ ∴∠APB =180°-2θ.ONE2.如图,四边形中ABCD ,110BAD °?,90B D °??,在BC 、CD 上分别找 一点M 、N ,使△AMN 周长最小,并求此时+AMN ANM ∠∠的度数.A DBMN2.解答如图,作点A关于BC的对称点A',关于CD的对称点A'',连接A A'''与BC、CD的交点即为所求的点M、N.此时△AMN周长最小.∵∠BAD=110°,∴∠A'+∠A''=180°-110°=70°.由轴对称的性质得:∠A'=∠A AM',∠A''=∠A AN'',∴∠AMN+∠ANM=2(∠A'+∠A'')=2×70°=140°.3.如图,在x轴上找一点C,在y轴上找一点D,使AD CD BC++最小,并求直线CD的解析式及点C、D的坐标.yxOB(3,1)A(1,3)3.解答作点A关于y轴的对称点A',点B关于x轴的对称点B',连接A B''分别交x轴、y轴于点C、D,此时AD CD BC++最小.由对称性可知A'(-1,3),B'(3,-1).易求得直线A B''的解析式为2y x=-+,即直线CD的解析式2y x=-+.当0y=时,2x=,∴点C坐标为(2,0).当0x=时,2y=,∴点D坐标为(0,2).xy (1,3)(3,1)OB 'BA 'AD C4.如图,20MON°?,A 、B 占分别为射线OM 、ON 上两定点,且2OA =,4OB =,点P 、Q 分别为射线OM 、ON 上两动点,当P 、Q 运动时,线段AQ PQ PB ++ 的最小值是多少?ONMAB4.解答作A 点关于ON 的对称点A ',点B 关于OM 的对称点B ',连接A B '',分别交OM ON 、于点P Q 、,连接OA '、OB '.则AQ PQ PB A Q PQ PB A B ''''++=++=,此时AQ PQ PB ++最小. 由对称可知,PB PB '=,AQ A Q '=,2OA OA '==,4OB OB '==,20MOB NOA MON ''∠=∠=∠=︒. 60A OB ''∠=︒.作A D '⊥OB '于点D , 在Rt △ODA '中,∴1OD =,3A D '= ∴413B D '=-=,23A B ''= ∴AQ PQ PB ++的最小值是23.模型作法结论如图,在直线l上找M、N两点(M在左),使得AM+MN+NB最小,且MN=d.将A向右平移d个单位到A′,作A′关于l的对称点A",连接A"B与直线l交于点N,将点N向左平移d个单位即为M,点M,N即为所求.AM+MN+NB的最小值为A"B+d如图,l1∥l2,l1、l2间距离为d,在l1、l2分别找M、N两点,使得MN⊥l1,且AM+MN+NB最小.将A向下平移d个单位到A,连接A′B交直线l2于点N,过点N作MN⊥l1,连接AM.点M、N即为所求.AM+MN+NB的最小值为A'B+d.例题:在平面直角坐标系中,矩形OABC如图所示,点A在x轴正半轴上,点C在y轴正半轴上,且OA=6,OC=4,D为OC中点,点E、F在线段OA上,点E在点F左侧,EF=2.当四边形BDEF的周长最小时,求点E的坐标.解答:如图,将点D向右平移2个单位得到D'(2,2),作D'关于x轴的对称点D"(2,-2),连接BD"交x轴于点F,将点F向左平移2个单位到点E,此时点E和点F为所求作的点,且四边形BDEF周长最小.理由:∵四边形BDEF的周长为BD+DE+EF+BF,BD与EF是定值.∴BF+DE最小时,四边形BDEF周长最小,∵BF+ED=BF+FD'=BF+FD"=BD"ABl2l1A′NMABl2l1BAlM NA′A"BAld设直线BD "的解析式为y =kx +b ,把B (6,4),D "(2,-2)代入,得6k +b =4,2k +b =-2,解得k =32,b =-5,∴直线BD "的解析式为y =32x -5.令y =0,得x =103,∴点F 坐标为(103,0).∴点E 坐标为(43,0).练习1.在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,A (3,0),B (0,4),D 为边OB 的中点. (1)若E 为边OA 上的一个动点,求△CDE 的周长最小值;(2)若E 、F 为边OA 上的两个动点,且EF =1,当四边形CDEF 的周长最小时,求点E 、F 的坐标.解答:(1)如图,作点D 关于x 轴的对称点D ',连接CD '与x 轴交于点E ,连接DE ,由模型可知△CDE 的周长最小.∵在矩形OACB 中,OA =3,OB =4,D 为OB 的中点, ∴D (0,2),C (3,4),D '(0,-2).设直线CD '为y =kx +b ,把C (3,4),D '(0,-2)代入, 得3k +b =4,b =-2,解得k =2,b =-2, ∴直线CD '为y =2x -2. 令y =0,得x =1, ∴点E 的坐标为(1,0). ∴OE =1,AE =2.利用勾股定理得CD =13,DE =5,CE =25, ∴△CDE 周长的最小值为13+35.(2)如图,将点D 向右平移1个单位得到D '(1,2),作D '关于x 轴的对称点D ″(1,-2),连接CD ″交x 轴于点F ,将点F 向左平移1个单位到点E ,此时点E 和点F 为所求作的点,且四边形CDEF 周长最小.理由:∵四边形CDEF 的周长为CD +DE +EF +CF ,CD 与EF 是定值,∴DE +CF 最小时,四边形BDEF 周长最小,∴DE +CF =D 'F +CF =FD ″+CF =CD ″, 设直线CD ″的解析式为y =kx +b ,把C (3,4),D (1,-2)代入,得3k +b =4,k +b =-2,解得k =3,b =-5.∴直线CD ″的解析式为y =3x -5, 令y =0,得x =53,∴点F 坐标为(53,0),∴点E 坐标为(23,0).112.村庄A 和村庄B 位于一条小河的两侧,若河岸彼此平行,要架设一座与河岸垂直的桥,桥址应如何选择,才使A 与B 之间的距离最短?解答:设l 1和l 2为河岸,作BD ⊥l 2,取BB '等于河宽,连接AB '交l 1于C 1,作C 1C 2⊥l 2于C 2, 则A →C 1→C 2→B 为最短路线,即A 与B 之间的距离最短.AB l 2l 1。
最值问题之将军饮马问题最值问题是老师们最爱考的热门题型之一,综合性较强,需要一定的基本功,一般考察时一般放在压轴位置。
模型讲解【基本模型】问题:在直线l上找一点P,使得P A+PB的值最小解析:连接AB,与直线l交点即为点P(两点之间线段最短)【拓展模型1】问题:在直线/上找一点P,使得P A+PB的值最小解析:点A作关于l的对称点A',连接BA',与直线l的交点即为点P,此时P A+PB的最小值即为线段BA′的长度.【练习】1、尺规作图:在直线MN上找一点P,使得∠APN=∠BPN.(保留作图痕迹)【模型拓展2】1、如图,已知点P为定点,定长线段AB在直线MN上运动,在什么位置时,P A=PB最小?思维转化:将线段AB移动,点P不动,理解为线段AB不动,点P在直线CD上移动,将模型转化为最基本模型【模型拓展3】问题:∠MON内一定点A,点P、Q分别为OM、ON上的动点,求△APQ周长的最小值.解析:点A作关于ON和OM的对称点A1、A2,,连接A1A2,与ON、OM交点即为Q、P,线段A1A2的长度即为△APQ周长的最小值.基本结论:①△A1OA2必为等腰三角形,且腰长等于线段OA的长.②∠A1OA2=2∠MON.四边形ABPQ周长最小的模型,最小值即为线段AB+A'B'的长度和.【模型拓展4】问题:求AB+BC+CD的最小值问题解析:作点A关于ON的对称点A',点D关于OM的对称点D′,连接A'D′,最小值即为线段A'D'的长度.(作点A和点D的对称点的过程中,也可以直接将OM、ON整个对称过去,使得图形更加完整)【模型拓展5】MN垂直两平行线,求AM+MN+NB的最小值模型.其中MN 为定值,故只需求AM +NB 的最小值,将点A 向下平移MN 的长度得到A ′,连接A ′B ,线段A ′B 的长度即为AM +NB 的最小值直线l 上有一长度不变线段MN 移动,求AM +MN +NB 最小值的模型.将A 点向右平移MN 的长度,以此转化为基本模型,最小值即为MN +A 2B【例题讲解】例题1、如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上,顶点B 的坐标为(3,点C 的坐标为(12,0),点P 为斜边OB 上的一动点,则P A +PC 的最小值为 .解:作A 关于OB 的对称点D ,连接CD 交OB 于P ,连接AP ,过D 作DN ⊥OA 于N ,则此时P A +PC 的值最小,∵DP =P A ,∴P A +PC =PD +PC =CD ,∵B (3,∴AB OA =3,∵tan ∠AOB =AB OA AOB =30°,∴OB =2AB = 由三角形面积公式得:12×OA ×AB =12×OB ×AM ,∴AM =32,∴AD =2×32=3,∵∠AMB =90°,∠B =60°,∴∠BAM =30°,∵∠BAO =90°,∴∠OAM =60°,∵DN ⊥OA ,∴∠NDA =30°,∴AN =12AD =32,由勾股定理得:DN ,∵C (12,0),∴CN =3﹣12﹣32=1,在Rt △DNC 中,由勾股定理得:DC ,即P A+PC.【思考】若把题中条件点“C的坐标为(12,0)”改为“点C为OA边上一动点”,其它条件不变,那么此时P A+PC最小值又是多少呢?解答:∵P A+PC=PC+PD=CD≥DN,∴P A+PC.例题2、某长方体的长、宽、高分别为4、3、5,(1)如图1,点A、B分别为该长方体的两个顶点,已知蚂蚁从点A沿长方体侧面爬到点B,则最短路线长是多少?(2)如图2,点A、C分别为该长方体的两个顶点,如果用一根细线从点A开始经过4个侧面缠绕一圈到达点C,那么所用细线最短长度是.(3)如图2,点A、C分别为该长方体的两个顶点,如果用一根细线从点A开始经过4个侧面缠绕三圈到达点C,那么所用细线最短长度是.(4)如图3,已知圆柱高4米,底面周长1米.如果用花圈从上往下均匀缠绕圆柱3圈(如图),那么螺旋形花圈的长至少米.答案:例题3、如图,在五边形ABCDE中,∠BAE=120°,∠B=∠E=90°,AB=BC=1,AE=DE=2,在BC、DE上分别找一点M、N.(1)当△AMN的周长最小时,∠AMN+∠ANM=;(2)求△AMN的周长最小值.解:作A 关于BC 和ED 的对称点A ′,A ″,连接A ′A ″,交BC 于M ,交ED 于N ,则A ′A ″即为△AMN 的周长最小值.⑴作EA 延长线的垂线,垂足为H ,∠BAE =120°,∴∠AA ′A ″+∠AA ″A ′=60°,∠AA ′A ″=∠A ′AM ,∠AA ″A ′=∠EAN ,∴∠CAN =120°-∠AA ′A ″-∠AA ″A ′=60°,也就是说∠AMN +∠ANM =180°-60°=120°.⑵过点A ′作EA 延长线的垂线,垂足为H ,∵AB =BC =1,AE =DE =2,∴AA ′=2BA =2,AA ″=2AE =4,则Rt △A ′HA 中,∵∠EAB =120°,∴∠HAA ′=60°,∵A ′H ⊥HA ,∴∠AA ″H =30°,∴AH =12AA ′=1,∴A ′H ,A ″H =1+4=5,∴A ′A ″=例题4、如图,正方形ABCD 的边长为4,点E 在边BC 上且CE =1MN 在AC 上运动.(1)求四边形BMNE 周长最小值;(2)当四边形BMNE 的周长最小时,则tan ∠MBC 的值为 .解:作EF ∥AC 且EF DF 交AC 于M ,在AC 上截取MN DF 交BC 于P ,作FQ ⊥BC 于Q ,作出点E 关于AC 的对称点E ′,则CE ′=CE =1,将MN 平移至E ′F ′处,则四边形MNE ′F ′为平行四边形,当BM +EN =BM +FM =BF ′时,四边形BMNE 的周长最小,由∠FEQ =∠ACB =45°,可求得FQ =EQ =1,∵∠DPC =∠FPQ ,∠DCP =∠FQP ,∴△PFQ ∽△PDC , ∴PQ PQ QE EC ++=PQ CD ,∴2PQ PQ +=14,解得:PQ =23,∴PC =83,由对称性可求得tan∠MBC=tan∠PDC=23.例题5、在平面直角坐标系中,已知点A(一2,0),点B(0,4),点E在OB上,且∠OAE=∠OB A.如图,将△AEO沿x轴向右平移得到△AE′O′,连接A'B、BE'.当AB+BE'取得最小值时,求点E'的坐标.【提示】将△AEO向右平移转化为△AEO不动,点B向左平移,则点B移动的轨迹为一平行于x轴的直线,所以作点E关于该直线的对称点E1,连接AE1,与该直线交点F即为最小时点B的位置,求出BF长度即可求出点E向右平移的距离.例题6、如图,已知正比例函数y=kx(k>0)的图像与x轴相交所成的锐角为70°,定点A的坐标为(0,4),P为y轴上的一个动点,M、N为函数y=kx(k>0)的图像上的两个动点,则AM+MP+PN的最小值为.解:如图所示,直线OC 、y 轴关于直线y =kx 对称,直线OD 、直线y =kx 关于y 轴对称,点A ′是点A 关于直线y =kx 的对称点.作A ′E ⊥OD 垂足为E ,交y 轴于点P ,交直线y =kx 于M ,作PN ⊥直线y =kx 垂足为N ,∵PN =PE ,AM =A ′M ,∴AM +PM +PN =A ′M +PM +PE =A ′E 最小(垂线段最短),在RT △A ′EO 中,∵∠A ′EO =90°,OA ′=4,∠A ′OE =3∠AOM =60°,∴OE =12OA ′=2,A ′E .∴AM +MP +PN 的最小值为【巩固练习】1、如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 的和最小,则这个最小值为 .2、在菱形ABCD 中,对角线AC =6,BD =8,点E 、F 、P 分别是边AB 、BC 、AC 上的动点,PE +PF 的最小值是 .3、如图,在边长为2的等边△ABC 中,D 为BC 的中点,E 是AC 边上一点,则BE +DE 的最小值为 .4、如图,钝角三角形ABC 的面积为9,最长边AB =6,BD 平分∠ABC ,点M 、N 分别是BD 、BC 上的动点,则CM +MN 的最小值为 .5、如图,在△ABC 中,AM 平分∠BAC ,点D 、E 分别为AM 、AB 上的动点,(1)若AC =4,S △ABC =6,则BD +DE 的最小值为(2)若∠BAC =30°,AB =8,则BD +DE 的最小值为 .(3)若AB =17,BC =10,CA =21,则BD +DE 的最小值为 .AB C DEM6、如图,在△ABC 中,AB =BC =4,S △ABC =,点P 、Q 、K 分别为线段AB 、BC 、AC 上任意一点,则PK +QK 的最小值为 .7、如图,AB 是⊙O 的直径,AB =8,点M 在⊙O 上,∠MAB =20°,N 是弧MB 的中点,P 是直径AB 上的一动点,则PM +PN 的最小值为 .B8、如图,在锐角△ABC 中,AB =4,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM +MN 的最小值是.9、如图,圆柱形玻璃杯高为12cm 、底面周长为18cm ,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为cm .10、如图,菱形OABC中,点A在x轴上,顶点C的坐标为(1,动点D、E分别在射线OC、OB上,则CE+DE+DB的最小值是.11、如图,点A(a,1)、B(-1,b)都在双曲线y=-3x(x<0)上,点P、Q分别是x轴、y轴上的动点,当四边形P ABQ的周长取最小值时,PQ所在直线的解析式是.12、如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是.13、如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是.14、如图,在Rt△ABC中,∠ACB=90°,点D是AB边的中点,过D作DE⊥BC于点E.(1)点P是边BC上的一个动点,在线段BC上找一点P,使得AP+PD最小,在下图中画出点P;(2)在(1)的条件下,连接CD交AP于点Q,求AQ与PQ的数量关系;AC E D15、在矩形ABCD 中,AB =6,BC =8,G 为边AD 的中点.(1)如图1,若E 为AB 上的一个动点,当△CGE 的周长最小时,求AE 的长.(2)如图2,若E 、F 为边AB 上的两个动点,且EF =4,当四边形CGEF 的周长最小时,求AF 的长.16、图1,图2为同一长方体房间的示意图,图2为该长方体的表面展开图.(1)蜘蛛在顶点A ′处,①苍蝇在顶点B 处时,试在图1中画出蜘蛛为捉住苍蝇,沿墙面爬行的最近路线;②苍蝇在顶点C 处时,图2中画出了蜘蛛捉住苍蝇的两条路线,往天花板ABCD 爬行的最近路线A 'GC 和往墙面BB 'C 'C 爬行的最近路线A 'HC ,试通过计算判断哪条路线更近?(2)在图3中,半径为10dm 的OM 与D 'C '相切,圆心M 到边CC ′的距离为15dm ,蜘蛛P 在线段AB 上,苍蝇Q 在OM 的圆周上,线段PQ 为蜘蛛爬行路线.若PQ 与OM 相切,试求PQ 的长度的范围.17.如图,抛物线21242y x x =-++交y 轴于点B ,点A 为x 轴上的一点,OA =2,过点A 作直线MN ⊥AB 交抛物线与M 、N 两点.(1)求直线AB 的解析式;(2)将线段AB 沿y 轴负方向平移t 个单位长度,得到线段11A B ,求11MA MB +取最小值时实数t 的值.参考答案1.解:连接BD,∵点B与D关于AC对称,∴PD=PB,∴PD+PE=PB+PE=BE最小.∵正方形ABCD的面积为12,∴AB=又∵△ABE是等边三角形,∴BE=AB=.2.解:∵四边形ABCD是菱形,对角线AC=6,BD=8,∴AB=5,作E关于AC的对称点E′,作E′F⊥BC于F交AC于P,连接PE,则E′F即为PE+PF的最小值,∵12⋅AC⋅BD=AD⋅E′F,∴E′F=245,∴PE+PF的最小值为245.3.解:作B关于AC的对称点B′,连接BB′、B′D,交AC于E,此时BE+ED=B′E+ED=B′D,根据两点之间线段最短可知B′D就是BE+ED的最小值,∵B、B′关于AC的对称,∴AC、BB′互相垂直平分,∴四边形ABCB′是平行四边形,∵三角形ABC是边长为2,D为BC的中点,∴AD⊥BC,AD BD=CD=1,BB′=2AD=,作B′G⊥BC的延长线于G,∴B′G=AD,在Rt△B′BG中,BG=3,∴DG=BG﹣BD=3﹣1=2,在Rt△B′DG中,B′D故BE +ED4.解:过点C 作CE ⊥AB 于点E ,交BD 于点M ,过点M 作MN ⊥BC 于N ,∵BD 平分∠ABC ,ME ⊥AB 于点E ,MN ⊥BC 于N ,∴MN =ME ,∴CE =CM +ME =CM +MN 是最小值.∵三角形ABC 的面积为9,AB =6,∴12×6 CE =9,∴CE =3.即CM +MN 的最小值为3.5.H E'A C DEM提示:作点E 关于AM 的对称点E ′,BH ⊥AC 于H ,易知BD +DE 的最小值即为BH 的长.答案:(1)3;(2)4;(3)8.6.解:如图,过A 作AH ⊥BC 交CB 的延长线于H ,∵AB =CB =4,S △ABC =AH =∴cos ∠HAB =AH ABHAB =30°,∴∠ABH =60°,∴∠ABC =120°, ∵∠BAC =∠C =30°,作点P 关于直线AC 的对称点P ′,过P ′作P ′Q ⊥BC 于Q 交AC 于K ,则P′Q的长度=PK+QK的最小值,∴∠P′AK=∠BAC=30°,∴∠HAP′=90°,∴∠H=∠HAP′=∠P′QH=90°,∴四边形AP′QH是矩形,∴P′Q=AH=即PK+QK的最小值为7.解:作点N关于AB的对称点N′,连接OM、ON、ON′、MN′,则MN′与AB的交点即为PM+PN的最小时的点,PM+PN的最小值=MN′,∵∠MAB=20°,∴∠MOB=2∠MAB=2×20°=40°,∵N是弧MB的中点,∴∠BON=12∠MOB=12×40°=20°,由对称性,∠N′OB=∠BON=20°,∴∠MON′=∠MOB+∠N′OB=40°+20°=60°,∴△MON′是等边三角形,∴MN′=OM=OB=12AB=182⨯=4,∴PM+PN的最小值为4,8.解:如图,作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值.∵AD是∠BAC的平分线,∴M′H=M′N′,∴BH是点B到直线AC的最短距离,∵AB=4,∠BAC=45°,∴BH=AB⋅sin45°=4=∵BM+MN的最小值是BM′+M′N′=BM′+M′H=BH=9.解:沿过A 的圆柱的高剪开,得出矩形EFGH ,过C 作CQ ⊥EF 于Q ,作A 关于EH 的对称点A ′,连接A ′C 交EH 于P ,连接AP ,则AP +PC 就是蚂蚁到达蜂蜜的最短距离,∵AE =A ′E ,A ′P =AP ,∴AP +PC =A ′P +PC =A ′C ,∵CQ =12×18cm =9cm ,A ′Q =12cm ﹣4cm +4cm =12cm ,在Rt △A ′QC 中,由勾股定理得:A ′C =15cm ,故答案为:15.10.解:连接AC ,作B 关于直线OC 的对称点E ′,连接AE ′,交OC 于D ,交OB 于E ,此时CE +DE +BD 的值最小,∵四边形OCBA 是菱形,∴AC ⊥OB ,AO =OC ,即A 和C 关于OB 对称,∴CE =AE ,∴DE +CE =DE +AE =AD ,∵B 和E ′关于OC 对称,∴DE ′=DB ,∴CE +DE +DB =AD +DE ′=AE ′,过C 作CN ⊥OA 于N ,∵C (1),∴ON =1,CN由勾股定理得:OC =2,即AB =BC =OA =OC =2,∴∠CON =60°,∴∠CBA =∠COA =60°, ∵四边形COAB 是菱形,∴BC ∥OA ,∴∠DCB =∠COA =60°,∵B 和E ′关于OC 对称,∴∠BFC =90°,∴∠E ′BC =90°﹣60°=30°,∴∠E ′BA =60°+30°=90°,CF =12BC =1,由勾股定理得:BF E ′F ,在Rt △EBA 中,由勾股定理得:AE ′=4,即CE +DE +DB 的最小值是4.11.解:把点A(a,1)、B(﹣1,b)代入y=﹣3x(x<0)得a=﹣3,b=3,则A(﹣3,1)、B (﹣1,3),作A点关于x轴的对称点C,B点关于y轴的对称点D,所以C点为(﹣3,﹣1),D点为(1,3),连结CD分别交x轴、y轴于P点、Q点,此时四边形P ABQ的周长最小,设直线CD的解析式为y=kx+b,则313k bk b-+=-⎧⎨+=⎩,解得12kb=⎧⎨=⎩,所以直线CD的解析式为y=x+2.12.解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为D,关于OB的对称点为C,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB=12∠COD,∵△PMN周长的最小值是5cm,∴PM+PN+MN=5,∴DM+CN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°;13.解:作M关于OB的对称点M′,作N关于OA的对称点N′,连接M ′N ′,即为MP +PQ +QN 的最小值.根据轴对称的定义可知:∠N ′OQ =∠M ′OB =30°,∠ONN ′=60°,∴△ONN ′为等边三角形,△OMM ′为等边三角形,∴∠N ′OM ′=90°,∴在Rt △M ′ON ′中,M ′N ′14.A'AB PC EDQA'A B P C E D解:(1)作点A 关于BC 的对称点A ′,连DA ′交BC 于点P.(2)由(1)可证得PA 垂直平分CD ,∴AQCQ =3PQ15.解:(1)∵E 为AB 上的一个动点,∴作G 关于AB 的对称点M ,连接CM 交AB 于E ,那么E 满足使△CGE 的周长最小; ∵在矩形ABCD 中,AB =6,BC =8,G 为边AD 的中点,∴AG =AM =4,MD =12, 而AE ∥CD ,∴△AEM ∽△DCM ,∴AE :CD =MA :MD ,∴AE =CD MA MD=2; (2)∵E 为AB 上的一个动点,∴如图,作G 关于AB 的对称点M ,在CD 上截取CH =4,然后连接HM 交AB 于E ,接着在EB 上截取EF =4,那么E 、F 两点即可满足使四边形CGEF 的周长最小.∵在矩形ABCD 中,AB =6,BC =8,G 为边AD 的中点,∴AG =AM =4,MD =12,而CH =4,∴DH =2,而AE∥CD,∴△AEM∽△DHM,∴AE:HD=MA:MD,∴AE=HD MAMD⨯=23,∴AF=4+23=143.16.解:(1)①根据“两点之间,线段最短”可知:线段A′B为最近路线,如图1所示.②Ⅰ.将长方体展开,使得长方形ABB′A′和长方形ABCD在同一平面内,如图2①.在Rt△A′B′C中,∠B′=90°,A′B′=40,B′C=60,∴ACⅡ.将长方体展开,使得长方形ABB′A′和长方形BCC′B′在同一平面内,如图2②.在Rt△A′C′C中,∠C′=90°,A′C′=70,C′C=30,∴A′C=ABCD爬行的最近路线A′GC更近;(2)过点M作MH⊥AB于H,连接MQ、MP、MA、MB,如图3.∵半径为10dm的⊙M与D′C′相切,圆心M到边CC′的距离为15dm,BC′=60dm,∴MH=60﹣10=50,HB=15,AH=40﹣15=25,根据勾股定理可得AM,MB∴50≤MP∵⊙M 与PQ 相切于点Q ,∴MQ ⊥PQ ,∠MQP =90°,∴PQ当MP =50时,PQ当MP时,PQ55.∴PQ 长度的范围是≤PQ ≤55dm .17.解:(1)依题意,易得B (0,4),A (2,0),则AB 解析式:42+-=x y(2)∵AB ⊥MN∴直线MN :121-=x y 与抛物线联立可得:⎪⎪⎩⎪⎪⎨⎧-=++-=12142212x y x x y 解得:M (-2,-2)将AB 向负方向平移t 个单位后,A 1(2,-t ),B 1(0,4-t ) 则A 1关于直线x =-2的对称点A 2为(-6,-t )当A 2、M 、B 1三点共线时,11MA MB +取最小值 ∴314=t。
将军饮马五大模型七类题型(模型梳理与题型分类讲解)第一部分【知识点归纳】【理论依据】路径最短、线段和最小、线段差最大、周长最小等一系列最值问题。
【方法原理】1.两点之间,线段最短;2.三角形两边之和大于第三边,两边之差小于第三边;3.中垂线上的点到线段两端点的距离相等;4.垂线段最短.【基本模型】【模型一:两定交点型】如图1,直线l和l的异侧两点A.B,在直线l上求作一点P,使P A+PB最小;图1【模型二:两定一动型】如图2,直线l和l的同侧两点A.B,在直线l上求作一点P,使P A+PB最小(同侧转化为异侧);图2【模型三:一定两动型】如图3,点P是∠MON内的一点,分别在OM,ON上作点A,B。
使△P AB 的周长最小。
图3【模型四:两定两动型】如图4,点P,Q为∠MON内的两点,分别在OM,ON上作点A,B。
使四边形P AQB的周长最小。
图4【模型五:一定两动(垂线段最短)型】如图5,点A是∠MON外的一点,在射线ON上作点P,使P A 与点P到射线OM的距离之和最小。
图5【模型六:一定两动,找(作)对称点转化型】如图6,点A是∠MON内的一点,在射线ON上作点P,使P A与点P到射线OM的距离之和最小。
图6【题型目录】【题型1】两定一动型.......................................................3;【题型2】一定两动(两点之间线段最短)型...................................6;【题型3】一定两动(垂线段最短)型.........................................9;【题型4】两定两动型.......................................................12;【题型5】一定两动(等线段)转化型.........................................14;【题型6】直通中考.........................................................18;【题型7】拓展延伸.........................................................21;第二部分【题型展示与方法点拨】【题型1】两定一动型;1.(23-24八年级上·河北廊坊·期中)如图,在△ABC中,∠BAC=90°,AB=12,AC=16,BC=20,将△ABC沿射线BM折叠,使点A与BC边上的点D重合.(1)线段CD的长是;(2)若点E是射线BM上一动点,则△CDE周长的最小值是.【答案】824【分析】本题主要考查了的折叠的性质、两点之间线段最短,熟练掌握折叠的性质是解此题的关键.(1)由折叠的性质可得BD=AB=12,再由CD=BC-BD进行计算即可得到答案;(2)设BM与AC的交点为点F,连接AE,由折叠的性质可得:DF=AF,DE=AE,∠BDF=∠BAF,再根据两点之间线段最短可得当点E与点F重合时,AE+CE取最小值,最小值为AC,由此即可得到答案.解:(1)由折叠的性质可得:BD=AB=12,∴CD=BC-BD=20-12=8,故答案为:8;(2)如图,设BM与AC的交点为点F,连接AE,由折叠的性质可得:DF=AF,DE=AE,∠BDF=∠BAF,由(1)得:CD=8,∴△CDE的周长=CD+DE+CE=8+AE+CE,要是△CDE的周长最小,只需AE+CE最小,由两点之间线段最短可知,当点E与点F重合时,AE+CE取最小值,最小值为AC,∴△CDE的周长=8+AC=8+16=24,故答案为:24.2.(22-23八年级上·广西南宁·期末)如图,点E在等边△ABC的边BC上,BE=4,射线CD⊥BC,垂足为点C,点P是射线CD上一动点,点F是线段AB上一动点,当EP+FP的值最小时,BF=5,则AB 的长为.【答案】7【分析】本题考查最短路径问题、等边三角形的性质、含30度角的直角三角形的性质,熟练掌握利用轴对称性质求最短距离的方法是解答的关键.作点E 关于射线CD 的对称点E ,过E 作E F ⊥AB 于F ,交射线CD 于P ,连接PE ,此时EP +FP 的值最小,利用等边三角形的性质和三角形的内角和定理求得∠E =90°-∠B =30°,然后利用含30度角的直角三角形的性质求得BE =2BF =10,进而求得CE =3即可求解.解:作点E 关于射线CD 的对称点E ,过E 作E F ⊥AB 于F ,交射线CD 于P ,连接PE ,如图,则E P =EP ,∴EP +FP =E P +FP =E F ,此时EP +FP 的值最小,则BF =5,∵△ABC 是等边三角形,∴∠B =60°,AB =BC ,在Rt △BFE 中,∠E =90°-∠B =30°,∴BE =2BF =10,∵BE =4,CE =CE ,∴2CE +4=10,∴CE =3,∴AB =BC =3+4=7,故答案为:7.3.(23-24八年级下·河南郑州·阶段练习)如图,在△ABC 中,AB =AC .在AB 、AC 上分别截取AP 、AQ ,使AP =AQ .再分别以点P ,Q 为圆心,以大于12PQ 的长为半径作弧,两弧在∠BAC 内交于点R ,作射线AR ,交BC 于点D .已知BC =5,AD =6.若点M 、N 分别是线段AD 和线段AB 上的动点,则BM +MN 的最小值为.【答案】6013【分析】本题考查作图-复杂作图,角平分线的定义,等腰三角形的性质等知识,解题关键是读懂图形信息,灵活运用所学知识解决问题,属于中考常考题型.过点B 作BH ⊥AC 于点H ,交AD 于点M ,根据等腰三角形的性质和勾股定理求出AC ,然后根据S ΔABC =12⋅BC ⋅AD =12⋅AC ⋅BH ,可得BH =6013.作点H 关于解:如图,过点B 作BH ⊥AC 于点H ,交AD 于点M ,由作图可知,AD 平分∠BAC ,∵AB =AC ,∴AD ⊥BC ,∴BD =CD =12BC =52,∵AD =6.∴AC =AD 2+DC 2=62+52 2=132,∵S ΔABC =12⋅BC ⋅AD =12⋅AC ⋅BH ,∴5×6=132BH ,∴BH =6013.∵AB =AC ,AD ⊥BC ,作点H 关于AD 的对称点交AB 于点N ,连接M N ,当M 与M 重合时,此时BM +MN 最小,∴M H =M N ,∴BH =BM +M H =BM +M N ,则BM +MN 的最小值为6013.故答案为:6013【题型2】一定两动(两点之间线段最短)型;4.(23-24七年级下·陕西西安·期末)如图,在锐角△ABC 中,∠ABC =30°,AC =4,△ABC 的面积为5,P 为△ABC 内部一点,分别作点P 关于AB ,BC ,AC 的对称点P 1,P 2,P 3,连接P 1P 2,PP 3,则2P 1P 2+PP 3的最小值为.【答案】5【分析】首先由△ABC 的面积为5,12AC ⋅BM =5,求出BM =52,然后由∠ABC =30°和对称构造正三角形,将P 1P 2转化成BP ,将2P 1P 2+PP 3提取系数2,最终转化成垂线段最短.解:设PP3与AC 交于点Q ,则PQ =12PP 3,连接BP 、BQ 、BP 1、BP 2,作BM ⊥AC ,垂足为M ,AC =4,△ABC 的面积为5,∴12AC ⋅BM =5,即12×4BM =5∴BM =5,根据对称性得BP=BP1=BP2,∠ABP=∠ABP1,∠CBP=∠CBP2,∴∠P1BP2=2∠ABC=60°,∴△P1BP2是正三角形,∴P1P2=BP1=BP,∴2P1P2+PP3=2P1P2+12PP3=2(BP+PQ)≥2BQ≥2BM=5,故答案为:5.【点拨】本题考查了轴对称、正三角形、三角形面积、垂线段最短等知识,解题的关键是将P1P2转化成BP,将2P1P2+PP3提取系数2,最终转化成垂线段最短.形式上易与胡不归混淆.5.(23-24八年级上·北京海淀·期中)如图,已知∠MON=30°,在∠MON的内部有一点P,A为OM上一动点,B为ON上一动点,OP=a,当△P AB的周长最小时,∠APB=度,△P AB的周长的最小值是.【答案】120a【分析】分别作出点P关于OM,ON两条射线的对称点,连接两个对称点的线段与OM,ON的交点即为所确定的点;连接OP,OP ,OP ,由轴对称的性质得:OP=OP =OP =a,∠P OA=∠POA,∠P OB=∠POB,证得△P OP 是等边三角形,即可得到结论.解:①分别作点P关于OM,ON的对称点P ,P ;连接P ,P ,分别交OM,ON于点A、点B,则此时△P AB的周长最小.连接OP,OP ,OP ,由轴对称的性质得:OP=OP =OP =a,∠P OA=∠POA,∠P OB=∠POB,∵∠MON=30°,∴∠P OP =2∠MON=60°,∴△P OP 是等边三角形,∴P P =OP=a,∠AP O=∠APO,∠BP O=∠BPO,∴∠APB=∠AP O+∠BP O=120°,∴△P AB的周长=P P =a,故答案为:120,a.【点拨】此题主要考查了轴对称-最短路径问题,解决本题的关键是理解要求周长最小问题可归结为求线段最短问题,通常是作已知点关于所求点所在直线的对称点.6.(22-23八年级上·新疆乌鲁木齐·期末)如图,已知∠AOB的大小为α,P是∠AOB内部的一个定点,且OP=5,点E、F分别是OA、OB上的动点,若△PEF周长的最小值等于5,则α=()A.30°B.45°C.60°D.90°【答案】A【分析】设点P关于OA的对称点为C,关于OB的对称点为D,当点E、F在CD上时,△PEF的周长为PE+ EF+FP=CD,此时周长最小,根据CD=5可求出α的度数.解:如图,作点P关于OA的对称点C,关于OB的对称点D,连接CD,交OA于E,OB于F.此时,△PEF 的周长最小.连接OC,OD,PE,PF.∵点P与点C关于OA对称,∴OA垂直平分PC,∴∠COA=∠AOP,PE=CE,OC=OP,同理,可得∠DOB=∠BOP,PF=DF,OD=OP.∴∠COA+∠DOB=∠AOP+∠BOP=∠AOB=α,OC=OD=OP=5,∴∠COD=2α.又∵△PEF的周长为:PE+EF+FP=CE+EF+FD=CD=5,∴OC=OD=CD=5,∴△COD是等边三角形,∴2α=60°,∴α=30°.故选:A.【点拨】此题主要考查了最短路径问题,本题找到点E和F的位置是解题的关键.要使△PEF的周长最小,通常是把三边的和转化为一条线段,运用三角形三边关系解决.【题型3】一定两动型(垂线段最短);7.(2024八年级上·全国·专题练习)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,AD是∠BAC的平分线,若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()A.2.4B.3C.4D.5【答案】A【分析】本题考查了轴对称最短路径问题,角平分线定义,勾股定理,作点Q关于AD的对称点Q ,连接PQ ,股定理求出AB 的长,再利用三角形面积求出CH 的长即可得到结果.解:如图,作点Q 关于AD 的对称点Q ,连接PQ ,CQ ,过点C 作CH ⊥AB 于点H ,∵AD 是△ABC 的角平分线,Q 与Q 关于AD 对称,∴点Q 在AB 上,PC +PQ =PC +PQ ≥CH ,∵AC =3,BC =4,∴AB =AC 2+BC 2=5,12⋅AC ⋅BC =12⋅AB ⋅CH 即12×3×4=12×5×CH ,∴CH =2.4,∴CP +PQ ≥2.4,∴PC +PQ 的最小值为2.4,故选:A .8.(23-24七年级下·广东深圳·期末)如图,在等腰三角形ABC 中,AB =AC ,AD ⊥BC ,点D 为垂足,E 、F 分别是AD 、AB 上的动点.若AB =6,△ABC 的面积为12,则BE +EF 的最小值是()A.2B.4C.6D.8【答案】B 【分析】本题考查等腰三角形的性质,轴对称-最短路线问题,垂线段最短.解此题的关键是正确作出辅助线.作点F 关于AD 的对称点M ,连接BM 、EM ,过点B 作BN ⊥AC 于点N ,从而可确定BE +EF ≥BM ,即BM 最小时,BE +EF 最小.再根据垂线段最短可知BN 的长即为BM 最小时,最后根据三角形面积公式求出BN 的长即可.解:如图,作点F 关于AD 的对称点M ,连接BM 、EM ,过点B 作BN ⊥AC 于点N ,∴EF =EM ,∴BE +EF =BE +EM ≥BM ,∴BM 最小时,BE +EF 最小.当BM ⊥AC 时BM 最小,即为BN 的长,∵S △ABC =12AC ⋅BN =12,AB =AC =6,∴BN =2×12÷6=4,∴BE +EF 的最小值是4.故选B .9.(23-24八年级·江苏·假期作业)如图,在△ABC 中,AB =AC =10,BC =12,AD =8,AD 是∠BAC 的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC +PQ 的最小值是.【答案】9.6【分析】本题考查了轴对称--最短路线问题、等腰三角形的性质以及三角形的面积,线段垂直平分线的性质.连接PB ,PQ ,根据线段垂直平分线的性质可得BP =CP ,从而得到当点B ,P ,Q 三点共线时,PC +PQ 取得最小值,最小值为BQ 的长,且当BQ ⊥AC 时,BQ 最小,再由S △ABC =12BC ⋅AD =12AC ⋅BQ ,求出BQ 的长,即可.解:如图,连接PB ,PQ ,∵AB =AC ,AD 是∠BAC 的平分线,∴AD 垂直平分BC ,∴BP =CP ,∴PC +PQ =PB +PQ ≥PQ ,∴当点B ,P ,Q 三点共线时,PC +PQ 取得最小值,最小值为BQ 的长,且当BQ ⊥AC 时,BQ 最小,∵S △ABC =12BC ⋅AD =12AC ⋅BQ ,∴12×12×8=12×10BQ ,∴BQ =9.6.故答案为:9.6【题型4】两定两动型;10.(22-23八年级上·湖北武汉·期末)如图,∠AOB =20°,M ,N 分别是边OA ,OB 上的定点,P ,Q 分别是边OB ,OA 上的动点,记∠OPM =α,∠OQN =β,当MP +PQ +QN 最小时,则关于α,β的数量关系正确的是()A.β-α=30°B.β+α=210°C.β-2α=30°D.β+α=200°【答案】D 【分析】如图,作M 关于OB 的对称点M ,N 关于OA 的对称点N ,连接M N 交OA 于Q ,交OB 于P ,则MP +PQ +QN 最小,易知∠OPM =∠OPM ′=∠NPQ ,∠OQP =∠AQN ′=∠AQN ,∠OQN =180°-20°-∠ONQ ,∠OPM =∠NPQ =20°+∠OQP ,∠OQP =∠AQN =20°+∠ONQ ,由此即可解决问题.PQ +QN 最小,解:由轴对称的性质得∠OPM =∠OPM ′=∠NPQ ,∠OQP =∠AQN ′=∠AQN ,∠OQN =180°-20°-∠ONQ ,∠OPM =∠NPQ =20°+∠OQP ,∠OQP =∠AQN =20°+∠ONQ ,∴α+β=180°-20°-∠ONQ +20°+20°+∠ONQ =200°.故选:D .【点拨】本题考查轴对称-最短问题、三角形的内角和定理.三角形的外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【变式】(20-21八年级上·天津·期末)如图,∠AOB =25°,点M ,N 分别是边OA ,OB 上的定点,点P ,Q 分别是边OB ,OA 上的动点,记∠MPQ =α,∠PQN =β,当MP +PQ +QN 的值最小时,β-α的大小=_______(度).【答案】50【分析】本题主要考查最短路径问题、轴对称的性质,三角形外角的性质,作M 关于OB 的对称点M ,N 关于OA 的对称点N ,连接M N ,交OB 于点P ,交OA 于点Q ,连接MP ,QN ,可知此时MP +PQ +QN 最小,此时∠OPM =∠OPM =QPN ,∠OQP =∠AQN =∠AQN ,再根据三角形外角的性质和平角的定义即可得出结论.解:作M 关于OB 的对称点M ,N 关于OA 的对称点N ,连接M N ,交OB 于点P ,交OA 于点Q ,连接MP ,QN ,如图所示.根据两点之间,线段最短,可知此时MP +PQ +QN 最小,即MP +PQ +QN =M N ,∴∠OPM =∠OPM =QPN ,∠OQP =∠AQN =∠AQN ,∵∠MPQ =α,∠PQN =β,∴∠QPN =12180°-α ,∠OQP =12180°-β ,∵∠QPN =∠AOB +∠OQP ,∠AOB =25°,∴12180°-α =25°+12180°-β ,∴β-α=50°,故答案为:50.【题型5】一定两动(等线段)转化型;11.(23-24九年级下·广西南宁·开学考试)如图,△ABC 是等边三角形,AB =4.过点A 作AD ⊥BC 于点D ,点P 是直线AD 上一点,以CP 为边,在CP 的下方作等边△CPQ ,连接DQ ,则DQ 的最小值为.【答案】1【分析】连接BQ ,先证△ACP ≌△BCQ (SAS ),则可得∠CBQ =∠CAP =30°,由此可知Q 点在过B 点且与BC 成30°角的直线上运动.根据垂线段最短可知,当DQ ⊥BQ 时,DQ 最小,求出DQ 的值即可.本题主要考查了等边三角形的性质,全等三角形的判定和性质,以及垂线段最短.熟练掌握以上知识,找出Q 点的运动轨迹是解题的关键.解:连接BQ ,∵△ABC 和△CPQ 都是等边三角形,∴AC =BC ,PC =QC ,∠ACB =∠PCQ =60°,∴∠ACB -∠PCB =∠PCQ -∠PCB ,即∠ACP =∠BCQ ,∴△ACP ≌△BCQ (SAS ),∴∠CBQ =∠CAP ,∵△ABC 是等边三角形,AB =4,∴BC =AB =4,∠BAC =60°,∵AD ⊥BC ,∴BD =DC =12BC =2,∠CAP =12∠BAC =30°,∴∠CBQ =30°,∴Q 点在过B 点且与BC 成30°角的直线上运动.当DQ ⊥BQ 时,DQ 最小,此时DQ =12BD =1,∴DQ 的最小值为1.故答案为:1.12.(23-24八年级下·湖北武汉·阶段练习)如图,在Rt △ABC 中,∠BAC =90°,AC =6,BC =10,D 、E 分别是AB 、BC 上的动点,且CE =BD ,连接AE 、CD ,则AE +CD 的最小值为.【答案】234【分析】本题主要考查了全等三角形的判定及性质,勾股定理,两点之间,线段最短,过点C 作CN ∥AB 且使CN =BC ,连接EN ,AN ,证明△CEN ≌△BDC SAS ,得EN =DC 进而可得AE +CD =AE +EN ,再由两点之间线段最短可得:AE +EN ≥AN ,所以当点E 在AN 上时,AE +EN 有最小值,即AE +CD 有最小值为AN ,利用勾股定理计算即可,熟练掌握相关知识点是解题的关键.解:过点C 作CN ∥AB 且使CN =BC ,连接EN ,AN ,∵CN ∥AB ,∴∠ECN =∠ABC ,∠ACN =180°-∠BAC =90°,在△CEN 和△BDC 中,EC =BD∠ECN =∠DBC CN =BC,∴△CEN ≌△BDC SAS ,∴EN =DC ,∴AE +CD =AE +EN ,由两点之间线段最短可得:AE +EN ≥AN ,所以当点E 在AN 上时,AE +EN 有最小值,即AE +CD 有最小值为AN ,∵AC =6,BC =CN =10,∴Rt △ACN 中,AN =AC 2+CN 2=62+102=234,∴AE +CD 最小值为:234,故答案为:234.13.(2024·安徽合肥·二模)如图,△ABC 和△ADE 都是等腰三角形,且∠BAC =∠DAE =120°,AB =8,O 是AC 的中点,若点D 在直线BC 上运动,连接OE ,则在点D 运动过程中,OE 的最小值为()A.42B.433C.32D.2【答案】D 【分析】设AB 的中点为Q ,连接DQ ,过点Q 作QH ⊥BC 于H ,证△AQD 和△AOE 全等得QD =OE ,因此当QD 为最小时,OE 为最小,根据“垂线段最短”得QD ≥QH ,故点D 与点H 重合时,QD 为最小,最小值为QH 的长,然后在Rt △BQH 中求出QH 的长即可.解:设AB 的中点为Q ,连接DQ ,过点Q 作QH⊥BC 于H ,如下图所示:∵△ABC 和△ADE 都是等腰三角形,且∠BAC =∠DAE =120°,∴AB =AC ,AD =AE ,∠QAD +∠DAC =∠DAC +∠OAE =120°,∴∠QAD =∠OAE ,∵点Q 是AB 的中点,点O 是AC 的中点,AB =AC ,∴AQ =AO ,在△AQD 和△AOE 中,AQ =AO∠QAD =∠OAE AD =AE,∴△AQD ≌△AOE (SAS ),∴QD =OE ,∴当QD 为最小时,OE 为最小,∵点Q 为AB 的中点,AB =8,点D 在直线BC 上运动,∴根据“垂线段最短”得:QD ≥QH ,∴当点D 与点H 重合时,QD 为最小,最小值为QH 的长,在△ABC 中,AB =AC =8,∠BAC =120°,∴∠B =∠C =12(180°-∠BAC )=30°,在Rt △BQH 中,∠B =30°,BQ =12AB =4,∴QH =12BQ =2,∴QD 的最小值为2,即OE 的最小值为2.故选:D .【点拨】此题主要考查了等腰三角形的性质,直角三角形的性质,全等三角形的判定和性质,垂线段的性质,熟练掌握等腰三角形的性质,直角三角形的性质,全等三角形的判定和性质,理解垂线段最短是解决问题的关键,难点是正确地作出辅助线构造全等三角形和直角三角形.第三部分【中考链接与拓展延伸】【题型6】直通中考14.(2023·辽宁锦州·中考真题)如图,在Rt △ABC 中,∠ACB =90°,∠ABC =30°,AC =4,按下列步骤作图:①在AC 和AB 上分别截取AD 、AE ,使AD =AE .②分别以点D 和点E 为圆心,以大于12DE 的长为半径作弧,两弧在∠BAC 内交于点M .③作射线AM 交BC 于点F .若点P 是线段AF 上的一个动点,连接CP ,则CP +12AP 的最小值是.【答案】23【分析】过点P 作PQ ⊥AB 于点Q ,过点C 作CH ⊥AB 于点H ,先利用角平分线和三角形的内角和定理求出∠BAF =30°,然后利用含30°的直角三角的性质得出PQ =12AP ,则CP +12AP =CP +PQ ≥CH ,当C 、P 、Q 三点共线,且与AB 垂直时,CP +12AP 最小,CP +12AP 最小值为CH ,利用含30°的直角三角的性质和勾股定理求出AB ,BC ,最后利用等面积法求解即可.解:过点P 作PQ ⊥AB 于点Q ,过点C 作CH ⊥AB 于点H ,由题意知:AF 平分∠BAC ,∵∠ACB =90°,∠ABC =30°,∴∠BAC =60°,∴∠BAF =12∠BAC =30°,∴PQ =12AP ,∴CP +12AP =CP +PQ ≥CH ,∴当C 、P 、Q 三点共线,且与AB 垂直时,CP +12AP 最小,CP +12AP 最小值为CH ,∵∠ACB =90°,∠ABC =30°,AC =4,∴AB =2AC =8,∴BC =AB 2-AC 2=43,∵S △ABC =12AC ⋅BC =12AB ⋅CH ,∴CH =AC ⋅BC AB =4×438=23,1故答案为:23.【点拨】本题考查了尺规作图-作角平分线,含30°的直角三角形的性质,勾股定理等知识,注意掌握利用等积法求三角形的高或点的线的距离的方法.15.(2020·新疆·中考真题)如图,在△ABC 中,∠A =90°,∠B =60°,AB =4,若D 是BC 边上的动点,则2AD+DC 的最小值为.【答案】12【分析】过点C 作射线CE ,使∠BCE =30°,再过动点D 作DF ⊥CE ,垂足为点F ,连接AD ,在Rt △DFC 中,∠DCF =30°,DF =12DC ,2AD +DC =2AD +12DC =2(AD +DF )当A ,D ,F 在同一直线上,即AF ⊥CE 时,AD +DF 的值最小,最小值等于垂线段AF 的长.解:过点C 作射线CE ,使∠BCE =30°,再过动点D 作DF ⊥CE ,垂足为点F ,连接AD ,如图所示:在Rt △DFC 中,∠DCF =30°,∴DF =12DC ,∵2AD +DC =2AD +12DC =2(AD +DF ),∴当A ,D ,F 在同一直线上,即AF ⊥CE 时,AD +DF 的值最小,最小值等于垂线段AF 的长,此时,∠B =∠ADB =60°,∴△ABD 是等边三角形,∴AD =BD =AB =4,在Rt △ABC 中,∠A =90°,∠B =60°,AB =4,∴BC =8,∴DC =4,∴DF =12DC =2,∴AF =AD +DF =4+2=6,∴2(AD +DF )=2AF =12,∴2AD +DC 的最小值为12,故答案为:12.【点拨】本题考查垂线段最短、等边三角形的判定和性质,含30度的直角三角形等知识,解题的关键是学会添加辅助线,构造数学模型,学会用转化的思想思考问题,属于中考填空题中的压轴题.【题型7】拓展延伸16.(2024·辽宁葫芦岛·二模)在△ABC 中,∠ABC =60°,BC =4,AC =5,点D ,E 在AB ,AC 边上,且AD=CE ,则CD +BE 的最小值是.【答案】61【分析】本题考查两点之间线段最短、勾股定理,全等三角形的性质和判定等知识,学会构造全等三角形解决问题是解题的关键.如图作CK∥AB,使得CK=CA.作BG⊥KC交KC的延长线于G.首先证明EK=CD,可得CD+BE =EK+EB≥BK,推出CD+BE的最小值为BK的长.解:如图作CK∥AB,使得CK=CA.作BG⊥KC交KC的延长线于G.∵CK∥AB,∴∠KCE=∠A,∵CK=CA,CE=AD,∴△CKE≌△CAD SAS,∴CD=KE,∵CD+BE=EK+EB≥BK,∴CD+BE的最小值为BK的长,∵KG∥AB,∴∠GCB=∠ABC=60°,∴∠CBG=90°-∠GCB=30°,在Rt△BCG中,∵∠G=90°,BC=4,∴CG=12BC=2,BG=BC2-CG2=23,∴GK=KC+CG=AC+CG=5+2=7,在Rt△KBG中,BK=GK2+BG2=72+(23)2=61.故答案为:61.17.(23-24八年级上·湖北武汉·阶段练习)如图,等腰△ABC中,∠BAC=100°,BD平分∠ABC,点N为BD上一点,点M为BC上一点,且BN=MC,若当AM+AN的最小值为4时,AB的长度是.【答案】4【分析】由等腰△ABC中,∠BAC=100°,可得∠ABC=∠ACB=180°-∠BAC2=40°,由BD平分∠ABC,可得∠ABD=12∠ABC=20°,如图,作∠BCE=∠ABD=20°,使CE=AB,连接EM,则∠ACE=∠ACB+E三点共线时,AM+AN最小,即AE=4,证明△ACE是等边三角形,则AC=AE=4,进而可求AB.解:∵等腰△ABC中,∠BAC=100°,=40°,∴∠ABC=∠ACB=180°-∠BAC2∵BD平分∠ABC,∠ABC=20°,∴∠ABD=12如图,作∠BCE=∠ABD=20°,使CE=AB,连接EM,∴∠ACE=∠ACB+∠BCE=60°,∵CE=AB,∠BCE=∠ABD,MC=BN,∴△CEM≌△BAN SAS,∴ME=AN,CE=AB,∴AM+AN=AM+ME,∴当A、M、E三点共线时,AM+AN最小,即AE=4,∵CE=AC,∠ACE=60°,∴△ACE是等边三角形,∴AC=AE=4,∴AB=4,故答案为:4.【点拨】本题考查了等腰三角形的性质,角平分线,全等三角形的判定与性质,等边三角形的判定与性质等知识.熟练掌握等腰三角形的性质,角平分线,全等三角形的判定与性质,等边三角形的判定与性质是解题的关键.。
将军饮马模型将军饮马问题是一类最值问题,常常与直线、角、三角形、四边形、圆、抛物线等图形结合出现在中考和竞赛中。
该问题主要利用构造对称图形的方法来解决求两条线段和差、三角形周长、四边形周长等问题。
通常作为压轴题出现。
模型1:直线与两定点模型作法结论A当两定点A、B在直线l异侧时,在直线l上找一点P,使PA+PB最小。
连接AB交直线l于点P,点P即为所求作的点。
当两定点A、B在直线l同侧时,先作点B关于直线l的对称点B',再在直线l上找一点P,使PA+PB最小。
连接AB'交直线l于点P,点P即为所求作的点。
当两定点A、B在直线l同侧时,先作点B关于直线l的对称点B',再在直线l上找一点P,使PA PB最大。
连接AB'并延长交直线l于点P,点P即为所求作的点。
当两定点A、B在直线l异侧时,在直线l上找一点P,使PA PB最大。
作点B关于直线l的对称点B',连接AB'并延长交直线l于点P,点P即为所求作的点。
当两定点A、B在直线l同侧时,在直线l上找一点P,使PA PB最小。
连接AB,作AB的垂直平分线交直线l于点P,点P即为所求作的点。
例1:如图,正方形ABCD的面积是12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,则PD+PE最小值是23.解答:如图所示,点B与点D关于对角线AC对称。
因此,当点P为BE与AC的交点时,PD+PE最小,且线段BE 的长。
由于正方形ABCD的面积为12,其边长为23.因为△ABE为等边三角形,所以BE=AB=23.因此,PD+PE的最小值为23.例2:如图,已知△ABC为等腰直角三角形,AC=BC=4,∠BCD=15°,P为CD上的动点,则PA PB的最大值是A′B。
解答:如图所示,作点A关于CD的对称点A′,连接A′C,连接A′B并延长交CD于点P,则点P就是PA PB的值最大时的点,PA PB=A′B。
第1讲将军饮马模型➢知识点睛“将军饮马”问题主要利用构造对称图形解决两条线段和差、三角形周长、四边形周长等一类问题,会与直线、角、三角形、四边形、圆、抛物线等图形结合,在近年的中考和竞赛中经常出现,而且大多以压轴题的形式出现。
一、定直线与两定点模型作法结论A、在直线l异侧当两定点B时,在直线l上找上点P,使PA+最小.PBA、在直线l同侧当两定点B时,在直线l上找上点P,使PA+最小.PBA、在直线l同侧当两定点B时,在直线l上找上点P,使PA-最大.PBA、在直线l异侧当两定点B时,在直线l上找上点P,使PA-最大.PBA、在直线l同侧当两定点B时,在直线l上找上点P,使PA-最小.PB二、角到定点模型作法结论点P 在AOB ∠的内部,在OA 上找一点M ,在OB 上找一点N ,使得PCD ∆周长最小.点P 在AOB ∠的内部,在OA 上找一点M ,在OB 上找一点N ,使得MN PN +最小.点Q P 、在AOB ∠的内部,在OA 上找一点M ,在OB 上找一点N ,使得四边形PMNQ 周长最小.点M 在AOB ∠的外部,在射线OA 上找一点P ,使PM 与点P 到射线OB 的距离和最小.点M 在AOB ∠的内部,在射线OA 上找一点P ,使PM 与点P 到射线OB 的距离和最小.点Q P 、分别在AOB ∠的边OB OA 、是,在OA 上找一点M ,在OB 上找一点N ,使得MQ MN PN ++最小.二、两定点一定长模型作法结论如图在直线l 上找上两点N M 、(M 在左),使NB MN AM ++最小,且d MN =.如图,21//l l ,21l l 、之间的距离为d ,在21l l 、上分别找N M 、两点,使1l MN ⊥,且NB MN AM ++最小.如图,21//l l ,43//l l ,21l l 、之间的距离为1d ,43//l l 之间的距离为2d ,在21l l 、上分别找N M 、两点,使1l MN ⊥,在43l l 、上分别找Q P 、两点,使3l PQ ⊥且QB PQ NP MN AM ++++最小.如图,在⊙O 上找一点N ,在直线l 找一点M ,使得MN AM +最小.➢ 精讲精练例1:如图,点P 是∠AOB 内任意一点,∠AOB =30°,OP =8,点M 和点N 分别是射线OA 和射线OB 上的动点,则△PMN 周长的最小值.P OBAMN例2:如图,正方形ABCD 的边长是4,M 在DC 上,且DM =1, N 是AC 边上的一动点,则△DMN 周长的最小值.例3:如图,在Rt △ABO 中,∠OBA =90°,A (4,4),点C 在边AB 上,且AC :CB =1:3,点D 为OB 的中点,点P 为边OA 上的动点,当点P 在OA 上移动时,使四边形PDBC 周长最小的点P 的坐标为( )A .(2,2)B .5(2,5)2C .8(3,8)3D .(3,3)第3题图 第4题图 第5题图例4:如图,在△ABC 中,AC =BC ,∠ACB =90°,点D 在BC 上,BD =3,DC =1,点P 是AB 上的动点,则PC +PD 的最小值为( ) A .4B .5C .6D .7例5:如图,在等边△ABC 中,AB =6, N 为AB 上一点且BN =2AN , BC 的高线AD 交BC 于点D ,M 是AD 上的动点,连结BM ,MN ,则BM +MN 的最小值是___________. PDCBAA BCDMNNMDCBA例6:如图,在Rt △ABD 中,AB =6,∠BAD =30°,∠D =90°,N 为AB 上一点且BN =2AN , M 是AD 上的动点,连结BM ,MN ,则BM +MN 的最小值.例7:如图,在Rt △ABC 中,∠ACB =90°,AC =6.AB =12,AD 平分∠CAB ,点F 是AC 的中点,点E 是AD 上的动点,则CE +EF 的最小值为( ) A .3 B .4 C . D .第7题图 第8题图 第9题图例8:如图,在锐角三角形ABC 中,BC =4,∠ABC =60°, BD 平分∠ABC ,交AC 于点D ,M 、N 分别是BD ,BC 上的动点,则CM +MN 的最小值是( ) A B .2 C .D .4例9:如图,在菱形ABCD 中,AC =BD =6,E 是BC 的中点,P 、M 分别是AC 、AB 上的动点,连接PE 、PM ,则PE +PM 的最小值是( ) A .6B .C .D .4.5NMDBA E AFCDBNM DCBAEPDCBAM例10:如图,矩形ABOC 的顶点A 的坐标为(-4,5),D 是OB 的中点,E 是OC 上的一点,当△ADE 的周长最小时,点E 的坐标是( ) A .4(0,)3B .5(0,)3C .(0,2)D .10(0,)3第10题图 第11题图 第12题图例11:如图,在矩形ABCD 中,AB =6,AD =3,动点P 满足13PAB ABCD S S ∆=矩形,则点P 到A 、B 两点距离之和PA +PB 的最小值为( ) A .B .C .D 例12:如图,矩形ABCD 中,AB =10,BC =5,点E 、F 、G 、H 分别在矩形ABCD 各边上,且AE =CG ,BF =DH ,则四边形EFGH 周长的最小值为( )A .B .C .D .例13:如图,∠AOB =60°,点P 是∠AOB 内的定点且OP M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A B C .6D .3第13题图 第14题图 CBH FGEDCB AA BMOPN例14:如图,∠AOB 的边OB 与x 轴正半轴重合,点P 是OA 上的一动点,点N (3,0)是OB 上的一定点,点M 是ON 的中点,∠AOB =30°,要使PM +PN 最小,则点P 的坐标为 .例15:如图,已知正比例函数y =kx (k >0)的图像与x 轴相交所成的锐角为70°,定点A 的坐标为(0,4),P 为y 轴上的一个动点,M 、N 为函数y =kx (k >0)的图像上的两个动点,则AM +MP +PN 的最小值为___________.第15题图例16:如图,在平面直角坐标系中,矩形ABCD 的顶点B 在原点,点A 、C 在坐标轴上,点D 的坐标为(6,4),E 为CD 的中点,点P 、Q 为BC 边上两个动点,且PQ =2,要使四边形APQE 的周长最小,则点P 的坐示应为______________.例17:如图,矩形ABCD 中,AD =2,AB =4,AC 为对角线,E 、F 分别为边AB 、CD 上的动点,且EF ⊥AC 于点M ,连接AF 、CE ,求AF +CE 的最小值.AB CD EFMx例18:如图,正方形ABCD 的面积是12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,求PD+PE 的最小值。
将军饮马模型一、背景知识:【传说】早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“将军饮马”的问题便流传至今.【问题原型】将军饮马造桥选址费马点【涉及知识】两点之间线段最短,垂线段最短;三角形两边三边关系;轴对称;平移;【解题思路】找对称点,实现折转直二、将军饮马问题常见模型1.两定一动型:两定点到一动点的距离和最小例1:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB 最小.作法:连接AB,与直线l的交点Q,Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB最小,且最小值等于AB.原理:两点之间线段最短。
证明:连接AB,与直线l的交点Q,P为直线l上任意一点,在⊿PAB中,由三角形三边关系可知:AP+PB≧AB(当且仅当PQ重合时取﹦)例2:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB的和最小.关键:找对称点作法:作定点B关于定直线l的对称点C,连接AC,与直线l的交点Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB和最小,且最小值等于AC.原理:两点之间,线段最短证明:连接AC,与直线l的交点Q,P为直线l上任意一点,在⊿PAC中,由三角形三边关系可知:AP+PC≧AC(当且仅当PQ重合时取﹦)2.两动一定型例3:在∠MON的内部有一点A,在OM上找一点B,在ON上找一点C,使得△BAC周长最短.作法:作点A关于OM的对称点A’,作点A关于ON的对称点A’’,连接A’ A’’,与OM 交于点B,与ON交于点C,连接AB,AC,△ABC即为所求.原理:两点之间,线段最短例4:在∠MON的内部有点A和点B,在OM上找一点C,在ON上找一点D,使得四边形ABCD周长最短.作法:作点A关于OM的对称点A’,作点B关于ON的对称点B’,连接A’ B’,与OM交于点C,与ON交于点D,连接AC,BD,AB,四边形ABCD即为所求.原理:两点之间,线段最短3.两定两动型最值例5:已知A、B是两个定点,在定直线l上找两个动点M与N,且MN长度等于定长d(动点M位于动点N左侧),使AM+MN+NB的值最小.提示:存在定长的动点问题一定要考虑平移作法一:将点A向右平移长度d得到点A’,作A’关于直线l的对称点A’’,连接A’’B,交直线l于点N,将点N向左平移长度d,得到点M。
专题02 最值模型之将军饮马(遛马、过桥)模型将军遛马模型和将军过桥(造桥)模型是将军饮马的姊妹篇,它是在将军饮马的基础上加入了平移的思想,主要还是考查转化与化归等的数学思想。
在各类考试中都以中高档题为主,本专题就将军遛马模型和将军过桥(造桥)模型进行梳理及对应试题分析,方便掌握。
在解决将军遛马和将军过桥(造桥),不管是横向还是纵向的线段长度(定长),只要将线段按照长度方向平移即可,即可以跨越长度转化为标准的将军饮马模型,再依据同侧做对称点变异侧,异侧直接连线即可。
利用数学的转化思想,将复杂模型变成基本模型就简单容易多了,从此将军遛马和将军过桥(造桥)再也不是问题!模型1.将军遛马模型【核心思路】去除定量,组合变量(通过几何变换将若干段原本彼此分类的线段组合到一起)。
【模型解读】已知A 、B 是两个定点,P 、Q 是直线m 上的两个动点,P 在Q 的左侧,且PQ 间长度恒定,在直线m 上要求P 、Q 两点,使得PA +PQ +QB 的值最小。
(原理用平移知识解)(1)点A 、B 在直线m 两侧:(2)点A 、B 在直线m 同侧:如图1 如图2(1)如图1,过A 点作AC ∥m ,且AC 长等于PQ 长,连接BC ,交直线m 于Q ,Q 向左平移PQ 长,即为P 点,此时P 、Q 即为所求的点。
(2)如图2,过A 点作AE ∥m ,且AE 长等于PQ 长,作B 关于m 的对称点B ’,连接B ’E ,交直线m 于Q ,Q 向左平移PQ 长,即为P 点,此时P 、Q 即为所求的点。
【最值原理】两点之间线段最短。
例1.(2023·黑龙江·九年级校考期中)问题背景(1)如图(1),在公路l 的一侧有A ,B 两个工厂,A ,B 到公路的垂直距离分别为1km 和3km ,A ,B 之间的水平距离为3km .现需把A 厂的产品先运送到公路上然后再转送到B 厂,则最短路线的长是_____km .问题探究(2)如图(2),ACB △和DEF V 是腰长为2的两个全等的等腰直角三角形,90ACB DEF Ð=Ð=°,点A ,D 重合,点B ,F 重合,将ACB △沿直线AB 平移,得到A C B ¢¢¢△,连接QQ P【答案】(1)5km (2)存在,最小值为25(3)最短路线长为15km【分析】(1)根据最短路径的作法,找出最短路径A B ¢,再利用矩形的性质,求出BE 和A E ¢利用勾股定理即可求出最短路径;(2)根据平移的性质可知四边形CQEC ¢和AQEA ¢均为平行四边形,再利用最短路径作法得出则 AQ A Q ¢=,AQ BQ A Q ¢=\+\ 当点Q 与点P 重合时, AQ 连接AA ¢, 交l 于点C , 过点由平移知CC AB ¢∥,CC QE ¢\∥.又 CQ EC ¢∥,\四边形 CQEC ¢是平行四边形,CC QE \¢=,CQ EC =¢由平移知CC AA ¢¢=,AA QE\¢=又n AB ∥,\四边形 AQEA ¢是平行四边形,AQ A E \=¢1A E C E AQ CQ QA CQ \+=+=+³¢¢\当点Q 与点P 重合时, A E C E ¢+¢过点C 作 1CG A A ^交 1A A 的延长线于点2AC AE ==Q ,2CG \=,13A G =例3.(2022·四川自贡·中考真题)如图,矩形ABCD 中,42AB BC ==,,G 是AD 的中点,线段EF 在边AB 上左右滑动;若1EF =,则GE CF +的最小值为____________.【答案】【分析】如图,作G关于AB的对称点G',在CD上截取CH=1,然后连接HG'交AB于E,在EB上截取EF=1,此时GE+CF的值最小,可得四边形EFCH是平行四边形,从而得到G'H=EG'+EH=EG+CF,再由勾股定理求出HG'的长,即可求解.【详解】解:如图,作G关于AB的对称点G',在CD上截取CH=1,然后连接HG'交AB于E,在EB上截取EF=1,此时GE+CF的值最小,∴G'E=GE,AG=AG',∵四边形ABCD是矩形,∴AB∥CD,AD=BC=2∴CH∥EF,∵CH=EF=1,∴四边形EFCH是平行四边形,∴EH=CF,∴G'H=EG'+EH=EG+CF,∵AB=4,BC=AD=2,G为边AD的中点,∴AG=AG'=1 ∴DG′=AD+AG'=2+1=3,DH=4-1=3,+的最小值为∴HG¢===GE CF【点睛】此题主要考查了利用轴对称求最短路径问题,矩形的性质,勾股定理等知识,确定GE+CF最小时E,F位置是解题关键.【答案】35【分析】连接BD与AC交于点O,延长Q四边形ABCD是菱形,AC\\=+=,由平移性质知,246OM\+=FM FD\=,DF DE AF当点A、F、M三点共线时,\+的最小值为:AMDF DE模型2.将军过桥(造桥)模型【核心思路】去除定量,组合变量(通过几何变换将若干段原本彼此分类的线段组合到一起)。
将军饮马模型讲解【模型1】如图,定点A,B分布在定直线l的两侧,在直线l上找一点P,使得PA+PB的值最小.【作法】如图,连接AB,与直线l的交点即为所求点P.【模型2】如图,定点A,B分布在定直线的同侧,在直线l上找一点P,使得PA+PB的值最小.【作法】如图,作点B关于直线l的对称点B',连接AB',与直线l的交点即为所求点P.【模型3】如图,点P为角内一点,在射线l1,l2上分别找点M,N,使得△PMN的周长最小.【作法】如图,分别作点P关于两直线l1,l2的对称点P'和P",连接P' P",与两射线的交点即为所求点M,N.【模型4】如图,P,Q为角内的两个定点,在射线l1,l2上分别找点M,N,使得四边形PQMN的周长最小.【作法】如图,分别作点Q,P关于直线l1,l2的对称点Q'和P',连接Q'P',与两射线的交点即为所求点M,N.【模型5】如图,直线m∥n,A,B分别为m上方和n下方的定点(直线AB不与m垂直),在m,n上分别求点M,N,使得MN⊥m,且AM+MN+BN的值最小.【作法】如图,将点A向下平移,使AA'=MN,连接A'B,交n于点N,过点N作MN⊥m于点M,则点M和点N即为所求.【模型6】如图,定点A,B分布在直线l的同侧,长度为a(a为定值)的线段MN在l上移动(点M在点N的左边),在直线l上求两点M,N(点M在左),使得MN=a,并使得AM+MN+NB的值最小.【作法】如图,将点A向右平移a个单位长度得到点A',作点A'关于l的对称点A",连接A"B,交直线l于点N,将点N向左平移a个单位长度得到点M,则点M和点N即为所求.典型例题典例1如图,∠AOB=30",OC为∠AOB内部的一条射线,P为射线OC上一点,OP=4,点M,N分别为OA,OB边上的动点,则△PMN周).长的最小值为( ).A.2B.4C.8D.4√3典例2如图,BD平分∠ABC,E,F分别为线段BC,BD上的动点,AB=8,△ABC的面积为20,求EF+CF的最小值.典例3四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN的周长最小,则∠AMN+∠ANM的度数为( ).A.80°B.90°C.100°D.130°初露锋芒1.如图,直线L是一条河,P,Q是两个村庄.欲在L上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是( ).2.如图,在等腰△ABC 中,AB=AC ,D,E 分别是BC ,AC 的中点,点P 是线段AD 上的一个动点.当△PCE 的周长最小时,点P 的位置是( ).A.AD 与BE 的交点处B.AD 的中点处C.A 点处D.D 点处3.如图,∠AOB=60°,点P 是∠AOB 内的定点,且OP= √3,点M ,N 分别是射线OA ,OB 上异于点O 的动点,则△PMN 周长的最小值是( ).A.3√62B. 3√32C.6D.34. 如图所示,在边长为2的正三角形ABC 中,E 、F 、G 分别为AB 、AC 、BC 的中点,点P 线段EF 上一个动点,连接BP 、GP ,则△BPG 周长的最小值是________.感受中考1.(2016江苏苏州中考真题)矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为(3,4),D 是OA 的中点,点E 在AB 上,当△CDE 的周长最小时,点E 的坐标为( ).A.(3,1)B.(3,43) c.(3,53) D.(3,2)2.(2020贵州毕节中考模拟)如图,正方形ABCD 的边长为4,点E 是AB 的中点,点P 是边BC 上的动点,点Q 是对角线AC 上的动点(包括端点A ,C ),则EP+PQ 的最小值是__________.参考答案典例1【答案】B【解析】如图,作点P关于OA的对称点P1,作点P关于OB的对称点P2,连接P1 P2,与OA的交点为点M,与OB的交点为点N,则PM=P1M,PN=P2N.此时,△PMN的周长最小,为PM+MN+PN=P1M +MN+P2N=P1P2.连接OP1,OP2,则OP1=OP2=OP=4.又∵∠P1OP2=2∠AOB=60°,∴△OP1P2是等边三角形,∴P1P2=OP1=4.∴△PMN周长的最小值是4.故选B.典例2【答案】5【解析】如图,作E关于BD对称交于点E',则EF= E'F∴EF+CF= E'F+ CF∴当C E'⊥AB时,EF+CF最小.∵S△ABC= 12×AB×C E'=12×8×C E' =20C E'=5∴EF+CF的最小值为5.典例3【答案】C【解析】如图,延长线段AB到点A'使得BA'=AB,延长线段AD到点A"使得DA"=AD,连接A'A",与BC.CD分别交于点M,N,此时△AMN的周长最小.∴点A,A'关于直线BC对称,点A,A"关于直线CD对称.∵BA=BA',MB⊥AB. ∴MA=MA'.同理,NA=NA",∴∠A'=∠MAB,∠A"=∠NAD.∵∠AMN=∠A'+∠MAB=2∠A', ∠ANM=∠A"+∠NAD=2∠A",∴∠AMN+∠ANM=2(∠A'+∠A").又∵∠BAD=130°, ∴∠A'+∠A"=180°-∠BAD=50°,∴∠AMN+∠ANM=100°.故选C.初露锋芒1. 【答案】D .【解析】根据两点之间,线段最短,作点P 关于直线L 的对称点P ',连接QP '交直线L 于点M 即可.故选D.2. 【答案】A【解析】∵EC 的长度固定,∴△PCE 的周长大小与PE+PC 的值有关, ∴当PE+PC 的值最小时,△PCE 的周长最小. 连接BE ,交AD 于点P ',如图,此时BP '+P 'E 的值最小,即BP+PE 的值最小. ∵点C 关于直线AD 的对称点为点B. ∴此时PE+PC 的值最小,∴当点P 在BE 与AD 的交点处时,△PCE 的周长最小. 故选A.3. 【答案】D.【解析】如图,分别作点P 关于射线OA. OB 的对称点C ,D ,连接CD 分别交OA ,OB 于点M ,N ,连接OC ,OD , 则MP=MC ,NP=ND ,OC=OD=OP=√3, ∠BOP=∠BOD.∠AOP=∠AOC,∴PN+PM+MN=ND+MC+MN=DC.∠COD=∠BOP +∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴∠OCD=∠ODC=30°.作OH ⊥CD 于点H ,则CH=DH.∵∠OCH=30°. ∴OH= 12 0C= √32, ∴CH=√3OH= 32,∴CD=2CH=3, 即△PAMN 周长的最小值是3.故选D.4. 【答案】3.【解析】要使△PBG 的周长最小,而BG=1一定,只要使BP+PG 最短即可,如图:连接AG 交EF 于M ,因为等边△ABC ,E 、F 、G 分别为AB 、AC 、BC 的中点,所以AG ⊥BC,EF ∥BC,则AG ⊥EF ,AM=MG,A 、G 关于EF 对称,即当P 和E 重合时,此时BP+PG 最小,即△PBG 的周长最小,AP =PG ,BP=BE ,最小值是:PB+ PG+ BG= AE+BE+ BG=AB+BG=2+1=3感受中考1.【答案】B【解析】如图,作点D 关于直线AB 的对称点H ,连接CH 交AB 于点E ,此时△CDE 的周长最小.∵B(3,4),四边形OABC 是矩形,∴A(3,0),C(0,4).∵D 是OA 的中点,∴D( 32,0),H( 92,0). 设直线CH 的解析式为y=kx + b ,把C(0,4).H( 92,0)代人y= kx + b , 得{4=b 0= 92k + b 解得{k =−89b =4 ∴直线CH 的解析式为y=−89x+4, 当x=3时;y= 43, ∴点E 的坐标为(3,43). 故选B.2. 【答案】3√2【解析】如图,作点B关于BC的对称点E',作E'Q'⊥AC于点Q',交BC于点P.∴PE=PE'.∴PQ+PE=PE'+PQ.分析知,当Q与Q'重合时,PE+PQ的值最小(垂线段最短),∵四边形ABCD是正方形,∴∠E'AQ'=45°.∵AE'=6,∴E'Q'=3√2∴PE+PQ的最小值为3√。
“将军饮马”模型详解与拓展平面几何中涉及最值问题的相关定理或公理有:① 线段公理:两点之间,线段最短. 并由此得到三角形三边关系;② 垂线段的性质:从直线外一点到这条直线上各点所连的线段中,垂线段最短. 在一些“线段和最值”的问题中,通过翻折运动,把一些线段进行转化即可应用①、② 的基本图形,并求得最值,这类问题一般被称之为“将军饮马"问题.问题提出:唐朝诗人李欣的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题.如图所示,诗中将军在观望烽火之后从山脚下的A点出发,走到河边饮马后再到B点宿营.请问怎样走才能使总的路程最短?模型提炼:模型【1】一定直线、异侧两定点直线l和l的异侧两点A、B,在直线l上求作一点P,使PA+PB最小解答:根据“两点之间,线段距离最短”,所以联结AB交直线l于点P,点P即为所求点模型【2】一定直线、同侧两定点直线l和l的同侧两点A、B,在直线l上求作一点P,使PA+PB最小解答:第一步:画点A关于直线l的对称点A’(根据“翻折运动”的相关性质,点A、A’到对称轴上任意点距离相等,如图所示,AP=A'P,即把一定直线同侧两定点问题转化为一定直线异侧两定点问题)第二步:联结A'B交直线l于点Q,根据“两点之间,线段距离最短”,此时“A’Q+QB”最短即“AQ+QB”最短模型【3】一定直线、一定点一动点已知直线l和定点A,在直线k上找一点B(点A、B在直线l同侧),在直线l上找点P,使得AP+PB最小解答:第一步:画点A关于直线l的对称点A’第二步:过点A'做A'B⊥k于点B且交直线l于点P,根据“从直线外一点到这条直线上各点所连的线段中,垂线段最短",可知A’P+PB最小即AP+PB最小模型【4】一定点、两定直线点P是∠MON内的一点,分别在OM,ON上作点A,B,使△PAB的周长最小解答:策略:两次翻折第一步:分别画点P关于直线OM、ON的对称点P1、P2第二步:联结P1P2,交OM、ON于点A、点B(根据“翻折运动”的相关性质,AP=AP1,BP=BP2;根据“两点之间,线段距离最短”可知此时AP1+BP2+AB最短即△ABP周长最短)拓展如果两定点、两定直线呢?“如图,点P,Q为∠MON内的两点,分别在OM,ON上作点A,B。
中考数学最值问题:将军饮马模型
“将军饮马”问题主要利用构造对称图形解决求两条线段和差、三角形周长、四边形周长等一类最值问题,会与直线、角、三角形、四边形、圆、抛物线等图形结合,在近年的中考和竞赛中经常出现,而且大多以压轴题的形式出现。
模型1:“两点一线”模型
模型2:“定点两线”模型
模型3:“两定点一定长”模型
2
1
2
1
几何中的将军饮马题型1:正方形中的将军饮马问题
【关于对角线对称】
【假装不存在的正方形】
【隐身的正方形】
题型2:三角形中的将军饮马【等边系列】
【隐身的等边三角形】
【角平分线系列之点点】
【角分线系列之点线】
题型3:矩形、菱形中的将军饮马【菱形高】
【折点在边上】
【折点与面积】
【全等与对称】
题型4:特殊角的对称【60°角的对称】
【30°角的对称】
【20°角的对称】
题型5:直角梯形中的将军饮马
题型6:圆形中的将军饮马
题型7:一次函数中的将军饮马
题型8:二次函数中的将军饮马。
华东师大版八年级数学下册“将军饮马模型”专题讲义及解析一、背景知识:【传说】早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“将军饮马”的问题便流传至今.【问题原型】将军饮马造桥选址费马点【涉及知识】两点之间线段最短,垂线段最短;三角形两边三边关系;轴对称;平移;【解题思路】找对称点,实现折转直二、将军饮马问题常见模型1.两定一动型:两定点到一动点的距离和最小例1:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB 最小.作法:连接AB,与直线l的交点Q,Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB最小,且最小值等于AB.原理:两点之间线段最短。
证明:连接AB,与直线l的交点Q,P为直线l上任意一点,在⊿PAB中,由三角形三边关系可知:AP+PB≧AB(当且仅当PQ重合时取﹦)原理:两点之间,线段最短证明:连接AC,与直线l的交点Q,P为直线l上任意一点,在⊿PAC中,由三角形三边关系可知:AP+PC≧AC(当且仅当PQ重合时取﹦)2.两动一定型例3:在∠MON的内部有一点A,在OM上找一点B,在ON上找一点C,使得△BAC周长最短.作法:作点A关于OM的对称点A’,作点A关于ON的对称点A’’,连接A’ A’’,与OM 交于点B,与ON交于点C,连接AB,AC,△ABC即为所求.原理:两点之间,线段最短例4:在∠MON的内部有点A和点B,在OM上找一点C,在ON上找一点D,使得四边形ABCD周长最短.作法:作点A关于OM的对称点A’,作点B关于ON的对称点B’,连接A’ B’,与OM交于点C,与ON交于点D,连接AC,BD,AB,四边形ABCD即为所求.原理:两点之间,线段最短3.两定两动型最值例5:已知A、B是两个定点,在定直线l上找两个动点M与N,且MN长度等于定长d(动点M位于动点N左侧),使AM+MN+NB的值最小.提示:存在定长的动点问题一定要考虑平移作法一:将点A向右平移长度d得到点A’,作A’关于直线l的对称点A’’,连接A’’B,交直线l于点N,将点N向左平移长度d,得到点M。
将军饮马”模型详解与拓展 (1)A,B,C,D,使得四边形ABCD的周长最小。
该问题可以通过两次翻折来解决。
第一步:分别画点P、Q关于直线OM、ON的对称点P1、Q1、P2、Q2.第二步:联结P1Q2、P2Q1,交OM、ON于点A、B、C、D。
根据“翻折运动”的相关性质,AP=AP1,BP=BP2,CQ=CQ1,DQ=DQ2;根据“两点之间,线段距离最短”可知此时AP1+P1Q2+QC1+CD+DQ2+BP2最短即四边形ABCD周长最短。
将军饮马”问题源于唐朝诗人XXX的诗《古从军行》。
在这首诗中,将军从山脚下的A点出发,走到河边饮马后再到B点宿营。
问题是,怎样走才能使总的路程最短?该问题可以通过“线段和最值”问题中的“一定直线、异侧两定点”模型来解决。
根据“两点之间,线段距离最短”的原理,联结AB交直线l于点P,点P即为所求点。
除了“一定直线、异侧两定点”模型外,还有“一定直线、同侧两定点”、“一定直线、一定点一动点”和“一定点、两定直线”等模型。
这些模型都可以通过“翻折运动”来转化为“一定直线、异侧两定点”问题,然后应用“两点之间,线段距离最短”的原理来求解。
对于“一定点、两定直线”问题,需要通过两次翻折来解决。
分别画点P、Q关于直线OM、ON的对称点P1、Q1、P2、Q2,然后联结P1Q2、P2Q1,交OM、ON于点A、B、C、D。
根据“翻折运动”的相关性质和“两点之间,线段距离最短”的原理,可以得到四边形ABCD周长最短。
总之,“将军饮马”问题是一个典型的“线段和最值”问题,可以通过不同的模型和翻折运动来解决。
掌握这些模型和原理,可以帮助我们更好地解决类似的几何问题。
如何使四边形PAQB的周长最小?在数学问题中,我们经常需要优化某些值。
这个问题的目标是最小化四边形PAQB的周长。
为了解决这个问题,我们需要先找到四边形的特征。
四边形PAQB是由四个点P、A、Q和B组成的。
我们可以使用坐标系来表示这些点。
专题11 动点最值之将军饮马模型模型一、两定一动模型例题1. 如图,在矩形ABCD中,AB=10,AD=6,动点P满足S△P AB=S矩形ABCD,则点P到A,B两点距离之和P A+PB的最小值为.【解答】解:设△ABP中AB边上的高是h.∵S△P AB=S矩形ABCD,∴AB•h=AB•AD,∴h=AD=4,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=10,AE=4+4=8,∴BE===2,即P A+PB的最小值为2.故答案为:2.【变式训练1】如图,正方形ABEF的面积为4,△BCE是等边三角形,点C在正方形ABEF外,在对角线BF 上有一点P,使PC+PE最小,则这个最小值的平方为()A. B. C. 12 D.【答案】B【解析】连接AC、AE,过点C作CG⊥AB,如图所示:∵正方形ABEF,∴AE⊥BF,OA=OE,即可得:E关于BF的对称点是A,连接AC交BF于P,则此时EP+CP的值最小,EP+CP=AC,∵正方形ABEF的面积为4,△BCE是等边三角形,∴AB=BE=2,BE=BC=2,在Rt△BCG中,∠CBG=90º-60º=30º,BC=2,∴CG=1,,,.【变式训练2】如图Rt△ABC和等腰△ACD以AC为公共边,其中∠ACB=90°,AD=CD,且满足AD⊥AB,过点D作DE⊥AC于点F,DE交AB于点E,已知AB=5,BC=3,P是射线DE上的动点,当△PBC 的周长取得最小值时,DP的值为()A.B.C.D.【解答】解:连接PB、PC、P A,要使得△PBC的周长最小,只要PB+PC最小即可,∵PB+PC=P A+PB≥AB,∴当P与E重合时,P A+PB最小,∵AD=CD,DE⊥AC,∴AF=CF,∵∠ACB=90°,∴EF∥BC,∴AE=BE=AB=2.5,∴EF=BC=1.5,∵AD⊥AB,∴△AEF∽△DEA,∴=,∴DE==,故选:B.【变式训练3】如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为多少?【答案】∠ECF=30º【解析】过E作EM∥BC,交AD于N,如图所示:∵AC=4,AE=2,∴EC=2=AE,∴AM=BM=2,∴AM=AE,∵AD是BC边上的中线,△ABC是等边三角形,∴AD⊥BC,∵EM∥BC,∴AD⊥EM,∵AM=AE,∴E和M关于AD对称,连接CM交AD于F,连接EF,则此时EF+CF的值最小,∵△ABC是等边三角形,∴∠ACB=60º,AC=BC,∵AM=BM,∴∠ECF=∠ACB=30º.模型二、一定两动例.如图,∠AOB=30°,点M、N分别是射线OB、OA上的动点,点P为∠AOB内一点,且OP=4,则△PMN的周长的最小值为()A.2B.4C.6D.8【解析】分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M′、N′,连接OC、OD、PM′、PN′.∵点P关于OA的对称点为C,∴PM′=CM′,OP=OC,∠COB=∠POB;∵点P关于OB的对称点为D,∴PN′=DN′,OP=OD,∠DOA=∠POA,∴OC=OD=OP=4,∠COD=∠COB+∠POB+∠POA+∠DOA=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=4.∴当M、N与M′、N′重合时,△PMN周长最小=PM′+M′N′+PN′=DN′+M′N′+CM′=CD=4,选B.【变式训练1】如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB 上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°【解答】解:分别作点P关于OA、OB的对称点P1、P2,连接P1P2,交OA于M,交OB于N,则OP1=OP=OP2,∠OP1M=∠MPO,∠NPO=∠NP2O,根据轴对称的性质,可得MP=P1M,PN=P2N,则△PMN的周长的最小值=P1P2,∴∠P1OP2=2∠AOB=80°,∴等腰△OP1P2中,∠OP1P2+∠OP2P1=100°,∴∠MPN=∠OPM+∠OPN=∠OP1M+∠OP2N=100°,故选:B.【变式训练2】如图,在菱形ABCD中,AB,∠A=120º,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为.【解析】过点C作CE⊥AB,如图所示:∵菱形ABCD中,AB=2,∠A=120º,∴∠ABC=60º,BC=2,BD平分∠ABD,∴BE=,CE=BE=,∵BD平分∠ABD,∴在AB上作点P关于BD的对称点P',∴PK+QK=P'K+KQ,当P',K,Q三点共线且P'Q⊥AB时,PK+QK有最小值,即最小值为平行线AB,CD的距离,则最小值为.【变式训练3】如图所示,在四边形ABCD中,∠A=90º,∠C=90º,∠D=60º,AD=3,AB=,若点M、N分别为边CD,AD上的动点,则△BMN的周长最小值为()A. B. C. 6 D. 3【答案】C【解析】作点B关于CD、AD的对称点分别为点B'和点B'',连接B'B''交DC和AD于点M和点N,连接MB、NB;再DC和AD上分别取一动点M’和N’(不同于点M和N),连接M'B,M'B',N’B和N'B'',如图1所示:∵B'B''<M'B'+M'N'+N'B",B'M'=BM',B"N'=BN',∴BM'+M'N'+BN'>B'B",又∵B'B"=B'M+MN+NB",MB=MB',NB=NB'',∴NB+NM +BM<BM'+M’N'+BN'NB+NM+BM时周长最小;连接DB,过点B'作B'H⊥DB''于B’’D的延长线于点H,如图示2所示:在Rt△ABD中,AD=3,AB=,,∴∠2=30º,∴∠5=30º,DB=DB'',又∵∠ADC=∠1+∠2=60º,∴∠1=30º,∴∠7=30º,DB'=DB,∴∠B'DB''=∠1+∠2+∠5+∠7=120º,DB'=DB''=DB,又∵∠B'DB"+∠6=180º,∴∠6=60º,∴HD=,HB'=3,在Rt△B'HB''中,由勾股定理得:B'B"=,NB+NM+BM=6,故选C.【变式训练4】如图,在△ABC中,∠C=90°,CB=CA=4,∠A的平分线交BC于点D,若点P、Q分别是AC和AD上的动点,则CQ+PQ的最小值是2.【解答】解:如图,作点P关于直线AD的对称点P′,连接CP′交AD于点Q,则CQ+PQ=CQ+P′Q=CP′.∵根据对称的性质知△APQ≌△AP′Q,∴∠P AQ=∠P′AQ.又∵AD是∠A的平分线,点P在AC边上,点Q在直线AD上,∴∠P AQ=∠BAQ,∴∠P′AQ=∠BAQ,∴点P′在边AB上.∵当CP′⊥AB时,线段CP′最短.∵在△ABC中,∠C=90°,CB=CA=4,∴AB=4,且当点P′是斜边AB的中点时,CP′⊥AB,此时CP′=AB=2,即CQ+PQ的最小值是2.故填:2.模型三、两段之差模型例.如图,在△ABC中,AB=AC,AC的垂直平分线交AC于点N,交AB于点M,AB=12,△BMC的周长是20,若点P在直线MN上,则PA-PB的最大值为()A. 12B. 8C. 6D. 2【解答】B【解析】∵MN垂直平分AC,∴MA=MC,BM+MC+BC=20,BM+MA=AB=12,∴BC=20-12=8,在MN上取点P,∵MN垂直平分AC,如图所示,连接PA、PB、PC,∴PA=PC,∴PA-PB=PC-PB,在△PBC中PC-PB<BC当P、B、C共线时(PC-PB)有最大值,此时PC-PB=BC=8,故选B.【变式训练1】如图,在菱形ABCD中,AB=6,∠ABC=60º,AC与BD交于点O,点N在AC上且AN=2,点M在BC上且BM=BC,P为对角线BD上一点,则PM-PN的最大值为.【解答】2【解析】如图所示,作以BD为对称轴作N的对称点N',连接PN',MN',根据轴对称性质可知,PN=PN',∴PM-PN=PM-PN'≤MN',当P,M,N'三点共线时,取“=”,∵在菱形ABCD中,AB=6,∠ABC=60º,∴AC=6,∵O为AC中点,∴AO=OC=3,∵AN=2,∴ON=1,∴ON'=1,CN'=2,∴AN'=4,,∴CM=AB-BM=6-4=2,,∴PM∥AB∥CD,∠CMN'=60º,∵∠N'CM=60º,∴△N'CM为等边三角形,∴CM=MN'=2,即PM-PN的最大值为2.【变式训练2】如图,两点A、B在直线MN外的同侧,A到MN的距离AC=16,B到MN的距离BD=10,CD=8,点P在直线MN上运动,则|P A﹣PB|的最大值等于10.【答案】10【解答】解:延长AB交MN于点P′,∵P′A﹣P′B=AB,AB>|P A﹣PB|,∴当点P运动到P′点时,|P A﹣PB|最大,∵BD=10,CD=8,AC=16,过点B作BE⊥AC,则BE=CD=8,AE=AC﹣BD=16﹣10=6,∴AB===10,∴|P A﹣PB|的最大值等于10,故答案为:10.模型四、特殊型例1.如图,矩形ABCD中,AB=4,BC=8,E为CD的中点,点P、Q为BC上两个动点,且PQ=3,当CQ=时,四边形APQE的周长最小.【解答】解:点A向右平移3个单位到M,点E关于BC的对称点F,连接MF,交BC于Q,此时MQ+EQ最小,∵PQ=3,DE=CE=2,AE==2,∴要使四边形APQE的周长最小,只要AP+EQ最小就行,即AP+EQ=MQ+EQ,过M作MN⊥BC于N,设CQ=x,则NQ=8﹣3﹣x=5﹣x,∵△MNQ∽△FCQ,∴=,∵MN=AB=4,CF=CE=2,CQ=x,QN=5﹣x,解得:x=,则CQ=故答案为:.【变式训练】如图,已知A(3,1)与B(1,0),PQ是直线y=x上的一条动线段且PQ=(Q在P的下方),当AP+PQ+QB最小时,Q点坐标为()A.(,)B.(,)C.(0,0)D.(1,1)【解答】解:作点B关于直线y=x的对称点B'(0,1),过点A作直线MN,使得MN平行于直线y=x,并沿MN向下平移单位后得A'(2,0),连接A'B'交直线y=x于点Q,如图理由如下:∵AA'=PQ=,AA'∥PQ,∴四边形APQA'是平行四边形,∴AP=A'Q∵AP+PQ+QB=B'Q+A'Q+PQ且PQ=,∴当A'Q+B'Q值最小时,AP+PQ+QB值最小根据两点之间线段最短,即A',Q,B'三点共线时A'Q+B'Q值最小∵B'(0,1),A'(2,0),∴直线A'B'的解析式y=﹣x+1∴x=﹣x+1,即x=∴Q点坐标(,),故选:A.,课后训练1.如图,在锐角△ABC中,∠ACB=50°;边AB上有一定点P,M、N分别是AC和BC边上的动点,当△PMN的周长最小时,∠MPN的度数是()A.50°B.60°C.70°D.80°【答案】D【解析】∵PD⊥AC,PG⊥BC,∴∠PEC=∠PFC=90°,∴∠C+∠EPF=180°,∵∠C=50°,∠D+∠G+∠EPF=180°,∴∠D+∠G=50°,由对称可知:∠G=∠GPN,∠D=∠DPM,∴∠GPN+∠DPM=50°,∴∠MPN=130°﹣50°=80°,选D.2.如图,在四边形ABCD中,DA⊥AB,DA=6,∠B+∠C=150º,CD与BA的延长线交于E点,A刚好是EB 中点,P、Q分别是线段CE、BE上的动点,则BP+PQ最小值是( )A. 12B. 15C. 16D. 18【答案】D【解析】如图,作点B关于CE的对称点F,连接BF,EF,则EB=EF,∵∠B+∠C=150º,∴∠BEC=30º,∴∠BEF=60º,∴△BEF是等边三角形,连接BP,PF,PQ,则BP=FP,∴BP+QP=FP+PQ,当F,P,Q在同一直线上且FQ⊥EB时,BP+PQ的最小值为FQ的长,此时,Q为EB的中点,故与A重合,∵DA⊥AB.DA=6,∴AE ,∴Rt△QEF中,FQ=AE=18,∴BP+PQ最小值值为18,故选D.3.如图,已知等边△ABC的面积为4,P、Q、R分别为边AB、BC、AC上的动点,则PR+QR的最小值是()A.3B.2C.D.4【解答】解:如图,作△ABC关于AC对称的△ACD,点E与点Q关于AC对称,连接ER,则QR=ER,当点E,R,P在同一直线上,且PE⊥AB时,PR+QR的最小值是PE的长,设等边△ABC的边长为x,则高为x,∵等边△ABC的面积为4,∴x×x=4,解得x=4,∴等边△ABC的高为x=2,即PE=2,故选:B.4.如图,平面直角坐标系中,分别以点A(2,3)、点B(3,4)为圆心,1、3为半径作⊙A、⊙B,M,N 分别是⊙A、⊙B上的动点,P为x轴上的动点,则PM+PN的最小值为()A.5﹣4B.﹣1C.6﹣2D.【解答】解:作⊙A关于x轴的对称⊙A′,连接BA′分别交⊙A′和⊙B于M、N,交x轴于P,如图,则此时PM+PN最小,∵点A坐标(2,3),∴点A′坐标(2,﹣3),∵点B(3,4),∴A′B==5,∴MN=A′B﹣BN﹣A′M=5﹣3﹣1=5﹣4,∴PM+PN的最小值为5﹣4.故选:A.5.如图,矩形ABCD中,AB=4,BC=6,点P是矩形ABCD PC+PD的最小值为.【解析】如图,作PM⊥AD于M,作点D关于直线PM的对称点E,连接PE,EC.设AM=,∵四边形ABC都是矩形,AB//CD,AB=CD=4,BC=AD=6,,∴,∴=2,∴AM=2,DM=EM=4,在Rt△ECD,∵PM垂直平分线段DE,∴PD=PE,∴PC+PD=PC+PE≥EC,∴PD+PC,∴PD+PC.6.如图,矩形ABCO的边OC在x轴上,边OA在y轴上,且点C的坐标为(8,0),点A的坐标为(0,6),点E、F分别足OC、BC的中点,点M,N分别是线段OA、AB上的动点(不与端点重合),则当四边形EFNM 的周长最小时,点N的坐标为(4,6).【解答】解:如图所示:作点F关于AB的对称点F′,作点E关于y轴的对称点E′,连接E′F′交AB与点N.∵C的坐标为(8,0),点A的坐标为(0,6),点E、F分别足OC、BC的中点,∴OE=OE′=4,FB=CF=3,∴E′C=12,CF′=9.∵AB∥CE′,∴△F′NB∽△F′E′C.∴==,即=,解得BN=4,∴AN=4.∴N(4,6).故答案为:(4,6).7.如图,在△ABC中,∠ACB=90º,以AC为边在△ABC外作等边三角形ACD,过点D作AC的垂线,垂足为F,与AB相交于点E,连接CE(1)说明:AE=CE=BE;(2)若DA⊥AB,BC=6,P是直线DE上的一点,则当P在何处时,PB+PC最小,并求出此时PB+PC的值.【答案】(1)见解析;(2)12【解析】(1)∵△ADC是等边三角形,DF⊥AC,∴DF垂直平分线段AC,∴AE=EC,∴∠ACE=∠CAE,∵∠ACB=90º,∴∠ACE+∠BCE=90º=∠CAE+∠B=90º,∴∠BCE=∠B,∴CE=EB,∴AE=CE=BE;(2)连接PA,PB,PC,如图所示:∵DA⊥AB,∴∠DAB=90º,∵∠DAC=60º,∴∠CAB=30º,∴∠B=60º,∴BC=AE=EB=CE=6.∴AB=12,∵DE垂直平分AC,∴PC=AP,∴PC=PB+PA,∴当PB+PC最小时,也就是PB+PA最小,即P,B,A共线时最小,∴当点P与点E共点时,PB+PC的值最小,最小值为12.8.已知:矩形ABCD中,AD=2AB,AB=6,E为AD中点,M为CD上一点,PE⊥EM交CB于点P,EN平分∠PEM交BC于点N.(1)求证:PE=EM;(2)用等式表示BP2、PN2、NC2三者的数量关系,并加以证明;(3)过点P作PG⊥EN于点G,K为EM中点,连接DK、KG,求DK+KG+PG的最小值.【答案】(1)见解析;(2)BP2+NC2=PN2;(3)【解析】(1)证明:过P作PQ⊥AD于Q,则PQ=AB,如图所示:∵AD=2AB,E为AD中点,∴AD=2DE,∴PQ=DE,∵PE⊥EM,∴∠PQE=∠D=∠PEM=90º,∴∠QPE+∠PEQ=∠PEQ+∠DEM=90º,∴∠QPE=∠DEM,∴△PQE≌△EDM(ASA),∴PE=EM;(2)三者的数量关系是:BP2+NC2=PN2①点N与点C重合时,P为BC的中点,显然BP2+NC2=PN2成立;②点P与点B重合时,N为BC的中点,显然BP2+NC2=PN2成立;③证明:连接BE、CE,如图所示:∵四边形ABCD为矩形,AD=2AB,E为AD中点,∴∠A=∠ABC=90º,AB=CD=AE=DE,∴∠AEB=45º,∠DEC=45º,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS),∠BEC=90º,∴BE=CE,∴∠EBC=∠ECB=45º,∴∠EBC=∠ECD,又∵∠BEC=∠PEM=90º,∴∠BEP=∠MEC,∠EBP=∠ECM在△BEP和△CEM中,,∴△BEP≌△CEM(ASA),∴BP=MC,PE=ME,∵EN平分∠PEM,∴∠PEN=∠MEN=45º,在△EPN和△EMN中,,∴△EPN≌△EMN(SAS),∴PN=MN,在Rt△MNC中有:MC2+NC2=MN2,∴BP2+NC2=PN2;(3)连接PM,如图所示:由(2),可得PN =MN,PE=ME,∴EN垂直平分PM,PG⊥EN,∴P、G、M三点共线,且G为PM的中点,∵K为EM中点,D=90º,,由(2),可得△PEM为等腰直角三角形,根据勾股定理,可得,,∴当ME取得最小值时,DK+GK+PG取得最小值,即当ME=DE=6时,DK+GK+PG有最小值,最小值为.。
初中数学几何模型(十)将军饮马模型1、两定一动:在直线l上作一点P,使AP+BP最短。
如图:作法:作点A关于直线l的对称点A1,连接A1B,与l的交点就是所求作的P点。
即:AP+BP=A1B(两点之间,线段最短。
)2、一定两动:在∠AOB的两边上分别求点M、N,使△PMN周长最小。
作法:分别作点P关于OA、OB的对称点P1、P2,连接P1P2,与OA交于点M,与OB交于点N,点M、N为所求作的点。
即:PM+MN+PN=P1P2(两点之间,线段最短。
),此时,△PMN周长最小。
3、两定两动:(1)如图,点P、Q使是∠AOB内的两个定点,在∠AOB的两边上分别求作点M、N,使四边形PMNQ周长最小。
作法:作点P关于OA的对称点P1,作点Q关于OB的对称点Q1;连接P1Q1,与OA交于点M,与OB交于点N,点M、N即为所求作的点。
即:PM+MN+NQ=P1Q1,(两点之间,线段最短。
)此时,四边形PMNQ周长最小。
(2)如图,点A、B在直线l外,在直线l上求两点M、N(M在左),使得MN=a,并使AM+MN+NB最短。
作法:如图,将点A向右平移a个单位到A1,作点A1关于直线l 的对称点A2,连接A2B,与直线l交于点N,将点N向左平移a个单位即为点M。
即:AM+MN+NB=a+A2B(两点之间,线段最短。
),此时,AM+MN+NB最短。
4、点-线:点与直线的连线中,垂线段最短。
如图,点P在∠AOB内,在OA、OB上分别取M、N,使得PM+PN 最小。
作法:过点P作关于OA的对称点P1,过点P1作OB的垂线,交OA于点M,交OB于点N。
点M、N即为所求作的点。
即:PM+MN=P1M+MN=P1N(点直线的距离垂线段最短),此时,PM+PN最小。
5、PA—PB型:三角形两边之差小于第三边。
如图,点A、B在直线l两侧,在直线l上取点P,使得|PA-PB|最大。
作法:过点B作关于直线l的对称点B1,连接A B1并延长交直线l于一点,即为所求的点P。
初中数学解题模型专题讲解
专题10 “将军饮马”模型详解与拓展
平面几何中涉及最值问题的相关定理或公理有:① 线段公理:两点之间,线段最短. 并由此得到三角形三边关系; ② 垂线段的性质:从直线外一点到这条直线上各点所连的线段中,垂线段最短. 在一些“线段和最值”的问题中,通过翻折运动,把一些线段进行转化即可应用 ①、② 的基本图形,并求得最值,这类问题一般被称之为“将军饮马”问题。
问题提出:
唐朝诗人李欣的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交
河.”诗中隐含着一个有趣的数学问题.
如图所示,诗中将军在观望烽火之后从山脚下的A 点出发,走到河边饮马后再到B 点宿营.请问怎样走才能使总的路程最短?
模型提炼:
模型模型【【1】一定直线、异侧两定点
直线l 和l 的异侧两点A、B,在直线l 上求作一点P,使PA+PB 最小
解答:根据“两点之间,线段距离最短”,所以联结AB 交直线l 于点P,点P 即为所求点
模型模型【【2】一定直线、同侧两定点
直线l 和l 的同侧两点A、B,在直线l 上求作一点P,使PA+PB 最小
解答:
第一步:画点A 关于直线l 的对称点A'(根据“翻折运
动”的相关性质,点A、A'到对称轴上任意点距离相等,
如图所示,AP=A'P,即把一定直线同侧两定点问题转化为
一定直线异侧两定点问题)
第二步:联结A'B 交直线l 于点Q,根据“两点之间,线段距离最短”,此时“A'Q+QB”最短即“AQ+QB”最短
模型模型【【3】一定直线、一定点一动点
已知直线l 和定点A,在直线k 上找一点B (点A、B 在直线l 同侧),
在直线l 上找点P,使得AP+PB 最小
解答:
第一步:画点A 关于直线l 的对称点A'
第二步:过点A'做A'B⊥k 于点B 且交直线l 于点P,根据“从直线
外一点到这条直线上各点所连的线段中,垂线段最短”,可知A'P+PB 最小即AP+PB 最小
模型模型【【4】一定点、两定直线
点P 是∠MON 内的一点,分别在OM,ON 上作点A,B,使△PAB
的周长最小
解答:
策略:两次翻折
第一步:分别画点P 关于直线OM、ON 的对称点P1、P2
第二步:联结P1P2,交OM、ON 于点A、点B
(根据“翻折运动”的相关性质,AP=AP1,BP=BP2;根据“两点之间,线段距离最短”可知此时AP1+BP2+AB 最短即△ABP 周长最短)
拓展
如果两定点、两定直线呢?
“如图,点P,Q
为∠MON 内的两点,分别在OM,ON 上作点
A,B。
使四边形PAQB 的周长最小”
问题升级问题升级::
问题:如图,△ABC 中,点D、E、F 分别在边AB、AC、BC 上,试求作△DEF 的最小值
解答:
将点D视为定点,先作出△DEF的最小值对应的线段D’D’’,
而后研究D’D’’随着点D的位置变化过程中的最小值即可
无论点D位置在何处,点C对线段D’D’’的张角不变,即
∠ D’CD’’的大小不变,为2∠ACB. 因而,为使得D’D’’最小,只需要CD’ = CD’’ = CD最小即可,显然当CD⊥AB时,有垂线段最小,从而内接三角形△DEF的周长最小
现在已经有CD⊥AB,接下来说明点E、点F也正好是△ABC的高线的垂足!如下图:D’、
D、D’’三点在以C为圆心的圆上,
弧D’D所对圆心角为∠D’CD,
所对圆周角为∠D’D’’D,
故有:(1/2)∠D’CD=∠D’D”D.
由翻折又有:(1/2)∠D’CD=∠ECD,
得∠D’D”D=∠ECD,
故C、E、D、D’’四点共圆;
另一方面:∠CDB+∠CD”B=180°,
故C、D、B、D’’四点共圆,综上有:C、E、D、B、D’’ 五点共圆,从而∠CDB=∠CDB=90°
从而得到一个重要结论:
锐角三角形的所有内接三角形中,垂足三角形周长最小。