Eviews第四讲:格兰杰因果
- 格式:ppt
- 大小:1023.50 KB
- 文档页数:22
格兰杰因果关系检验.格兰杰因果关系检验一、经济变量之间的因果性问题计量经济模型的建立过程,本质上是用回归分析工具处理一个经济变量对其他经济变量的依存性问题,但这并不是暗示这个经济变量与其他经济变量间必然存在着因果关系。
由于没有因果关系的变量之间常常有很好的回归拟合,把回归模型的解释变量与被解释变量倒过来也能够拟合得很好,因此回归分析本身不能检验因果关系的存在性,也无法识别因果关系的方向。
假设两个变量,比如国内生产总值GDP 和广义货币供给量M ,各自都有滞后的分量GDP (-1),GDP (-2)…,M (-1),M (-2),…,显然这两个变量都存在着相互影响的关系。
但现在的问题是:究竟是M 引起GDP 的变化,还是GDP 引起M 的变化,或者两者间相互影响都存在反馈,即M 引起GDP 的变化,同时GDP 也引起M 的变化。
这些问题的实质是在两个变量间存在时间上的先后关系时,是否能够从统计意义上检验出因果性的方向,即在统计上确定GDP 是M 的因,还是M 是GDP 的因,或者M 和GDP 互为因果。
因果关系研究的有趣例子是回答“先有鸡还是先有蛋”的问题。
1988年有两位学者Walter N. Thurman 和Mark E. Fisher 用美国1930——1983年鸡蛋产量(EGGS )和鸡的产量(CHICKENS )的年度数据,对此问题进行了统计研究。
他们运用格兰杰的方法检验鸡和蛋之间的因果关系,结果发现,鸡生蛋的假设被拒绝,而蛋生鸡的假设成立,因此,蛋为因,鸡为果,也就是先有蛋。
他们并建议作其他诸如“谁笑在最后谁笑得最好”、“骄傲是失败之母”之类的格兰杰因果检验。
二、格兰杰因果关系检验经济学家开拓了一种可以用来分析变量之间的因果的办法,即格兰杰因果关系检验。
该检验方法为2003年诺贝尔经济学奖得主克莱夫·格兰杰(Clive W. J. Granger)所开创,用于分析经济变量之间的因果关系。
格兰杰因果检验原理嘿,朋友们!今天咱来聊聊格兰杰因果检验原理。
这玩意儿啊,就像是生活中的一种奇妙关系探索器。
你想啊,在生活中,我们常常会琢磨一些事情之间是不是有某种特别的关联。
比如说,你发现每次你一打喷嚏,天就好像要下雨,那打喷嚏和下雨之间是不是有啥因果关系呢?格兰杰因果检验原理就像是个超级侦探,专门来探究这些关系。
它可不是随便看看就下结论的哦!它会仔细分析数据,从各种角度去研究。
比如说,A 事件发生在前,B 事件跟着就来了,那是不是 A 导致了 B 呢?但这可没那么简单,不能光看先后顺序呀,还得看它们之间是不是真的有那种内在的、稳定的联系。
好比说,你每天早上喝杯咖啡,然后就觉得精神特别好。
但到底是喝咖啡让你精神好呢,还是你本来就会精神好,喝咖啡只是个巧合呢?格兰杰因果检验原理就会去深入挖掘这些细节,试图找出真正的答案。
它就像是个严谨的裁判,不会轻易被表面现象迷惑。
它要的是确凿的证据,要确定这个因果关系是真的存在,而不是我们自己想象出来的。
再打个比方,你觉得自己每次穿红色衣服出门就会遇到好事,这真的是因为穿红色衣服导致的吗?也许只是巧合呢?格兰杰因果检验原理会帮你搞清楚这到底是怎么回事。
这原理在很多领域都大有用处呢!经济学里可以用它来看看不同经济变量之间的关系,医学里可以用它来研究某种治疗方法和康复效果之间有没有因果联系。
你说这格兰杰因果检验原理是不是特别神奇?它就像一把钥匙,能打开我们对事物之间关系认知的大门。
让我们能更准确地理解这个世界,知道什么是真正的因果,而不是被一些虚假的关联所误导。
总之,格兰杰因果检验原理是个非常有价值的工具,能帮助我们在复杂的世界中找到真正的因果关系。
它让我们不再盲目地相信一些表面的联系,而是用科学的方法去分析、去验证。
所以啊,大家可别小瞧了它哟!原创不易,请尊重原创,谢谢!。
格兰杰因果检验格兰杰因果检验在时间序列情形下,两个经济变量X、Y之间的格兰杰因果关系定义为:若在包含了变量X、Y的过去信息的条件下,对变量Y 的预测效果要优于只单独由Y的过去信息对Y进⾏的预测效果,即变量X有助于解释变量Y的将来变化,则认为变量X是引致变量Y的格兰杰原因。
进⾏格兰杰因果关系检验的⼀个前提条件是时间序列必须具有平稳性,否则可能会出现虚假回归问题。
因此在进⾏格兰杰因果关系检验之前⾸先应对各指标时间序列的平稳性进⾏单位根检验(unit root test)。
格兰杰因果检验只涉及2个变量间的因果检验,以序列x t、y t为例,包括3个关系:序列x 是y的原因,序列y是x的原因及⼆者互为因果,检验过程如下:x t=αiqi=1x t?i+βjqj=1y t?j+u1ty t=λisλ=1x t?i+δjsj=1y t?j+u2t其中?1t、?1t表⽰⽩噪声,a1i、b1i为系数,格兰杰因果关系检验假设了有关y和x每⼀变量的预测的信息全部包含在这些变量的时间序列之中。
检验要求估计以下的回归:(1)αα(2)其中⽩噪⾳u1t和u2t假定为不相关的。
式(1)假定当前y与y⾃⾝以及x的过去值有关,⽽式(2)对x也假定了类似的⾏为。
对式(1)⽽⾔,其零假设H0 :α1=α2=…=αq=0。
对式(2)⽽⾔,其零假设H0 :δ1=δ2=…=δs=0。
分四种情形讨论:(1)x是引起y变化的原因,即存在由x到y的单向因果关系。
若式(1)中滞后的x的系数估计值在统计上整体的显著不为零,同时式(2)中滞后的y的系数估计值在统计上整体的显著为零,则称x是引起y变化的原因。
(2)y是引起x变化的原因,即存在由y到x的单向因果关系。
若式(2)中滞后的y的系数估计值在统计上整体的显著不为零,同时式(1)中滞后的x的系数估计值在统计上整体的显著为零,则称y是引起x变化的原因。
(3)x和y互为因果关系,即存在由x到y的单向因果关系,同时也存在由y到x的单向因果关系。
格兰杰因果检验解读格兰杰因果关系检验一、经济变量之间的因果性问题计量经济模型的建立过程,本质上是用回归分析工具处理一个经济变量对其他经济变量的依存性问题,但这并不是暗示这个经济变量与其他经济变量间必然存在着因果关系。
由于没有因果关系的变量之间常常有很好的回归拟合,把回归模型的解释变量与被解释变量倒过来也能够拟合得很好,因此回归分析本身不能检验因果关系的存在性,也无法识别因果关系的方向。
假设两个变量,比如国内生产总值GDP和广义货币供给量M,各自都有滞后的分量GDP(-1),GDP(-2)…,M(-1),M(-2),…,显然这两个变量都存在着相互影响的关系。
但现在的问题是:究竟是M引起GDP的变化,还是GDP引起M的变化,或者两者间相互影响都存在反馈,即M引起GDP的变化,同时GDP也引起M 的变化。
这些问题的实质是在两个变量间存在时间上的先后关系时,是否能够从统计意义上检验出因果性的方向,即在统计上确定GDP是M的因,还是M是GDP的因,或者M和GDP互为因果。
因果关系研究的有趣例子是回答“先有鸡还是先有蛋”的问题。
1988年有两位学者Walter N. Thurman和Mark E. Fisher用美国1930——1983年鸡蛋产量(EGGS)和鸡的产量(CHICKENS)的年度数据,对此问题进行了统计研究。
他们运用格兰杰的方法检验鸡和蛋之间的因果关系,结果发现,鸡生蛋的假设被拒绝,而蛋生鸡的假设成立,因此,蛋为因,鸡为果,也就是先有蛋。
他们并建议作其他诸如“谁笑在最后谁笑得最好”、“骄傲是失败之母”之类的格兰杰因果检验。
二、格兰杰因果关系检验经济学家开拓了一种可以用来分析变量之间的因果的办法,即格兰杰因果关系检验。
该检验方法为2003年诺贝尔经济学奖得主克莱夫·格兰杰(Clive W. J. Granger)所开创,用于分析经济变量之间的因果关系。
他给因果关系的定义为“依赖于使用过去某些时点上所有信息的最佳最小二乘预测的方差。
格兰杰因果检验步骤格兰杰因果检验是一种用于判断两个二分类变量之间是否存在因果关系的统计方法。
它可以帮助我们确定一个变量是否能够预测另一个变量的状态,并且排除其他变量的干扰。
下面将介绍格兰杰因果检验的步骤。
1. 确定研究问题和变量在进行格兰杰因果检验之前,首先需要明确研究问题和要分析的变量。
例如,我们想要研究某种药物对于治疗某种疾病的效果,那么药物的使用与疾病的发展就是我们要分析的两个变量。
2. 收集数据接下来,我们需要收集关于这两个变量的数据。
数据可以通过实验、调查或观察等方式获得。
确保数据的收集过程严谨可靠,以保证后续的分析结果的可靠性。
3. 构建列联表格兰杰因果检验需要基于二分类变量的列联表进行计算。
列联表是一种将两个变量的不同取值组合成的表格,用于描述两个变量之间的关系。
表格的行表示一个变量的不同取值,列表示另一个变量的不同取值,交叉点则表示两个变量同时取某个值的频数。
4. 计算列联表的卡方值格兰杰因果检验使用卡方检验来判断两个变量之间是否存在因果关系。
卡方值是通过计算观察频数与期望频数之间的差异而得到的。
观察频数是指在实际数据中两个变量同时取某个值的频数,而期望频数是指在假设没有因果关系的情况下,两个变量同时取某个值的频数。
5. 计算自由度和临界值计算完卡方值后,需要根据列联表的自由度和显著性水平来确定临界值。
自由度是指列联表中独立的自由变量的个数。
临界值是在给定显著性水平下,用于判断卡方值是否显著的参考值。
6. 比较卡方值和临界值将计算得到的卡方值与临界值进行比较。
如果卡方值大于临界值,则可以得出结论:两个变量之间存在因果关系。
反之,如果卡方值小于临界值,则不能得出因果关系的结论。
7. 解释结果根据比较的结果来解释两个变量之间的关系。
如果卡方值大于临界值,说明药物的使用与疾病的发展之间存在因果关系。
如果卡方值小于临界值,则说明药物的使用与疾病的发展之间不存在因果关系。
同时,还可以进一步分析其他变量对于药物治疗效果的影响,以获得更全面的结论。
格兰杰因果关系检验的步骤1.收集数据:首先需要收集两个时间序列的数据,分别记为X和Y。
这两个时间序列可以是连续的,也可以是离散的,但要求它们均为平稳的时间序列。
2. 拟合模型:接下来,需要为X和Y拟合合适的模型。
常用的模型包括自回归模型(Autoregressive model, AR)、移动平均模型(Moving Average model, MA)和自回归移动平均模型(Autoregressive Moving Average model, ARMA)。
根据数据的特性进行模型的选择。
3. 确定滞后阶数:通过计算自相关函数(Autocorrelation Function, ACF)和偏自相关函数(Partial Autocorrelation Function, PACF),可以确定X和Y的滞后阶数。
滞后阶数表示因果关系所涉及的时间间隔。
4. 拟合向量自回归模型:通过将X和Y的滞后值作为自变量,建立一个向量自回归模型(Vector Autoregressive model, VAR)。
公式形式为:Y = c + A1*Y(lag1) + ... + An*Y(lagN) + B1*X(lag1) + ... +Bn*X(lagN) + ε,其中c为常数项,Ai和Bi为系数矩阵,N为滞后阶数。
5.检验格兰杰因果关系:对于VAR模型,可以通过计算向量自回归残差的协方差矩阵来检验X对Y的格兰杰因果关系。
设VAR模型的残差为e,如果存在一个时间滞后,称之为k,使得滞后残差e(k)与Y的现值Y(t)相关显著,那么就可以认为X对Y具有格兰杰因果关系。
6.计算p值:通过计算格兰杰因果关系检验的统计量,可以得到一个p值。
如果p值小于设定的显著性水平(通常为0.05),则可以拒绝原假设,认为X对Y具有格兰杰因果关系。
7.解释结果:根据检验结果,可以解释变量X对Y的因果关系的方向和强度。
如果X对Y具有正向影响且显著,可以认为X的变动可以导致Y的变动。
格兰杰因果检验1. 简介格兰杰因果检验(Granger Causality Test)是一种用来评估一组变量之间因果关系的统计方法。
该方法建立在自回归模型(Autoregressive Model)的基础上,通过比较不同模型的预测能力来判断变量之间是否存在因果关系。
格兰杰因果检验可以用于时间序列数据分析、经济学研究、金融市场分析等领域。
其核心思想是通过观察一个变量的历史数据是否对另一个变量的未来值的预测有额外的信息增益,从而判断两个变量之间是否存在因果关系。
2. 原理格兰杰因果检验的原理基于自回归模型。
自回归模型是一种时间序列模型,它假设当前时刻的观测值与过去时刻的观测值相关。
自回归模型可以表示为以下形式:X(t) = a0 + a1 * X(t-1) + a2 * X(t-2) + ... + an * X(t-n) + e(t)其中,X(t)表示时间t的观测值,X(t-1)等表示相应的历史观测值,a0, a1, …, an 为系数,e(t)为误差项。
格兰杰因果检验的关键是比较两个模型:一个包含了待测变量的历史观测值作为预测变量,另一个只包含已知历史观测值的模型。
通过比较两个模型的预测准确度,可以判断待测变量的历史观测值是否对目标变量的预测有额外的信息。
具体而言,格兰杰因果检验的步骤如下:1.确定待测变量和目标变量;2.构建自回归模型,选择合适的滞后阶数n;3.利用已知的历史观测值进行模型的参数估计;4.比较两个模型的预测能力,利用一定的统计指标(如均方根误差、F-统计量)来评估预测准确度;5.根据统计指标的结果,判断待测变量是否对目标变量的预测有额外的信息,从而判断两个变量之间是否存在因果关系。
3. 实例分析为了更好地理解格兰杰因果检验的应用,下面我们以一个具体的实例来说明。
假设我们有两个时间序列变量:A和B,其中A表示每个月的平均气温,B表示每个月的销售额。
我们想要判断气温是否影响销售额。
Eviews做单位根检验和格兰杰因果分析一,首先我根据ADF检验结果,来说明这两组数据对数情况下是否是同阶单整的(同阶单整即说明二者是协整的,这是一种协整检验的方法),我对你的两组数据分别作了单位根检验,结果如下:1.LNFDI水平下的ADF结果:Null Hypothesis: LNFDI has a unit rootExogenous: ConstantLag Length: 2 (Automatic based on AIC, MAXLAG=3 Augmented Dickey-Fuller test statistict-Statistic Prob.*-1.45226403166189 0.526994561264069Test critical values:1% level -4.004424924017175% level -3.0988964053233710% level -2.69043949557234*MacKinnon (1996 one-sided p-values.Warning: Probabilities and critical values calculated for 20observations and may not be accurate for a sample size of 14从上面的t-Statistic对应的值可以看到, -1.45226403166189大于下面所有的临界值,因此LNFDI在水平情况下是非平稳的。
然后我对该数据作了二阶,再进行ADF检验结果如下:t-Statistic Prob.*- 2.8606168858628 0.0770552989049772Test critical values:1% level -4.057909684396635% level -3.1199095651240810% level -2.70110325490427看到t-Statistic的值小于10% level下的-2.70110325490427,因此可以认为它在二阶时,有90%的可能性,是平稳的。
数学建模格兰杰因果检验格兰杰因果检验是基于格兰杰因果模型的一种统计方法,用于分析两个时间序列之间的因果关系。
本文将对格兰杰因果检验进行详细介绍,并探讨其在数学建模中的应用。
1. 引言格兰杰因果检验是由美国经济学家格兰杰(Granger)在1969年提出的,用于分析时间序列数据之间的因果关系。
它在经济学、金融学、气象学等领域得到广泛应用。
格兰杰因果检验可以帮助我们理解变量之间的因果关系,从而预测未来的发展趋势。
2. 格兰杰因果模型格兰杰因果模型是格兰杰因果检验的理论基础。
该模型假设一个时间序列的变化可以由过去时间序列的值预测,即过去的值对当前值有影响。
格兰杰因果模型可以表示为如下的线性回归模型:y(t) = a + b1*y(t-1) + b2*y(t-2) + ... + bn*y(t-n) + ε(t)其中,y(t)表示当前时间点的变量值,y(t-1)、y(t-2)等表示过去时间点的变量值,a、b1、b2等为模型的参数,ε(t)为误差项。
3. 格兰杰因果检验的原理格兰杰因果检验通过对比两个模型的拟合优度来判断两个时间序列之间的因果关系。
首先,我们分别建立两个模型,一个是只包含自变量的模型,另一个是在自变量基础上加入因变量的模型。
然后,通过比较两个模型的拟合优度,来判断是否存在因果关系。
如果加入因变量的模型的拟合优度显著提高,那么就可以认为因变量对自变量有因果影响。
4. 格兰杰因果检验的步骤格兰杰因果检验的具体步骤如下:(1)收集时间序列数据;(2)确定时间序列的滞后阶数n;(3)建立格兰杰因果模型,包括只有自变量的模型和加入因变量的模型;(4)计算两个模型的拟合优度,一般使用残差平方和(RSS)或均方根误差(RMSE)作为评价指标;(5)进行统计检验,比较两个模型的拟合优度是否显著不同;(6)根据检验结果判断是否存在因果关系。
5. 格兰杰因果检验的应用格兰杰因果检验在数学建模中有着广泛的应用。
Eviews格兰杰因果关系检验结果说明Eviews格兰杰因果关系检验结果说明一、经济变量之间的因果性问题计量经济模型的建立过程,本质上是用回归分析工具处理一个经济变量对其他经济变量的依存性问题,但这并不是暗示这个经济变量与其他经济变量间必然存在着因果关系。
由于没有因果关系的变量之间常常有很好的回归拟合,把回归模型的解释变量与被解释变量倒过来也能够拟合得很好,因此回归分析本身不能检验因果关系的存在性,也无法识别因果关系的方向。
假设两个变量,比如国内生产总值GDP和广义货币供给量M,各自都有滞后的分量GDP(-1),GDP(-2)…,M(-1),M(-2),…,显然这两个变量都存在着相互影响的关系。
但现在的问题是:究竟是M引起GDP的变化,还是GDP引起M的变化,或者两者间相互影响都存在反馈,即M引起GDP的变化,同时GDP也引起M的变化。
这些问题的实质是在两个变量间存在时间上的先后关系时,是否能够从统计意义上检验出因果性的方向,即在统计上确定GDP是M的因,还是M是GDP的因,或者M和GDP互为因果。
因果关系研究的有趣例子是回答“先有鸡还是先有蛋”的问题。
1988年有两位学者Walter N. Thurman和Mark E. Fisher用美国1930——1983年鸡蛋产量(EGGS)和鸡的产量(CHICKENS)的年度数据,对此问题进行了统计研究。
他们运用格兰杰的方法检验鸡和蛋之间的因果关系,结果发现,鸡生蛋的假设被拒绝,而蛋生鸡的假设成立,因此,蛋为因,鸡为果,也就是先有蛋。
他们并建议作其他诸如“谁笑在最后谁笑得最好”、“骄傲是失败之母”之类的格兰杰因果检验。
二、格兰杰因果关系检验经济学家开拓了一种可以用来分析变量之间的因果的办法,即格兰杰因果关系检验。
该检验方法为2003年诺贝尔经济学奖得主克莱夫?格兰杰(Clive W. J. Granger)所开创,用于分析经济变量之间的因果关系。
他给因果关系的定义为“依赖于使用过去某些时点上所有信息的最佳最小二乘预测的方差。
Eviews格兰杰因果关系检验结果说明一、经济变量之间的因果性问题计量经济模型的建立过程,本质上是用回归分析工具处理一个经济变量对其他经济变量的依存性问题,但这并不是暗示这个经济变量与其他经济变量间必然存在着因果关系。
由于没有因果关系的变量之间常常有很好的回归拟合,把回归模型的解释变量与被解释变量倒过来也能够拟合得很好,因此回归分析本身不能检验因果关系的存在性,也无法识别因果关系的方向。
假设两个变量,比如国内生产总值GDP和广义货币供给量M,各自都有滞后的分量GDP(-1),GDP(-2)…,M(-1),M(-2),…,显然这两个变量都存在着相互影响的关系。
但现在的问题是:究竟是M引起G DP的变化,还是GDP引起M的变化,或者两者间相互影响都存在反馈,即M引起GDP的变化,同时GDP也引起M的变化。
这些问题的实质是在两个变量间存在时间上的先后关系时,是否能够从统计意义上检验出因果性的方向,即在统计上确定GDP是M的因,还是M是GDP的因,或者M和GDP互为因果。
因果关系研究的有趣例子是回答“先有鸡还是先有蛋”的问题。
1988年有两位学者Wal ter N. Thurman和MarkE. Fisher用美国1930——1983年鸡蛋产量(EGGS)和鸡的产量(CHICKEN S)的年度数据,对此问题进行了统计研究。
他们运用格兰杰的方法检验鸡和蛋之间的因果关系,结果发现,鸡生蛋的假设被拒绝,而蛋生鸡的假设成立,因此,蛋为因,鸡为果,也就是先有蛋。
他们并建议作其他诸如“谁笑在最后谁笑得最好”、“骄傲是失败之母”之类的格兰杰因果检验。
二、格兰杰因果关系检验经济学家开拓了一种可以用来分析变量之间的因果的办法,即格兰杰因果关系检验。
该检验方法为2003年诺贝尔经济学奖得主克莱夫·格兰杰(Clive W. J. Granger)所开创,用于分析经济变量之间的因果关系。
格兰杰因果分析
格兰杰因果分析是一种研究方法,它可以帮助我们更好地理解事物之间的关系。
它的基本思想是,一个事件可能会导致另一个事件,而这两个事件之间可能存在因果关系。
格兰杰因果分析可以帮助我们更好地理解事物之间的关系,从而更好地解决问题。
格兰杰因果分析的基本步骤是,首先要确定一个事件,然后分析它可能导致的
其他事件,最后确定这些事件之间的因果关系。
例如,如果我们想研究一个社会问题,我们可以先确定这个问题的原因,然后分析它可能导致的其他问题,最后确定这些问题之间的因果关系。
格兰杰因果分析可以帮助我们更好地理解事物之间的关系,从而更好地解决问题。
它可以帮助我们更好地分析问题,找出问题的根源,并找出有效的解决方案。
此外,它还可以帮助我们更好地预测未来的发展趋势,从而更好地制定有效的策略。
总之,格兰杰因果分析是一种有效的研究方法,它可以帮助我们更好地理解事
物之间的关系,从而更好地解决问题。
它可以帮助我们更好地分析问题,找出问题的根源,并找出有效的解决方案。
格兰杰因果关系检验一、经济变量之间的因果性问题计量经济模型的建立过程,本质上是用回归分析工具处理一个经济变量对其他经济变量的依存性问题,但这并不是暗示这个经济变量与其他经济变量间必然存在着因果关系。
由于没有因果关系的变量之间常常有很好的回归拟合,把回归模型的解释变量与被解释变量倒过来也能够拟合得很好,因此回归分析本身不能检验因果关系的存在性,也无法识别因果关系的方向。
假设两个变量,比如国内生产总值GDP和广义货币供给量M,各自都有滞后的分量GDP (-1),GDP(-2)…,M(-1),M(-2),…,显然这两个变量都存在着相互影响的关系。
但现在的问题是:究竟是M引起GDP的变化,还是GDP引起M的变化,或者两者间相互影响都存在反馈,即M引起GDP的变化,同时GDP也引起M的变化。
这些问题的实质是在两个变量间存在时间上的先后关系时,是否能够从统计意义上检验出因果性的方向,即在统计上确定GDP是M的因,还是M是GDP的因,或者M和GDP互为因果。
因果关系研究的有趣例子是回答“先有鸡还是先有蛋”的问题。
1988年有两位学者Walter N. Thurman和Mark E. Fisher用美国1930——1983年鸡蛋产量(EGGS)和鸡的产量(CHICKENS)的年度数据,对此问题进行了统计研究。
他们运用格兰杰的方法检验鸡和蛋之间的因果关系,结果发现,鸡生蛋的假设被拒绝,而蛋生鸡的假设成立,因此,蛋为因,鸡为果,也就是先有蛋。
他们并建议作其他诸如“谁笑在最后谁笑得最好”、“骄傲是失败之母”之类的格兰杰因果检验。
二、格兰杰因果关系检验经济学家开拓了一种可以用来分析变量之间的因果的办法,即格兰杰因果关系检验。
该检验方法为2003年诺贝尔经济学奖得主克莱夫·格兰杰(Clive W. J. Granger)所开创,用于分析经济变量之间的因果关系。
他给因果关系的定义为“依赖于使用过去某些时点上所有信息的最佳最小二乘预测的方差。