12将军饮马常用模型
- 格式:doc
- 大小:89.00 KB
- 文档页数:2
将军饮马问题的11个模型及例题将军饮马问题是一个经典的逻辑问题,涉及到将军如何用有限数量的马和酒到达目的地。
本文将介绍将军饮马问题的11个模型及相应的例题。
1. 直线模型将军与目的地之间没有障碍物,可以直线前进。
此时,将军只需将马拉到目的地即可。
例题1:将军与目的地之间距离为10公里,马的速度为每小时5公里,将军能否在2小时内到达目的地?2. 单个障碍物模型在将军与目的地之间存在一个障碍物,将军可以绕过该障碍物。
例题2:将军与目的地之间距离为15公里,马的速度为每小时4公里,障碍物位于距离将军起点5公里处,将军能否在3小时内到达目的地?3. 多个障碍物模型在将军与目的地之间存在多个障碍物,将军需要逐一绕过这些障碍物。
例题3:将军与目的地之间距离为20公里,马的速度为每小时6公里,障碍物位于距离将军起点分别为5公里、10公里和15公里的位置,将军能否在4小时内到达目的地?4. 跳跃模型将军可以让马跳过障碍物,从而直接到达目的地。
例题4:将军与目的地之间距离为12公里,马的速度为每小时8公里,将军在距离起点6公里处设置一个障碍物,将军能否在2小时内到达目的地?5. 限时模型将军需要在规定的时间内到达目的地。
例题5:将军与目的地之间距离为30公里,马的速度为每小时10公里,将军需要在3小时内到达目的地,是否可能?6. 守备模型目标地点有守备军,将军需要巧妙规避守备军。
例题6:将军与目的地之间距离为25公里,马的速度为每小时7公里,目的地有一支守备军位于距离目标地点10公里处,将军能否在4小时内到达目的地?7. 短平快模型将军不借助马匹,直接徒步走到目的地。
例题7:将军与目的地之间距离为8公里,将军的步行速度为每小时2公里,将军能否在4小时内到达目的地?8. 时间窗模型将军只能在规定时间范围内到达目的地。
例题8:将军与目的地之间距离为18公里,马的速度为每小时6公里,将军需要在3小时到4小时之间到达目的地,是否可能?9. 兵变模型将军需要利用敌军马匹达到目的地。
将军饮马模型“将军饮马”问题主要利用构造对称图形解决求两条线段和差、三角形周长、四边形周长等一类最值问题,会与直线、角、三角形、四边形、圆、抛物线等图形结合,在近年的中考和竞赛中经常出现,而且大多以压轴题的形式出现. 模型1:直线与两定点模型作法结论lB A当两定点A 、B 在直线l 异侧时,在直线l 上找一点P ,使P A +PB 最小.lPAB连接AB 交直线l 于点P ,点P即为所求作的点.P A +PB 的最小值为ABl AB当两定点A 、B 在直线l 同侧时,在直线l 上找一点P ,使得P A +PB 最小.lPB'AB作点B 关于直线l 的对称点B ', 连接AB '交直线l 于点P ,点P 即为所求作的点.P A +PB 的最小值为AB 'l AB当两定点A 、B 在直线l 同侧时,在直线l 上找一点P ,使得PA PB -最大.lPAB连接AB 并延长交直线l 于点P ,点P 即为所求作的点.PA PB -的最大值为ABlAB当两定点A 、B 在直线l 异侧时,在直线l 上找一点P ,使得PA PB -最大.l B'AB P作点B 关于直线I 的对称点B ',连接AB '并延长交直线l 于点P ,点P 即为所求作的点.PA PB -的最大值为AB 'l AB当两定点A 、B 在直线l 同侧时,在直线l 上找一点P ,使得PA PB -最小.l PAB连接AB ,作AB 的垂直平分线交直线l 于点P ,点P 即为所求作的点.PA PB -的最小值为0模型实例例1:如图,正方形ABCD 的面积是12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,则PD +PE 最小值是 .EBC ADP解答:如图所示,∵点B 与点D 关于AC 对称,∴当点P 为BE 与AC 的交点时,PD +PE 最小,且线段BE 的长. ∵正方形ABCD 的面积为12,∴其边长为23∵△ABE 为等边三角形,∴BE =AB =23PD +PE 的最小值为3例2:如图,已知△ABC 为等腰直角三角形,AC =BC =4,∠BCD =15°,P 为CD 上的动点,则PA PB -的最大值是多少?DPPA'B解答:如图所示,作点A 关于CD 的对称点A ′,连接A ′C ,连接A ′B 并延长交CD 于点P ,则点P 就是PA PB -的值最大时的点,PA PB -=A ′B .∵△ABC 为等腰直角三角形,AC =BC 等于4,∴∠ACB =90°. ∵∠BCD =15°,∴∠ACD =75°.∵点A 、A ′关于CD 对称,∴AA ′⊥CD ,AC =CA ′, ∵∠ACD =∠DCA ′=75°,∴∠BCA ′=60°.∵CA ′=AC =BC =4,∴△A ′BC 是等边三角形,∴A ′B =BC =4.∴PA PB -的最大值为4. 练习1.如图,在△ABC 中,AC =BC =2,∠ACB =90°,D 是BC 边的中点,E 是AB 边上一动点,则EC +ED 的最小值是 .DACB E解:解:过点C 作CO ⊥AB 于O ,延长CO 到C ',使O C '=OC ,连接D C ',交AB 于E ,连接C 'B ,此时DE+CE=DE+E C '=D C '的值最小.连接B C ',由对称性可知∠C 'BE=∠CBE=45°,∴∠CB C '=90°,∴B C '⊥BC , ∠BC C '=∠B C 'C=45°,∴BC=B C '=2,∵D 是BC 边的中点,∴BD=1, 根据勾股定理可得:D C '=5,故EC+ED 的最小值是5. 2.如图,点C 的坐标为(3,y ),当△ABC 的周长最短时,求y 的值.xyB (2,0)A (0,3)O解:解:(1)作A 关于x=3的对称点A′,连接A′B 交直线x=3与点C . ∵点A 与点A′关于x=3对称,∴AC=A′C .∴AC+BC=A′C+BC .当点B 、C 、A′在同一条直线上时,A′C+BC 有最小值,即△ABC 的周长有最小值. ∵点A 与点A′关于x=3对称,∴点A′的坐标为(6,3).设直线BA′的解析式y=kx+b,将点B和点A′的坐标代入得:k=34,b=−32.∴y=34x-32.将x=3代入函数的解析式,∴y的值为3 43.如图,正方形ABCD中,AB=7,M是DC上的一点,且DM=3,N是AC上的一动点,求|DN-MN|的最小值与最大值.C解:解:当ND=NM时,即N点DM的垂直平分线与AC的交点,|DN-MN|=0,因为|DN-MN|≤DM,当点N运动到C点时取等号,此时|DN-MN|=DM=3,所以|DN-MN|的最小值为0,最大值为3于D ,点C 、点D 即为所求.PB OAQ点P 、Q 在∠AOB 内部,在OB 边上找点D ,OA 边上找点C ,使得四边形PQDC 周长最小.分别作点P 、Q 关于OA 、OB 的对称点P ′、Q ′,连接P ′Q ′,分别交OA 、OB 于点C 、D ,点C 、D 即为所求.PC +CD +DQ 的最小值为P ′Q ′,所以四边形PQDC 周长的最小值为PQ +P ′Q ′模型实例如图,∠AOB=30°,∠AOB 内有一定点P ,且10OP =.在OA 上有一点Q ,OB 上 一点R .若立△PQR 周长最小,则最小周长是多少?解答如图,作点P 分别关于OA 、OB 的对称点E 、F ,连接EF ,分别交OA 、OB 于点Q 、R ,连接OE 、OF 、PE 、PF .EQ OP =,FR RP =.△PQR 的周长的最小值为EF 的长.由对称性可得∠EOQ=∠POQ ,∠FOR=∠POR , ∠EOF=2∠AOB=60°. △EOF 是正三角形.10EF OE OP ===.即△PQR 周长最小值为10.模型2/角与定点1.已知,40MON °?,P 为MON Ð内一定点,A 为OM 上的点,B 为ON 上的点,当△PAB 的周长取最小值时:OBAP(1)找到A 、B 点,保留作图痕迹;(2)求此时APB Ð等于多少度.如果∠MON =θ,∠APB 又等于多少度?ON1.解答(1)做点P 分别关于OM ON 、的对称点E F 、,连接EF 分别交OM ON 、于点A B 、.点A B 、即为所求,此时△PAB 的周长最小.(2)∵点E 与点P 关于直线OM 对称,点F 与点P 关于ON 对称, ∴∠E =∠APE ,∠F =∠BPF ,∠CPD =180°-∠MON =140°. ∴在△EFP 中,∠E +∠F =180°-140°=40°, ∴∠CPA +∠BPD =40°.∴∠APB =100°.如果∠MON =θ, ∴∠CPD =180°-θ,∠E +∠F =θ. 又∵∠PAB =2∠E ,∠PBA =2∠F ∴∠PAB +∠PBA =2(∠E +∠F )=2θ ∴∠APB =180°-2θ.ONE2.如图,四边形中ABCD ,110BAD °?,90B D °??,在BC 、CD 上分别找 一点M 、N ,使△AMN 周长最小,并求此时+AMN ANM ∠∠的度数.A DBMN2.解答如图,作点A关于BC的对称点A',关于CD的对称点A'',连接A A'''与BC、CD的交点即为所求的点M、N.此时△AMN周长最小.∵∠BAD=110°,∴∠A'+∠A''=180°-110°=70°.由轴对称的性质得:∠A'=∠A AM',∠A''=∠A AN'',∴∠AMN+∠ANM=2(∠A'+∠A'')=2×70°=140°.3.如图,在x轴上找一点C,在y轴上找一点D,使AD CD BC++最小,并求直线CD的解析式及点C、D的坐标.yxOB(3,1)A(1,3)3.解答作点A关于y轴的对称点A',点B关于x轴的对称点B',连接A B''分别交x轴、y轴于点C、D,此时AD CD BC++最小.由对称性可知A'(-1,3),B'(3,-1).易求得直线A B''的解析式为2y x=-+,即直线CD的解析式2y x=-+.当0y=时,2x=,∴点C坐标为(2,0).当0x=时,2y=,∴点D坐标为(0,2).xy (1,3)(3,1)OB 'BA 'AD C4.如图,20MON°?,A 、B 占分别为射线OM 、ON 上两定点,且2OA =,4OB =,点P 、Q 分别为射线OM 、ON 上两动点,当P 、Q 运动时,线段AQ PQ PB ++ 的最小值是多少?ONMAB4.解答作A 点关于ON 的对称点A ',点B 关于OM 的对称点B ',连接A B '',分别交OM ON 、于点P Q 、,连接OA '、OB '.则AQ PQ PB A Q PQ PB A B ''''++=++=,此时AQ PQ PB ++最小. 由对称可知,PB PB '=,AQ A Q '=,2OA OA '==,4OB OB '==,20MOB NOA MON ''∠=∠=∠=︒. 60A OB ''∠=︒.作A D '⊥OB '于点D , 在Rt △ODA '中,∴1OD =,3A D '= ∴413B D '=-=,23A B ''= ∴AQ PQ PB ++的最小值是23.模型作法结论如图,在直线l上找M、N两点(M在左),使得AM+MN+NB最小,且MN=d.将A向右平移d个单位到A′,作A′关于l的对称点A",连接A"B与直线l交于点N,将点N向左平移d个单位即为M,点M,N即为所求.AM+MN+NB的最小值为A"B+d如图,l1∥l2,l1、l2间距离为d,在l1、l2分别找M、N两点,使得MN⊥l1,且AM+MN+NB最小.将A向下平移d个单位到A,连接A′B交直线l2于点N,过点N作MN⊥l1,连接AM.点M、N即为所求.AM+MN+NB的最小值为A'B+d.例题:在平面直角坐标系中,矩形OABC如图所示,点A在x轴正半轴上,点C在y轴正半轴上,且OA=6,OC=4,D为OC中点,点E、F在线段OA上,点E在点F左侧,EF=2.当四边形BDEF的周长最小时,求点E的坐标.解答:如图,将点D向右平移2个单位得到D'(2,2),作D'关于x轴的对称点D"(2,-2),连接BD"交x轴于点F,将点F向左平移2个单位到点E,此时点E和点F为所求作的点,且四边形BDEF周长最小.理由:∵四边形BDEF的周长为BD+DE+EF+BF,BD与EF是定值.∴BF+DE最小时,四边形BDEF周长最小,∵BF+ED=BF+FD'=BF+FD"=BD"ABl2l1A′NMABl2l1BAlM NA′A"BAld设直线BD "的解析式为y =kx +b ,把B (6,4),D "(2,-2)代入,得6k +b =4,2k +b =-2,解得k =32,b =-5,∴直线BD "的解析式为y =32x -5.令y =0,得x =103,∴点F 坐标为(103,0).∴点E 坐标为(43,0).练习1.在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,A (3,0),B (0,4),D 为边OB 的中点. (1)若E 为边OA 上的一个动点,求△CDE 的周长最小值;(2)若E 、F 为边OA 上的两个动点,且EF =1,当四边形CDEF 的周长最小时,求点E 、F 的坐标.解答:(1)如图,作点D 关于x 轴的对称点D ',连接CD '与x 轴交于点E ,连接DE ,由模型可知△CDE 的周长最小.∵在矩形OACB 中,OA =3,OB =4,D 为OB 的中点, ∴D (0,2),C (3,4),D '(0,-2).设直线CD '为y =kx +b ,把C (3,4),D '(0,-2)代入, 得3k +b =4,b =-2,解得k =2,b =-2, ∴直线CD '为y =2x -2. 令y =0,得x =1, ∴点E 的坐标为(1,0). ∴OE =1,AE =2.利用勾股定理得CD =13,DE =5,CE =25, ∴△CDE 周长的最小值为13+35.(2)如图,将点D 向右平移1个单位得到D '(1,2),作D '关于x 轴的对称点D ″(1,-2),连接CD ″交x 轴于点F ,将点F 向左平移1个单位到点E ,此时点E 和点F 为所求作的点,且四边形CDEF 周长最小.理由:∵四边形CDEF 的周长为CD +DE +EF +CF ,CD 与EF 是定值,∴DE +CF 最小时,四边形BDEF 周长最小,∴DE +CF =D 'F +CF =FD ″+CF =CD ″, 设直线CD ″的解析式为y =kx +b ,把C (3,4),D (1,-2)代入,得3k +b =4,k +b =-2,解得k =3,b =-5.∴直线CD ″的解析式为y =3x -5, 令y =0,得x =53,∴点F 坐标为(53,0),∴点E 坐标为(23,0).112.村庄A 和村庄B 位于一条小河的两侧,若河岸彼此平行,要架设一座与河岸垂直的桥,桥址应如何选择,才使A 与B 之间的距离最短?解答:设l 1和l 2为河岸,作BD ⊥l 2,取BB '等于河宽,连接AB '交l 1于C 1,作C 1C 2⊥l 2于C 2, 则A →C 1→C 2→B 为最短路线,即A 与B 之间的距离最短.AB l 2l 1。
“将军饮马”常见模型及18道典型习题何为将军饮马?2000多年以前。
古希腊的亚历山大城里住着一位睿智的数学家海伦。
一天,城里来了一位将军,听闻海伦盛名,特来向他请教一个问题。
将军说,每天早上,他都骑着马儿从营帐出发,到河边让马儿饮水,然后,再去河岸同一侧的一块草地上带着马儿去吃草,问题时,在河岸的哪个具体位置喝水,行程最短?海伦略做沉思,给出了将军最佳方案。
此之谓“将军饮马”。
最佳方案为何?且阅下文:一、将军饮马常见的5种模型:1、一动两定(和最小):如图,点A是将军和马居住的营帐,点B是一块指定的草地,一条小河L潺潺流过,P是将军带着马儿喝水的地方,P点在何处时,将军和马儿走过的路PA+PB的值最小?解析:做A点关于L的对称点A’,连接A’B,与L的交点即为P点。
为什么这时PA+PB最小?假设L上有一点M(与P点不重合)。
∵A点与A’关于L对称∴AP=A’P;AM=A’M;∴AP + BP =A’P +BP =A’B而AM + BM = A’M +MB在△A’MB中,两边之和大于第三边∴A’B < A’M +MB;而M为L上任一点(与P点不重合)。
∴动点P在A’B与L交点处时AP+BP最小。
2、一定两动:如图,点A是将军和马居住的营帐,小河L1依然像上题中一样潺潺流过,P是将军带着马儿喝水的地方,不同的是,这次吃草的地方不在是一个指定的点,而是L2所代表的一片草地,Q则是将军骑马吃草的地方,水足草饱以后,将军和马儿会再回到营帐。
那么,P点、Q点在何处时,将军走过的路AP+PQ+QA的值最小?解析:做A点关于L1的对称点A’;做A点关于L2的对称点A‘’;连接A’A‘’,与L1和L2的交点即为P、Q。
为什么此时,AP+PQ+AQ的和最小?假设L1上有点M(不与P重合)、L2上有点N(不与Q重合)。
∵A点与A’关于L1对称;A点与A‘’关于L2对称。
∴AP=A’P;AQ=A”Q;AM=A’M;AN=A”N;∴AP+PQ+AQ = A’P+PQ+A”Q =A’A”;AM+MN+AN = A’M+MN+A”N在四边形A’MNA”中:A’M+MN+A”N >A’A”∴P、Q位于A’A”与L1和L2的交点处时,AP+PQ+AQ的和最小。
将军饮马常用模型
探索1:如图,在l 上找一点P ,使PA PB +最小。
l
A
B
探索2:如图,在l 上找一点P ,使PA PB +最小。
l
A B
探索3:如图,在l 上找一点P ,使PA PB -最大。
l
A B
探索4:如图,在l 上找一点P ,使PA PB -最大。
l
A
B
探索5:如图,在l上找一点P,使PA PB
最小。
A
l
B
探索6:如图,点P在锐角AOB
∠的内部,在OB边上求作一点D,在OA边上求作一点C,使PCD
∆的周长最小。
探索7:如图,点P在锐角AOB
∠的内部,在OB边上求作一点D,在OA边上求作一点C,使PD CD
+的周长最小。
探索8:如图,点C、D在锐角AOB
∠的内部,在OB边上求作一点F,在OA边上求作一点E,使CEFD的周长最小。
如有侵权请联系告知删除,感谢你们的配合!
如有侵权请联系告知删除,感谢你们的配合!。
当两淀点A 、R 在克罐/何侧时,在亞线』上携一点几便|阳一户创最大°将军饮马”三种模型"将军饮马"问题主要利用构造对称图形解决求两条线段和差、三角形周长、四边形周长等一类最值问题,会与直线、角、三角形、四边形、圆、抛物线等图形结合,在近年的中考和竞赛中经常出现,而且大多以压轴题的形式出现。
晋两定点A.U 在点线F 异創时-在肖践f 上找一点Pt 使PA+PB 锻小*述接也交h 纱/于点P.点卩閒为所求作的点.肖两远点上B 在直雜I 同测时,在直刻上拥一点P,使PA+PB 最小'作庖U 芸于宜线F 的对称点V ■连楼AB'交直线于点P.点P 即为用求作的点"―二I \PA-P^\荊卩址大值洵丽。
连接班并延长交直戦』十点几点卩即为所求作的点。
当两定点仏k 在直找门司侧时,在直线』上找一点人使PA-PB\^扎作点B 关于直统』的对称点B'h 谨接恋’井延快交宜鏡于点巴点F 即为所求作的点。
皓论PAPI1的颯小°PA-PB 的盘小值为AB'□冋-卿的最大值为上的动点,则户创的圮大值是多少?A ■B ■\A\PA-PB\的 1当两定点限廿在宜线/同删时,在直线丿上找--点片使f4-砂|最小“ 叫连接馭作■-朋的垂直平分钱交直线f 于点P ,点卩即沟所求作的点-最小值为叽模型实例例1一如图"止厅形的面积是1氛是等边三博形,点E 在止方刑ABCI )内“在对角纯蚯上有一点卩*则PD+FE 的艮小值为°^12.如圜已S11AABC 为辱展宜角匸角形…怔-氏=4”ZBCD 15".P 拘匚D热搜掃练I.如虱^AABC 中「ZACB-fJO 3,乃是就边的中点,II 是屈边b -动直+则LCIED 的最小悄是°])2・如图.点C的坐标为(3,y),当△ABC的周长最短时,求丿的值。
3.如图.正方形ABCD中,AB-7,M是DCI:的一点,且DM-3,N是AC上的一动点.求|DN-MN|的嚴小值与战大值.△PCD 周氏最小为点P 在ZAOB 的内部,在0B 上找点D,在0A 上找点C,使得△PCD 周长最小。
、背景知识:【传说】早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦? 一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.将军每天从军营A 出发,先到河边饮马,然后再去河岸同侧的军营B 开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它. 从此以后,这个被称为“将军饮马” 的问题便流传至今.【问题原型】将军饮马造桥选址费马点【涉及知识】两点之间线段最短,垂线段最短;三角形两边三边关系;轴对称;平移;【解题思路】找对称点,实现折转直、将军饮马问题常见模型1.两定一动型:两定点到一动点的距离和最小例1:在定直线I上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB最小.作法:连接AB 与直线I 的交点Q,Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB 最小,且最小值等于AB.原理:两点之间线段最短。
证明:连接AB,与直线I的交点Q P为直线I上任意一点例2 :在定直线I上找一个动点P,使动点P到两个定点A与B的距离之和最小即PA+PB 的和最小.关键:找对称点作法:作定点B关于定直线I的对称点C,连接AC,与直线I的交点Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB和最小,且最小值等于AC.原理:两点之间,线段最短证明:连接AC,与直线I的交点Q P为直线I上任意一点,在"PAC中,由三角形三边关系可知:AP+P&AC (当且仅当PQ重合时取=)2.两动一定型例3 :在/ MON 的内部有一点A,在0M上找一点B,在ON上找一点C,使得△ BAC周长最短.作法:作点A关于0M的对称点A',作点A关于ON的对称点A'',连接A' A',与0M交于点B,与ON 交于点C,连接AB AC, △ABC即为所求.原理:两点之间,线段最短例4:在/MON的内部有点A和点B,在OM上找一点C,在ON上找一点D,使得四边形周长最短.作法:作点A关于OM的对称点A,作点B关于ON的对称点B',连接A B ',与交于点C,与ON交于点D,连接AC, BD AB,四边形ABCD即为所求.原理:两点之间,线段最短3.两定两动型最值例5:已知A B是两个定点,在定直线I上找两个动点M与N,且MN长度等于定长d (动点M位于动点N 左侧),使AM+MN+N 的值最小.提示:存在定长的动点问题一定要考虑平移作法一:将点A向右平移长度d得到点A,作A'关于直线I的对称点A'',连接A''B,交直线I于点N,将点N 向左平移长度d, 得到点M作法二:作点A关于直线I的对称点A,将点A1向右平移长度d得到点A2,连接A B ,交直线I于点Q, 将点Q向左平移长度d,得到点Q。
将军饮马问题问题概述路径最短、线段和最小、线段差最大、周长最小等一系列最值问题方法原理1.两点之间,线段最短;2.三角形两边之和大于第三边,两边之差小于第三边;3.中垂线上的点到线段两端点的距离相等;4.垂线段最短.基本模型1.已知:如图,定点A、B分布在定直线l两侧;要求:在直线l上找一点P,使PA+PB的值最小解:连接AB交直线l于点P,点P即为所求,PA+PB的最小值即为线段AB的长度理由:在l上任取异于点P的一点P´,连接AP´、BP´,在△ABP’中,AP´+BP´>AB,即AP´+BP´>AP+BP ∴P为直线AB与直线l的交点时,PA+PB最小.2.已知:如图,定点A和定点B在定直线l的同侧要求:在直线l上找一点P,使得PA+PB值最小(或△ABP的周长最小)解:作点A关于直线l的对称点A´,连接A´B交l于P,点P即为所求;理由:根据轴对称的性质知直线l为线段AA´的中垂线,由中垂线的性质得:PA=PA´,要使PA+PB最小,则需PA´+PB值最小,从而转化为模型1.3.已知:如图,定点A、B分布在定直线l的同侧(A、B两点到l的距离不相等)要求:在直线l上找一点P,使︱PA-PB︱的值最大解:连接BA并延长,交直线l于点P,点P即为所求;理由:此时︱PA-PB︱=AB,在l上任取异于点P的一点P´,连接AP´、BP´,由三角形的三边关系知︱P´A-P´B︱<AB,即︱P´A-P´B︱<︱PA-PB︱4. 已知:如图,定点A、B分布在定直线l的两侧(A、B两点到l的距离不相等)要求:在直线l上找一点P,使︱PA-PB︱的值最大解:作点B关于直线l的对称点B´,连接B´A并延长交于点P,点P即为所求;理由:根据对称的性质知l 为线段BB ´的中垂线,由中垂线的性质得:PB=PB ´,要使︱PA-PB ︱最大,则需︱PA-PB ´︱值最大 ,从而转化为模型3.典型例题1-1如图,直线y=x+4与x 轴、y 轴分别交于点A 和点B ,点C 、D 分别为线段AB 、OB 的中点,点P 为OA 上一动点,当PC+PD 最小时,点P 的坐标为_________,此时PC+PD 的最小值为_________.【分析】符合基本模型2的特征,作点D 关于x 轴的对称点D',连接CD'交x 轴于点P ,此时PC+PD 值最小,由条件知CD 为△BAO 的中位线,OP 为 △CDD'的中位线,易求OP 长,从而求出P 点坐标;PC+PD 的最小值即CD'长,可用勾股定理(或两点之间的距离公式,实质相同)计算.【解答】连接CD ,作点D 关于x 轴的对称点D ′,连接CD ′交x 轴于点P ,此时PC+PD 值最小.令y=x+4中x=0,则y=4,∴点B 坐标(0,4);令y=x+4中y=0,则x+4=0,解得:x=﹣6,∴点A 的坐标为(﹣6,0).∵点C 、D 分别为线段AB 、OB 的中点,∴CD 为△BAO 的中位线, ∴CD ∥x 轴,且CD=21AO=3,∵点D ′和点D 关于x 轴对称,∴O 为DD ′的中点,D ′(0,-1),∴OP 为△CDD ′的中位线,∴OP=21CD=23,∴点P 的坐标为(﹣,0).在Rt △CDD ′中,CD ′=22D D CD '+=2243+=5,即PC+PD 的最小值为5.【小结】还可用中点坐标公式先后求出点C 、点P 坐标;若题型变化,C 、D 不是AB 和OB 中点时,则先求直线CD ′的解析式,再求其与x 轴的交点P 的坐标.典型例题1-2如图,在平面直角坐标系中,已知点A 的坐标为(0,1),点B 的坐标为(,﹣2),点P 在直线y=﹣x 上运动,当|PA ﹣PB|最大时点P 的坐标为_________,|PA ﹣PB|的最大值是_________.【分析】符合基本模型4的特征,作A 关于直线y=﹣x 对称点C ,连接BC ,可得直线BC 的方程;求得BC 与直线y=﹣x 的交点P 的坐标;此时|PA ﹣PB|=|PC ﹣PB|=BC 取得最大值,再用两点之间的距离公式求此最大值.【解答】作A 关于直线y=﹣x 对称点C ,易得C 的坐标为(﹣1,0);连接BC ,可得直线BC的方程为y=﹣54x ﹣54,与直线y=﹣x 联立解得交点坐标P 为(4,﹣4);此时|PA﹣PB|=|PC ﹣PB|=BC 取得最大值,最大值BC=2223)2()1(-++=241; 【小结】“两点一线”大多考查基本模型2和4,需作一次对称点,连线得交点.变式训练1-1已知菱形OABC 在平面直角坐标系的位置如图所示,顶点A (5,0),OB=4,点P 是对角线OB 上的一个动点,D (0,1),当CP+DP 最短时,点P 的坐标为( )A .(0,0)B .(1,)C .(,)D .(,)变式训练1-2如图,菱形ABCD 中,对角线AC 和BD 交于点O ,AC=2,BD=2,E 为AB 的中点,P 为对角线AC 上一动点,则PE+PB 的最小值为__________.变式训练1-3如图,已知直线y=x+1与y轴交于点A,与x轴交于点D,抛物线y=x2+bx+c与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0).(1)求该抛物线的解析式;(2)在抛物线的对称轴上找一点M,使|AM﹣MC|的值最大,求出点M的坐标.拓展模型1.已知:如图,A为锐角∠MON外一定点;要求:在射线OM上找一点P,在射线ON上找一点Q,使AP+PQ的值最小.解:过点A作AQ⊥ON于点Q,AQ与OM相交于点P,此时,AP+PQ最小;理由:AP+PQ≧AQ,当且仅当A、P、Q三点共线时,AP+PQ取得最小值AQ,根据垂线段最短,当AQ⊥ON时,AQ最小.2.已知:如图,A为锐角∠MON内一定点;要求:在射线OM上找一点P,在射线ON上找一点Q,使AP+PQ的值最小.解:作点A关于OM的对称点A′,过点A′作AQ⊥ON于点Q,A′Q交OM于点P,此时AP+PQ最小;理由:由轴对称的性质知AP=A′P,要使AP+PQ最小,只需A′P+PQ最小,从而转化为拓展模型13.已知:如图,A为锐角∠MON内一定点;要求:在射线OM上找一点P,在射线ON上找一点Q,使△APQ的周长最小解:分别作A点关于直线OM的对称点A1,关于ON的对称点A2,连接 A1A2交OM于点P,交ON于点Q,点P和点Q即为所求,此时△APQ周长最小,最小值即为线段A1A2的长度;理由:由轴对称的性质知AP=A1P,AQ=A2Q,△APQ的周长AP+PQ+AQ=A1P+PQ+A2Q,当A1、P、Q、A2四点共线时,其值最小.4. 已知:如图,A、B为锐角∠MON内两个定点;要求:在OM上找一点P,在ON上找一点Q,使四边形APQB的周长最小解:作点A关于直线OM的对称点A´,作点B关于直线ON的对称点B´,连接A´B´交OM于P,交ON于Q,则点P、点Q即为所求,此时四边形APQB周长的最小值即为线段AB和A´B´的长度之和;理由:AB长为定值,由基本模型将PA转化为PA´,将QB转化为QB´,当A´、P、Q、B´四点共线时,PA´+PQ+ QB´的值最小,即PA+PQ+ QB的值最小.5.搭桥模型已知:如图,直线m∥n,A、B分别为m上方和n下方的定点,(直线AB不与m垂直)要求:在m、n之间求作垂线段PQ,使得AP+PQ+BQ最小.分析:PQ为定值,只需AP+BQ最小,可通过平移,使P、Q“接头”,转化为基本模型解:如图,将点A沿着平行于PQ的方向,向下平移至点A′,使得AA′=PQ,连接A′B交直线n于点Q,过点Q作PQ⊥n,交直线m于点P,线段PQ即为所求,此时AP+PQ+BQ最小.理由:易知四边形QPAA′为平行四边形,则QA′=PA,当B、Q、A′三点共线时,QA′+BQ最小,即AP+BQ最小,PQ长为定值,此时AP+PQ+BQ最小.6.已知:如图,定点A、B分布于直线l两侧,长度为a(a为定值)的线段PQ在l上移动(P在Q左边)要求:确定PQ的位置,使得AP+PQ+QB最小分析:PQ为定值,只需AP+QB的值最小,可通过平移,使P、Q“接头”,转化为基本模型解:将点A沿着平行于l的方向,向右移至A´,使AA´=PQ=a,连接A´B交直线l于点Q,在l上截取PQ=a(P在Q左边),则线段PQ即为所求,此时AP+PQ+QB的最小值为A´B+PQ,即A´B+a理由:易知四边形APQA´为平行四边形,则PA=QA´,当A´、Q、B三点共线时,QA´+QB最小,即PA+QB最小,又PQ长为定值此时PA+PQ+QB值最小.7.已知:如图,定点A、B分布于直线l的同侧,长度a(a为定值)的线段PQ在l上移动(P在Q左边)要求:确定PQ的位置,使得四边形APQB周长最小分析:AB长度确定,只需AP+PQ+QB最小,通过作A点关于l的对称点,转化为上述模型3解:作A点关于l的对称点A´,将点A´沿着平行于l的方向,向右移至A´´,使A´A´´=PQ=a,连接A ´´B交l 于Q ,在l 上截取QP=a (P 在Q 左边),线段PQ 即为所求,此时四边形APQB 周长的最小值为A ´´B+AB+PQ ,即A ´´B+AB+a典型例题2-1如图,在矩形ABCD 中,AB=10,BC=5,若点M 、N 分别是线段AC 、AB 上的两个动点,则BM+MN 的最小值为 .【分析】符合拓展模型2的特征,作点B 关于AC 的对称点E ,再过点E 作AB 的垂线段,该垂线段的长即BM+MN 的最小值,借助等面积法和相似可求其长度.【解答】作点B 关于AC 的对称点E ,再过点E 作EN ⊥AB 于N ,则BM+MN=EM+MN ,其最小值即EN 长;∵AB=10,BC=5,∴AC=22BC AB +=55,等面积法求得AC 边上的高为55510⨯=25,∴BE=45, 易知△ABC ∽△ENB ,∴,代入数据解得EN=8. 即BM+MN 的最小值为8.【小结】该类题的思路是通过作对称,将线段转化,再根据定理、公理连线或作垂线;可作定点或动点关于定直线的对称点,有些题作定点的对称点易解,有些题则作动点的对称点易解.典型例题2-2如图,∠AOB=60°,点P是∠AOB内的定点且OP=,点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是()A.B.C.6 D.3【分析】符合拓展模型3的特征;作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,此时△PMN周长最小,其值为CD长;根据对称性连接OC、OD,分析条件知△OCD是顶角为120°的等腰三角形,作底边上高,易求底边CD.【解答】作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,则MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,∴PN+PM+MN=ND+MN+NC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN周长最小,作OH⊥CD于H,则CH=DH,∵∠OCH=30°,∴OH=OC=,CH=OH=,∴CD=2CH=3.即△PMN周长的最小值是3;故选:D.【小结】根据对称的性质,发现△OCD是顶角为120°的等腰三角形,是解题的关键,也是难点.典型例题2-3如图,已知平行四边形ABCO,以点O为原点,OC所在的直线为x轴,建立直角坐标系,AB交y轴于点D,AD=2,OC=6,∠A=60°,线段EF所在的直线为OD的垂直平分线,点P为线段EF上的动点,PM⊥x轴于点M点,点E与E′关于x轴对称,连接BP、E′M.(1)请直接写出点A坐标为,点B坐标为;(2)当BP+PM+ME′的长度最小时,请求出点P的坐标.【分析】(1)解直角三角形求出OD,BD的长即可解决;(2)符合“搭桥模型”的特征;首先证明四边形OPME′是平行四边形,可得OP=EM,PM是定值,PB+ME′=OP+PB的值最小时,BP+PM+ME′的长度最小,此时P点为直线OB与EF的交点,结合OB的解析式可得P点坐标;【解答】(1)在Rt△ADO中,∵∠A=60°,AD=2,∴OD=2•tan60°=2,∴A(﹣2,2),∵四边形ABCO是平行四边形,∴AB=OC=6,∴DB=6﹣2=4,∴B(4,2)(2)如图,连接OP.∵EF垂直平分线段OD,PM⊥OC,∴∠PEO=∠EOM=∠PMO=90°,∴四边形OMPE是矩形,∴PM=OE=,∵OE=OE′,∴PM=OE′,PM∥OE′,∴四边形OPME′是平行四边形,∴OP=EM,∵PM是定值,∴PB+ME′=OP+PB的值最小时,BP+PM+ME′的长度最小,∴当O、P、B共线时,BP+PM+ME′的长度最小,∵直线OB的解析式为y=x,∴P(2,).【小结】求没有公共端点的两条线段之和的最小值,一般通过作对称和平移(构造平行四边形)的方法,转化为基本模型.典型例题2-4如图所示,在平面直角坐标系中,Rt△AOB的顶点坐标分别为A(﹣2,0),O(0,0),B(0,4),把△AOB绕点O按顺时针方向旋转90°,得到△COD.(1)求C、D两点的坐标;(2)求经过A、B、D三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上取两点E、F(点E在点F的上方),且EF=1,使四边形ACEF的周长最小,求出E、F两点的坐标.【分析】符合拓展模型7的特征,通过作对称、平移、连线,可找出E、F点,结合直线的解析式和抛物线的对称轴可解出E、F坐标.【解答】(1)由旋转的性质可知:OC=OA=2,OD=OB=4,∴C点的坐标是(0,2),D点的坐标是(4,0),(2)设所求抛物线的解析式为y=ax2+bx+c,4a-2b+c=0由题意,得 16a+4b+c=0c=4解得a=-b=1,c=4,∴所求抛物线的解析式为y=-;(3)只需AF+CE最短,抛物线y=-的对称轴为x=1,将点A向上平移至A1(﹣2,1),则AF=A1E,作A1关于对称轴x=1的对称点A2(4,1),连接A2C,A2C与对称轴交于点E,E为所求,可求得A2C的解析式为y=-,当x=1时,y=,∴点E的坐标为(1,),点F的坐标为(1,).【小结】解决此类题的套路是“对称、平移、连线”;其中,作对称和平移的顺序可互换.变式训练2-1几何模型:条件:如图1,A,B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA+PB的值最小.方法:作点A关于直线l的对称点A’,连接A’B交l于点P,即为所求.(不必证明)模型应用:(1)如图2,已知平面直角坐标系中两定点A(0,﹣1)和B(2,﹣1),P为x轴上一动点,则当PA+PB的值最小是点P的横坐标是,此时PA+PB= .(2)如图3,正方形ABCD的边长为4,E为AB的中点,P是AC上一动点,连接BD,由正方形对称性可知,B与D关于直线AC对称.连接ED交AC于P,则PB+PE的最小值是.(3)如图4,在菱形ABCD中,AB=10,∠DAB=60°,P是对角线AC上一动点,E,F分别是线段AB和BC上的动点,则PE+PF的最小值是.(4)如图5,在菱形ABCD中,AB=6,∠B=60°,点G是边CD边的中点,点E.F分别是AG,AD上的两个动点,则EF+ED的最小值是.变式训练2-2如图,矩形ABCD中,AD=15,AB=10,E为AB边上一点,且DE=2AE,连接CE与对角线BD交于F;若P、Q分别为AB边和BC边上的动点,连接EP、PQ和QF;则四边形EPQF周长的最小值是___________.变式训练2-3如图,已知直线l 1∥l2,l1、l2之间的距离为8,点P到直线l1的距离为6,点Q到直线l2的距离为4,PQ=4,在直线l1上有一动点A,直线l2上有一动点B,满足AB⊥l2,且PA+AB+BQ最小,此时PA+BQ= .变式训练2-4如图,已知在平面直角坐标系xOy中,直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于点E和F.(1)求经过A、B、C三点的抛物线的解析式;(2)当BE经过(1)中抛物线的顶点时,求CF的长;(3)在抛物线的对称轴上取两点P、Q(点Q在点P的上方),且PQ=1,要使四边形BCPQ 的周长最小,求出P、Q两点的坐标.中考真题1.要在街道旁建奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使A、B到它的距离之和最短?小聪以街道为x轴,建立了如图所示的平面直角坐标系,A点坐标为(0,3),B点坐标为(6,5),则A、B两点到奶站距离之和的最小值是.2.如图,矩形ABOC 的顶点A 的坐标为(﹣4,5),D 是OB 的中点,E 是OC 上的一点,当△ADE 的周长最小时,点E 的坐标是( ) A .(0,)B .(0,)C .(0,2)D .(0,)3.如图,在矩形ABCD 中,AB=5,AD=3,动点P 满足S △PAB =31S 矩形ABCD ,则点P 到A 、B 两点距离之和PA+PB 的最小值为( ) A . B . C .5 D .4.已知抛物线y=x 2+1具有如下性质:该抛物线上任意一点到定点F (0,2)的距离与到x 轴的距离始终相等,如图,点M 的坐标为(,3),P 是抛物线y=x 2+1上一个动点,则△PMF 周长的最小值是( ) A .3 B .4C .5D .65.如图,点A (a ,3),B (b ,1)都在双曲线y=上,点C ,D ,分别是x 轴,y 轴上的动点,则四边形ABCD 周长的最小值为( ) A .B .C .D .6.如图,在Rt △ABC 中,∠C=90°,AC=3,BC=4,D 、E 分别是AB 、BC 边上的动点,则AE+DE 的最小值为( )A.B.C.5 D.7.如图,Rt△ABC中,∠BAC=90°,AB=3,AC=6,点D,E分别是边BC,AC上的动点,则DA+DE的最小值为.8.如图,等腰△ABC的底边BC=20,面积为120,点F在边BC上,且BF=3FC,EG是腰AC的垂直平分线,若点D在EG上运动,则△CDF周长的最小值为.9.如图,菱形ABCD的边长为6,∠ABC=120°,M是BC边的一个三等分点,P是对角线AC上的动点,当PB+PM的值最小时,PM的长是()A.B.C.D.10.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD平分∠CAB交BC于D点,E,F分别是AD,AC上的动点,则CE+EF的最小值为()A.B.C.D.611.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N 两点.△OMN的面积为10.若动点P在x轴上,则PM+PN 的最小值是()A.6B.10 C.2D.212.如图,△ABC中,AC=BC=2,AB=1,将它沿AB翻折得到△ABD,则四边形ADBC的形状是形,P、E、F分别为线段AB、AD、DB上的任意点,则PE+PF的最小值是.13.如图,已知抛物线y=x2+bx+c与直线y=x+3交于A,B两点,交x轴于C、D两点,连接AC、BC,已知A(0,3),C(﹣3,0).(1)求此抛物线的解析式;(2)在抛物线对称轴l上找一点M,使|MB﹣MD|的值最大,并求出这个最大值;(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P,使得以A,P,Q为顶点的三角形与△ABC相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.14.如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.(1)用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法);(2)在(1)的条件下,①证明:AE⊥DE;②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值.15.如图,抛物线y=ax2+bx+c(a≠0)经过点A(﹣1,0),B(3,0),C(0,3)三点.(1)求抛物线的解析式及顶点M的坐标;(2)连接AC、BC,N为抛物线上的点且在第四象限,当S△NBC=S△ABC时,求N点的坐标;(3)在(2)问的条件下,过点C作直线l∥x轴,动点P(m,3)在直线l上,动点Q(m,0)在x轴上,连接PM、PQ、NQ,当m为何值时,PM+PQ+QN的和最小,并求出 PM+PQ+QN 和的最小值.16.如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x+c的图象交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND 长度的最大值;(3)若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴、y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F,E的坐标.17.如图1,已知抛物线y=(x﹣2)(x+a)(a>0)与x轴从左至右交于A,B两点,与y轴交于点C.(1)若抛物线过点T(1,﹣),求抛物线的解析式;(2)在第二象限内的抛物线上是否存在点D,使得以A、B、D三点为顶点的三角形与△ABC相似?若存在,求a的值;若不存在,请说明理由.(3)如图2,在(1)的条件下,点P的坐标为(﹣1,1),点Q(6,t)是抛物线上的点,在x轴上,从左至右有M、N两点,且MN=2,问MN在x轴上移动到何处时,四边形PQNM 的周长最小?请直接写出符合条件的点M的坐标.18.如图,对称轴为直线x=2的抛物线经过A(﹣1,0),C(0,5)两点,与x轴另一交点为B.已知M(0,1),E(a,0),F(a+1,0),P是第一象限内抛物线上的动点.(1)求此抛物线的解析式;(2)当a=1时,求四边形MEFP的面积的最大值,并求此时点P的坐标;(3)若△PCM是以点P为顶点的等腰三角形,求a为何值时,四边形PMEF周长最小?请说明理由.19.探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P1(x1,y1),P2(x2,y2),可通过构造直角三角形利用图1得到结论:P1P2=他还利用图2证明了线段P1P2的中点P(x,y)P的坐标公式:x=,y=.(1)请你帮小明写出中点坐标公式的证明过程;运用:(2)①已知点M(2,﹣1),N(﹣3,5),则线段MN长度为;②直接写出以点A(2,2),B(﹣2,0),C(3,﹣1),D为顶点的平行四边形顶点D的坐标:;拓展:(3)如图3,点P(2,n)在函数y=x(x≥0)的图象OL与x轴正半轴夹角的平分线上,请在OL、x轴上分别找出点E、F,使△PEF的周长最小,简要叙述作图方法,并求出周长的最小值.20.如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛物线y=﹣x2+2x+1与y轴交于点C.(1)求直线y=kx+b的函数解析式;(2)若点P(x,y)是抛物线y=﹣x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d关于x的函数解析式,并求d取最小值时点P的坐标;(3)若点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值.21.如图①,在平面直角坐标系中,OA=6,以OA为边长作等边三角形ABC,使得BC∥OA,且点B、C落在过原点且开口向下的抛物线上.(1)求这条抛物线的解析式;(2)在图①中,假设一动点P从点B出发,沿折线BAC的方向以每秒2个单位的速度运动,同时另一动点Q从O点出发,沿x轴的负半轴方向以每秒1个单位的速度运动,当点P 运动到A点时,P、Q都同时停止运动,在P、Q的运动过程中,是否存在时间t,使得PQ⊥AB,若存在,求出t的值,若不存在,请说明理由;(3)在BC边上取两点E、F,使BE=EF=1个单位,试在AB边上找一点G,在抛物线的对称轴上找一点H,使得四边形EGHF的周长最小,并求出周长的最小值.本人所著《初中几何模型与解题通法》已发行,可在当当、淘宝和京东搜索购买特色:1.由一线名师编写,更专业权威,各地历年中考压轴题几乎都能在书中找到对应的模型和方法,甚至出现大量高度类似题。
将军饮马的六种模型将军饮马问题是一个经典的最优化问题,常见的有六种模型。
一、六大模型1.给定直线l和直线l的异侧两点A、B,在直线l上求一点P,使PA+PB最小。
2.给定直线l和直线l的同侧两点A、B,在直线l上求一点P,使PA+PB最小。
3.给定∠MON内一点P,在OM、ON上分别作点A、B,使△PAB的周长最小。
4.给定∠MON内的两点P、Q,在OM、ON上分别作点A、B,使四边形PAQB的周长最小。
5.给定∠MON外的一点A,在射线ON上作点P,使PA与点P到射线OM的距离之和最小。
6.给定∠MON内的一点A,在射线ON上作点P,使PA与点P到射线OM的距离之和最小。
二、常见题目Part1、三角形1.在等边△ABC中,AB=6,AD⊥BC,E是AC上的一点,M是AD上的一点,AE=2,求EM+EC的最小值。
解:连接BE,交AD于点M,则ME+MD最小。
过点B作BH⊥AC于点H,则EH=AH–AE=3–2=1.在直角△BHE中,BE=√(BH^2+HE^2)=√(3^2+1^2)=√10.因此,EM+EC=BE+BC-2AE=√10+6-2×2=√10+2.2.在锐角△ABC中,AB=√2,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是多少?解:作点B关于AD的对称点B',过点B'作B'E⊥AB于点E,交AD于点F,则线段B'E长就是BM+MN的最小值。
在XXX△AEB'中,根据勾股定理得到,B'E=√2.因此,XXX√2.3.在△ABC中,AB=2,∠BAC=30°,若在AC、AB上各取一点M、N,使BM+MN值最小,则这个最小值是多少?解:作AB关于AC的对称线段AB',过点B'作B'N⊥AB,垂足为N,交AC于点M,则B'N=MB'+MN=MB+MN。
将军饮马问题16大模型解析将军饮马问题,常见于教科书,也常用于实际生活。
这类题目最简单的方法就是画图像,但有些题目不会画图像怎么办呢?这里我来介绍一下16种模型。
解析一:当每位同学找出16种图形时,给每种图形做一个记号,不妨称之为一个象限。
我们先按照记号放入将军饮马问题的正确答案中,再对应题目要求去掉一个错误答案。
如上图中有: 1、 0、 2、3、 4、 5、 6、 7、 8、 9、 10、 11、 12、 13、 14、 15、16。
现在我们要找到除了这些外的那种图形。
解析二:此题中的关键是: 1、问号必须比周围颜色浅2、和周围颜色一样3、比其他任何颜色都要深4、不能被周围的任何颜色包围着5、不在画面上6、被画面上的任何颜色包围着7、两个单一色的棋子只能摆成一行。
8、两个单一色的棋子可以摆成任意形状9、最后剩下两个棋子没有形状,那么我们再找一个单一色棋子,将其加进去即可。
因为单一色可以组合成任意形状,所以我们要找的那个棋子的颜色不需要固定。
我们从原始棋子开始找起,第一步:如果还有空位,则代表该颜色无法加入棋子;第二步:如果还有棋子未被占据,则代表该颜色能够加入棋子;第三步:如果没有可以加入的空位,则代表该颜色不能加入棋子。
如下图,有四个可以加入的位置。
因为每一个颜色都有两种可以加入的情况,那么最终结果就是: 2、 4、6、 7。
从而得到解题思路:即可从黑白棋子中各选一个加入其余两个已经加入棋子的空格,再把剩余两个棋子放在新空位上即可。
8、两个单一色的棋子只能摆成一行,我们只需要想办法使得摆出的两个棋子一起摆成一条线即可。
9、最后剩下两个棋子没有形状,那么我们再找一个单一色棋子,将其加进去即可。
因为单一色可以组合成任意形状,所以我们要找的那个棋子的颜色不需要固定。
我们从原始棋子开始找起,第一步:如果还有空位,则代表该颜色无法加入棋子;第二步:如果还有棋子未被占据,则代表该颜色能够加入棋子;第三步:如果没有可以加入的空位,则代表该颜色不能加入棋子。
将军饮马模型一、背景知识:【传说】早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“将军饮马”的问题便流传至今.【问题原型】将军饮马造桥选址费马点【涉及知识】两点之间线段最短,垂线段最短;三角形两边三边关系;轴对称;平移;【解题思路】找对称点,实现折转直二、将军饮马问题常见模型1.两定一动型:两定点到一动点的距离和最小例1:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB 最小.作法:连接AB,与直线l的交点Q,Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB最小,且最小值等于AB.原理:两点之间线段最短。
证明:连接AB,与直线l的交点Q,P为直线l上任意一点,在⊿PAB中,由三角形三边关系可知:AP+PB≧AB(当且仅当PQ重合时取﹦)例2:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB的和最小.关键:找对称点作法:作定点B关于定直线l的对称点C,连接AC,与直线l的交点Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB和最小,且最小值等于AC.原理:两点之间,线段最短证明:连接AC,与直线l的交点Q,P为直线l上任意一点,在⊿PAC中,由三角形三边关系可知:AP+PC≧AC(当且仅当PQ重合时取﹦)2.两动一定型例3:在∠MON的内部有一点A,在OM上找一点B,在ON上找一点C,使得△BAC周长最短.作法:作点A关于OM的对称点A’,作点A关于ON的对称点A’’,连接A’ A’’,与OM 交于点B,与ON交于点C,连接AB,AC,△ABC即为所求.原理:两点之间,线段最短例4:在∠MON的内部有点A和点B,在OM上找一点C,在ON上找一点D,使得四边形ABCD周长最短.作法:作点A关于OM的对称点A’,作点B关于ON的对称点B’,连接A’ B’,与OM交于点C,与ON交于点D,连接AC,BD,AB,四边形ABCD即为所求.原理:两点之间,线段最短3.两定两动型最值例5:已知A、B是两个定点,在定直线l上找两个动点M与N,且MN长度等于定长d(动点M位于动点N左侧),使AM+MN+NB的值最小.提示:存在定长的动点问题一定要考虑平移作法一:将点A向右平移长度d得到点A’,作A’关于直线l的对称点A’’,连接A’’B,交直线l于点N,将点N向左平移长度d,得到点M。
将军饮马问题的11个模型及例题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(将军饮马问题的11个模型及例题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为将军饮马问题的11个模型及例题的全部内容。
将军饮马问题问题概述路径最短、线段和最小、线段差最大、周长最小等一系列最值问题方法原理1。
两点之间,线段最短;2。
三角形两边之和大于第三边,两边之差小于第三边;3。
中垂线上的点到线段两端点的距离相等;4。
垂线段最短。
基本模型1.已知:如图,定点A、B分布在定直线l两侧;要求:在直线l上找一点P,使PA+PB的值最小解:连接AB交直线l于点P,点P即为所求,PA+PB的最小值即为线段AB的长度理由:在l上任取异于点P的一点P´,连接AP´、BP´,在△ABP’中,AP´+BP´>AB,即AP´+BP´〉AP+BP∴P为直线AB与直线l的交点时,PA+PB最小.2.已知:如图,定点A和定点B在定直线l的同侧要求:在直线l上找一点P,使得PA+PB值最小(或△ABP的周长最小)解:作点A关于直线l的对称点A´,连接A´B交l于P,点P即为所求;理由:根据轴对称的性质知直线l为线段AA´的中垂线,由中垂线的性质得:PA=PA´,要使PA+PB最小,则需PA´+PB值最小,从而转化为模型1.3.已知:如图,定点A、B分布在定直线l的同侧(A、B两点到l的距离不相等)要求:在直线l上找一点P,使︱PA—PB︱的值最大解:连接BA并延长,交直线l于点P,点P即为所求;理由:此时︱PA—PB︱=AB,在l上任取异于点P的一点P´,连接AP´、BP´,由三角形的三边关系知︱P´A-P´B︱<AB,即︱P´A—P´B︱〈︱PA—PB︱4。