牛顿第二定律的应用弹簧类问题.docx
- 格式:docx
- 大小:61.09 KB
- 文档页数:4
牛顿第二定律应用的问题1.力和运动的关系力是改变物体运动状态的原由,而不是保持运动的原由。
由知,加快度与力有直接关系,剖析清楚了力,就知道了加快度,而速度与力没有直接关系。
速度怎样变化需剖析加快度方向与速度方向之间的关系,加快度与速度同向时,速度增添;反之减小。
在加快度为零时,速度有极值。
例1. 如图1 所示,轻弹簧下端固定在水平面上。
一个小球从弹簧正上方某一高度处由静止开始自由着落,接触弹簧后把弹簧压缩到必定程度后停止着落。
在小球着落的这一全过程中,以下说法中正确的选项是()图 1A.小球刚接触弹簧瞬时速度最大B.从小球接触弹簧起加快度变成竖直向上C.从小球接触弹簧到抵达最低点,小球的速度先增大后减小D.从小球接触弹簧到抵达最低点,小球的加快度先减小后增大例 2.一航天探测器达成对月球的探测任务后,在走开月球的过程中,由静止开始沿着与月球表面成一倾斜角的直线飞翔,先加快运动,再匀速运动,探测器经过喷气而获取推进力,以下对于喷气方向的描绘中正确的选项是()A.探测器加快运动时,沿直线向后喷气B.探测器加快运动时,竖直向下喷气C.探测器匀速运动时,竖直向下喷气D.探测器匀速运动时,不需要喷气分析:小球的加快度大小决定于小球遇到的合外力。
从接触弹簧到抵达最低点,弹力从零开始渐渐增大,所以协力先减小后增大,所以加快度先减小后增大。
当协力与速度同向时小球速度增大,所以当小球所受弹力和重力大小相等时速度最大。
应选 CD。
分析:受力剖析如图 2 所示,探测器沿直线加快运动时,所受协力方向与运动方向同样,而重力方向竖直向下,由平行四边形定章知推力方向一定斜向上方,由牛顿第三定律可知,喷气方向斜向下方;匀速运动时,所受协力为零,所以推力方向一定竖直向上,喷气方向竖直向下。
故正确答案选C。
图 22.力和加快度的刹时对应关系(1)物体运动的加快度 a 与其所受的合外力 F 有刹时对应关系。
每一刹时的加快度只取决于这一刹时的合外力,而与这一刹时之间或刹时以后的力没关。
牛顿第二定律(二)弹簧专题1、物体都处于静止状态,判断下列弹簧处于什么状态(伸长、压缩、原长)?2.如右图所示,弹簧左端固定,右端自由伸长到O 点并系住物体m ,现将弹簧压缩到A 点,然后释放,物体一直可以运动到B 点,如果物体受到的摩擦力大小恒定,则A .物体从A 到O 先加速后减速B .物体从A 到O 加速,从O 到B 减速C .物体在A 、O 间某点时所受合力为零D .物体运动到O 点时所受合力为零3.如图所示,轻弹簧下端固定,竖立在水平面上。
其正上方A 位置有一只小球。
小球从静止开始下落,在B 位置接触弹簧的上端,在C 位置小球所受弹力大小等于重力,在D 位置小球速度减小到零。
小球下降阶段下列判断中正确的是 A .在B 位置小球动能最大B .在C 位置小球加速度最大 C .从A →C 位置小球重力势能的减少等于小球动能的增加D .从B →D 位置小球重力势能的减少小于弹簧弹性势能的增加乙 丙 F图2 甲 mABC D B C D4.如图3所示,质量为m 的小球用水平轻弹簧系住,并用倾角为30°的光滑木板AB 托住,小球恰好处于静止状态.当木板AB 突然向下撤离的瞬间,小球的加速度大小为A .0 B.233g C .g D.33g5.甲、乙所示,图中细线均不可伸长,两小球均处于平衡状态且质量相同.如果突然把两水平细线剪断,剪断瞬间小球A 的加速度的大小为________,方向为________;小球B 的加速度的大小为________,方向为________;剪断瞬间甲中倾斜细线OA 与乙中弹簧的拉力之比为________(θ角已知).6.[瞬时加速度的求解]在光滑水平面上有一质量为1 kg 的物体,它的左端与一劲度系数为800 N /m 的轻弹簧相连,右端连接一细线.物体静止时细线与竖直方向成37°角,此时物体与水平面刚好接触但无作用力,弹簧处于水平状态,如图3所示,已知sin 37°=0.6,cos 37°=0.8,重力加速度g 取10 m/s 2,则下列判断正确的是( )A .在剪断细线的瞬间,物体的加速度大小为7.5 m/s 2B .在剪断弹簧的瞬间,物体所受合外力为15 NC .在剪断细线的瞬间,物体所受合外力为零D .在剪断弹簧的瞬间,物体的加速度大小为7.5 m/s 27.质量均为m 的A 、B 两个小球之间系一个质量不计的弹簧,放在光滑的台面上.A 紧靠墙壁,如图5所示,今用恒力F 将B 球向左挤压弹簧,达到平衡时,突然将力F 撤去,此瞬间A .A 球的加速度为F 2mB .A 球的加速度为零C .B 球的加速度为F 2mD .B 球的加速度为F m8.如图1所示,A 、B 两小球分别连在轻绳两端,B 球另一端用弹簧固定在倾角为30°的光滑斜面上.A 、B 两小球的质量分别为m A 、m B ,重力加速度为g ,若不计弹簧质量,在绳被剪断瞬间,A 、B 两球的加速度大小分别为( )A .都等于g 2 B.g 2和0 C.g 2和m A m B ·g 2 D.m A m B ·g 2和g 29.[瞬时加速度的求解]如图2所示,A 、B 球的质量相等,弹簧的质量不计,倾角为θ的斜面光滑,系统静止时,弹簧与细线均平行于斜面,在细线被烧断的瞬间,下列说法正确的是A .两个小球的瞬时加速度均沿斜面向下,大小均为g sin θB .B 球的受力情况未变,瞬时加速度为零C .A 球的瞬时加速度沿斜面向下,大小为2g sin θD .弹簧有收缩的趋势,B 球的瞬时加速度向上,A 球的瞬时加速度向下,瞬时加速度都不为零10..如图3-2-2所示,A 、B 两小球分别连在弹簧两端,B 端用细线固定在倾角为30°的光滑斜面上。
物体处于平衡状态,现在将OA剪断,求剪断瞬间物体的加速度,若将绳OB换为长度为L2的弹簧,结果又如何?【例2】如图,两个质量分别为M和m的小球,通过两条轻绳a、b相间连接,悬挂于天花板下,试分析两条绳子的张力大小;现用剪刀分别剪断a
断前后张力变化情况
断前后张力变化情况。
,弹簧质量不计,其劲度系数为k=800N/m,P施加一个竖直向上的
40使静止在撤去计算瞬间受支持力变化(
力F=40N,使P静止。
现在撤去F,计算一瞬间P受支持力变化。
(
g=10m/s2)
球的加速度
弹断瞬,Q
轻质弹簧托住⑴当悬绳被剪断的瞬间,P、的加速度大小分别是多
少?⑵从悬绳被剪断到弹簧恢复原长的过程中,P,Q的运动情况如
何
何?
.两物块所受摩擦力的大小总是相等
.两物块不可能同时相对绸带静止
两物块不可能同时相对绸带静止
【例7】如图,滑轮不计质量,不计摩擦,A,B绳子质量都为m
1)剪断A上部的绳子,则B加速度多大?
2)剪断A下部的绳子,则B加速度多大?。
成功源于勤奋成功源于勤奋
=g =
四、连接体弹簧
6.一根劲度系数为k,质量不计的轻弹簧,上端固定
将物体托住,并使弹簧处于自然长度。
如图7
匀加速向下移动。
求经过多长时间木板开始与物体分离。
的最大速度为
的大小为mg
恒力在此过程中做的功为
的轻弹簧的一端固定在墙上,另一端与置于水平面上质量为
,弹簧水平且无形变.用水平力,缓慢推动物体,在弹性限度内弹簧
后,物体刚运动时的加速度大小为
)
.大小为
.大小为
定在框架上,下端固定
加速度为的加速度可能也为只有重力和弹力对
:对篮球受力分析如图,
、
,解得:越来越大,压力传感器的示数逐渐增大。
故项可能。
:若升降机正在减速下降,对篮球受力分析,由牛顿第二定律可得:
,解得:
逐渐增小。
故项不可能。
的位移,即为,解得:,故
解决本题关键处理好当B刚好离开地面时,
出弹簧的伸长量,结合刚开始时系统处于平衡状态即可求出弹簧的压缩量,进而求出间的弹簧拉伸量减小,当弹簧的弹力为时,的加速度为的加速度为。
牛顿运动定律-弹簧问题弹簧问题,高中物理中常见的题型之一,并且综合性强,是个难点。
1.如图所示,轻弹簧下端固定在水平面上,一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。
在小球下落的这一全过程中,下列说法中正确的是 A .小球刚接触弹簧瞬间速度最大 B .从小球接触弹簧起加速度变为竖直向上C .从小球接触弹簧到到达最低点,小球的速度先增大后减小D .从小球接触弹簧到到达最低点,小球的加速度先减小后增大2.如图所示,自由落下的小球,从接触竖直放置的弹簧开始到弹簧的压缩量最大的过程中,小球的速度及所受的合外力的变化情况是( ) A .合外力一直变小,速度一直变小直到为零B .合外力先变小后变大,速度一直变小直到零C .合力先变小,后变大;速度先变大,然后变小直到为零D .合力先变大,后变小,速度先变小,后变大3.如图所示,轻质弹簧上面固定一块质量不计的薄板,竖立在水平面上。
在薄板上放一重物,用手将重物向下压缩到一定程度后,突然将手撤去,则重物将被弹簧弹射出去,则在弹射过程中(重物与弹簧脱离之前)重物的运动情况是 ( ) A 、一直加速运动 B 、匀加速运动C 、先加速运动后减速运动D 、先减速运动后加速运动4.如图所示,静止在光滑水平面上的物体A ,一端靠着处于自然状态的弹簧.现对物体作用一水平恒力,在弹簧被压缩到最短这一过程中,物体的速度和加速度变化的情况是( ) A .速度增大,加速度增大 B .速度增大,加速度减小C .速度先增大后减小,加速度先增大后减小D .速度先增大后减小,加速度先减小后增大4.如图所示.弹簧左端固定,右端自由伸长到O 点并系住物体m .现将弹簧压缩到A 点,然后释放,物体一直可以运动到B 点.如果物体受到的阻力恒定,则 A .物体从A 到O 先加速后减速B .物体从A 到O 加速运动,从O 到B 减速运动C .物体运动到O 点时所受合力为零D .物体从A 到O 的过程加速度逐渐减小5.如图所示,物体P 以一定的初速度v 沿光滑水平面向右运动,与一个右端固定的轻质弹簧相撞,并被弹簧反向弹回。
牛顿第二定律弹簧切断问题
当系统中存在弹簧时,剪断弹簧,其弹力不能瞬间消失,俗称就叫非瞬变力。
与之相对,将系统中的弹簧换为细绳,剪断细绳,弹力瞬间消失,俗称就叫瞬变力。
牛顿第二运动定律的常见表述是:物体加速度的大小跟作用力成正比,跟物体的质量成反比;加速度的方向跟作用力的方向相同。
换成公式表达就是F(作用力)=m(物体质量)a(物体加速度),其中F单位为牛顿N、m单位为千克kg、a单位为米每平方秒m/s2。
由公式可以看出,加速度和力是同时产生、同时变化、同时消失的。
F改变,a也会随之改变。
1、质量为m的物体在水平面上滑动,水平面的摩擦系数为μ,求物体的加速度,(重力加速度为g)2、质量为m的物体在固定的光滑斜面上滑动,求物体的加速度,(重力加速度为g)拓展(1)质量为m的物体在固定的粗糙斜面上向上滑动,斜面的摩擦系数为μ,求物体的加速度,拓展(2)质量为m的物体在固定的粗糙斜面上向下滑动,斜面的摩擦系数为μ,求物体的加速度,3、行驶的汽车中用细线悬挂一小球,小球的质量为m,此时细线与竖直方向的夹角为θ,求汽车的加速度,(重力加速度为g)4、光滑的斜面上放置一小球,小球相对斜面静止,整体向右运动,求斜面的加速度,(重力加速度为g)5、物体放置在水平面上受到恒力F向右运动,F与水平方向成θ斜向右上,地面的摩擦系数为μ,求物体的加速度,(重力加速度为g)拓展:若恒力F斜向右下,求物体的加速度,(重力加速度为g)6、质量为m的人随电梯匀加速上行,加速度为a,求:(1)画出人的受力分析图(2)人受到的F N 和F f1、物体A、B的质量分别是m A、m B,在恒力F作用下向右运动,(1)水平面光滑。
求物体A、B的加速度和物体A、B间的相互作用力(2)水平面面的摩擦系数为μ。
求物体A、B的加速度和物体A、B间的相互作用力2、物体A、B的质量分别是m A、m B,中间用一细线连接,在恒力F作用下向右运动,(1)水平面光滑。
求物体A、B的加速度和物体A、B间的相互作用力(2)水平面面的摩擦系数为μ。
求物体A、B的加速度和物体A、B间的相互作用力3、斜面上物体A、B的质量分别是m A、m B,中间用一细线连接,在恒力F作用下运动,(1)斜面光滑。
求物体A、B的加速度和物体A、B间的相互作用力(2)斜面的摩擦系数为μ。
求物体A、B的加速度和物体A、B间的相互作用力4、物体A、B的质量分别是m A、m B,中间用一细线连接,在恒力F作用下向上运动,求物体A、B的加速度和物体A、B间的相互作用力5、把以上细线换成弹簧或细杆,会怎样?最终结论:F FF如图:不计滑轮摩擦,求车的加速度和细线拉力?如图:不计滑轮摩擦,求m1的加速度和细线拉力?如图:不计滑轮摩擦,m1>m2求m1的加速度和细线拉力?6、“T”型物体倒立在地面上,质量为M,质量为m的小环套在上面向下滑动,滑动的加速度为a,求地面的支持力拓展:上面问题中,若“T”型物体对地面的压力为零,求环的加速度大小和方向。
1、质量为m的物体在水平面上滑动,水平面的摩擦系数为μ,求物体的加速度,(重力加速度为g)2、质量为m的物体在固定的光滑斜面上滑动,求物体的加速度,(重力加速度为g)拓展(1)质量为m的物体在固定的粗糙斜面上向上滑动,斜面的摩擦系数为μ,求物体的加速度,拓展(2)质量为m的物体在固定的粗糙斜面上向下滑动,斜面的摩擦系数为μ,求物体的加速度,3、行驶的汽车中用细线悬挂一小球,小球的质量为m,此时细线与竖直方向的夹角为θ,求汽车的加速度,(重力加速度为g)4、光滑的斜面上放置一小球,小球相对斜面静止,整体向右运动,求斜面的加速度,(重力加速度为g)5、物体放置在水平面上受到恒力F向右运动,F与水平方向成θ斜向右上,地面的摩擦系数为μ,求物体的加速度,(重力加速度为g)拓展:若恒力F斜向右下,求物体的加速度,(重力加速度为g)6、质量为m的人随电梯匀加速上行,加速度为a,求:(1)画出人的受力分析图(2)人受到的F N 和F f1、物体A、B的质量分别是m A、m B,在恒力F作用下向右运动,(1)水平面光滑。
求物体A、B的加速度和物体A、B间的相互作用力(2)水平面面的摩擦系数为μ。
求物体A、B的加速度和物体A、B间的相互作用力2、物体A、B的质量分别是m A、m B,中间用一细线连接,在恒力F作用下向右运动,(1)水平面光滑。
求物体A、B的加速度和物体A、B间的相互作用力(2)水平面面的摩擦系数为μ。
求物体A、B的加速度和物体A、B间的相互作用力3、斜面上物体A、B的质量分别是m A、m B,中间用一细线连接,在恒力F作用下运动,(1)斜面光滑。
求物体A、B的加速度和物体A、B间的相互作用力(2)斜面的摩擦系数为μ。
求物体A、B的加速度和物体A、B间的相互作用力4、物体A、B的质量分别是m A、m B,中间用一细线连接,在恒力F作用下向上运动,求物体A、B的加速度和物体A、B间的相互作用力5、把以上细线换成弹簧或细杆,会怎样?最终结论:F FF如图:不计滑轮摩擦,求车的加速度和细线拉力?如图:不计滑轮摩擦,求m1的加速度和细线拉力?如图:不计滑轮摩擦,m1>m2求m1的加速度和细线拉力?6、“T”型物体倒立在地面上,质量为M,质量为m的小环套在上面向下滑动,滑动的加速度为a,求地面的支持力拓展:上面问题中,若“T”型物体对地面的压力为零,求环的加速度大小和方向。
利用牛顿第二定律解决问题牛顿第二定律是经典物理学中最为重要的定律之一,它提供了描述物体运动和力的关系的基本原理。
根据牛顿第二定律,物体的加速度直接与作用在其上的合力成正比,反比于物体的质量。
通过运用牛顿第二定律,我们可以解决许多与力有关的问题。
本文将通过几个实例,展示如何利用牛顿第二定律解决问题。
1. 弹簧的伸长问题设想在一块光滑的地面上放置了一个质量为m的物体,上面连接着一个弹簧。
现在我们开始将物体推向弹簧的方向,施加一个力F。
根据牛顿第二定律,物体的加速度与作用力成正比,反比于物体的质量。
因此,可以得出如下等式:F = ma,其中a表示物体的加速度。
当物体与弹簧连接时,可以发现,弹簧对物体施加了一个阻力,该阻力与物体与弹簧伸长的距离成正比。
假设弹簧对物体的阻力为-kx,其中k为弹簧的劲度系数,x为物体与弹簧伸长的距离。
那么根据牛顿第二定律,可以得出以下方程:F - kx = ma。
通过解这个方程,我们可以求解出物体的加速度。
进一步,我们还可以通过运用牛顿第二定律,确定物体在任意位置上受到的力。
2. 自由落体问题自由落体是物理学中的一个经典问题。
当一个物体在重力的作用下自由下落时,我们可以利用牛顿第二定律来描述其运动。
根据牛顿第二定律,物体的加速度与所受合力成正比,反比于物体的质量。
在自由落体的情况下,合力为物体的重力,可以表示为F = mg,其中m为物体的质量,g为重力加速度。
将重力代入牛顿第二定律的等式中,可以得到如下方程:mg = ma。
由于在自由落体的情况下,物体所受的阻力可以忽略不计,因此合力就等于物体的重力。
根据这个方程,我们可以求解物体的加速度a,并进一步了解物体的速度和位移。
3. 斜面上的物体滑动问题考虑一个质量为m的物体放置在一个光滑的斜面上,倾角为θ。
如果我们施加一个平行于斜面的力F,那么根据牛顿第二定律,物体的加速度与作用力成正比,反比于物体的质量。
可以得到如下方程:F - mg sinθ = ma。
弹簧类问题一、弹簧弹力大小问题弹簧弹力的大小可根据胡克定律计算(在弹性限度内),即F=kx,其中x是弹簧的形变量(与原长相比的伸长量或缩短量,不是弹簧的实际长度)。
高中研究的弹簧都是轻弹簧(不计弹簧自身的质量,也不会有动能的)。
不论弹簧处于何种运动状态(静止、匀速或变速),轻弹簧两端所受的弹力一定等大反向。
证明如下:以轻弹簧为对象,设两端受到的弹力分别为F1、F2,根据牛顿第二定律,F1+F2=ma,由于m=0,因此F1+F2=0,即F1.F2一定等大反向。
弹簧的弹力属于接触力,弹簧两端必须都与其它物体接触才可能有弹力。
如果弹簧的一端和其它物体脱离接触,或处于拉伸状态的弹簧突然被剪断,那么弹簧两端的弹力都将立即变为零。
在弹簧两端都保持与其它物体接触的条件下,弹簧弹力的大小F=kx与形变量x成正比。
由于形变量的改变需要一定时间,因此这种情况下,弹力的大小不会突然改变,即弹簧弹力大小的改变需要一定的时间。
(这一点与绳不同,高中物理研究中,是不考虑绳的形变的,因此绳两端所受弹力的改变可以是瞬时的。
)例1.质量分别为m和2m的小球P、Q用细线相连,P用轻弹簧悬挂在天花板下,开始系统处于静止。
下列说法中正确的是:A.若突然剪断细线,则剪断瞬间P、Q的加速度大小均为gB.若突然剪断细线,则剪断瞬间P、Q的加速度大小分别为0和gC.若突然剪断弹簧,则剪断瞬间P、Q的加速度大小均为gD.若突然剪断弹簧,则剪断瞬间P、Q的加速度大小分别为3g和0分析与解:剪断细线瞬间,细线拉力突然变为零,弹簧对P的拉力仍为3mg竖直向上,因此剪断瞬间P的加速度为向上2g,而Q的加速度为向下g;剪断弹簧瞬间,弹簧弹力突然变为零,细线对P、Q的拉力也立即变为零,因此P、Q的加速度均为竖直向下,大小均为g。
选C。
例2.如图所示,小球P、Q质量均为m,分别用轻弹簧b和细线c悬挂在天花板下,再用另一细线d、e与左边的固定墙相连,静止时细线d、e水平,b、c与竖直方向夹角均为θ=37?。
牛顿运动定律应用二弹簧和连接体问题例1.匀速上升的升降机顶部悬有一轻质弹簧,弹簧下端挂有一小球.若升降机突然停止,在地面上的观察者看来,小球在继续上升的过程中( )A.速度逐渐减小B.速度先增大后减小C.加速度逐渐增大D.加速度逐渐减小本题主要考查胡克定律、牛顿第二运动定律的应用。
[分析]升降机匀速上升时,小球受重力mg和弹簧对小球向上的拉力kx0,两力作用处于平衡状态,有mg=kx0.当升降机突然停止,小球仍以原来的升降机的速度上升,致使弹簧形变越来越短,甚至伸长变为被压缩,总之是使小球在上升过程中受到越来越大的方向向下的力,因而产生方向向下越来越大的加速度。
答案:AC例2.如图所示,竖直光滑杆上套有一个小球和两根弹簧,两弹簧的一端各与小球相连,另一端分别用销钉M、N固定于杆上,小球处于静止状态.设拔去销钉M瞬间,小球加速度的大小为12m/s2.若不拔去销钉M而拔去销钉N瞬间,小球的加速度可能是(取g=10m/s2) ( )A.22m/s2,竖直向上B.22m/s2,竖直向下C.2m/s2,竖直向上D.2m/s2,竖直向下[分析和解]:拔去销钉M前,小球受上下两个弹簧的弹力和重力作用而处于平衡状态。
拔去销钉M的瞬间,小球只受下面弹簧的弹力和重力作用,这两个力大小不变,方向不变。
若下面弹簧处于压缩状态,则弹力向上,设为F1,则F1-mg=ma,代入数值得F1=22m;若下面弹簧处于伸长状态,则弹力向下,设为F2,则F2+mg =ma,代入数值得F2=2m.(1)小球处于平衡状态时,设下面弹簧处于压缩状态时,上面弹簧的弹力分别为F1’,由力的平衡方程F1’+mg=F1得F1’=12m,说明上面弹簧处于压缩状态。
(2)小球处于平衡状态时,设下面弹簧处于伸长状态时,上面弹簧的弹力分别为F2’,由力的平衡方程得F2+mg=F2’即F2’=12m.说明上面弹簧处于伸长状态。
当拔去销钉N时,若对应情况(1),则根据牛顿第二定律列方程F1’+mg=ma1’得a1’=22m/s2,竖直向下当拔去销钉N时,若对应情况(2),则根据牛顿第二定律列方程F2’-mg =ma2’,得a2’=2m/s2,竖直向上。
学案12 牛顿第二定律及应用(一)牛顿第二定律的理解及动力学两类基本问题一、概念规律题组1.下列对牛顿第二定律的表达式F =ma 及其变形公式的理解,正确的是( ) A.由F =ma 可知,物体所受的合力与物体的质量成正比,与物体的加速度成反比B.由m =Fa 可知,物体的质量与其所受的合力成正比,与其运动的速度成反比C.由a =Fm 可知,物体的加速度与其所受的合力成正比,与其质量成反比D.由m =Fa可知,物体的质量可以通过测量经的加速度和它所受的合力而求出2.下列说法正确的是( )A .物体所受合力为零时,物体的加速度可以不为零B .物体所受合力越大,速度越大C .速度方向、加速度方向、合力方向总是相同的D .速度方向可与加速度方向成任何夹角,但加速度方向总是与合力方向相同图13.如图1所示,质量为20 kg 的物体,沿水平面向右运动,它与水平面间的动摩擦因数为0.1,同时还受到大小为10 N 的水平向右的力的作用,则该物体(g 取10 m /s 2)( ) A .受到的摩擦力大小为20 N ,方向向左 B .受到的摩擦力大小为20 N ,方向向右 C .运动的加速度大小为1.5 m /s 2,方向向左 D .运动的加速度大小为0.5 m /s 2,方向向右 4.关于国秒单位制,下列说法正确的是( ) A .kg ,m /s ,N 是导出单位 B .kg ,m ,h 是基本单位C .在国际单位制中,质量的单位可以是kg ,也可以是gD .只有在国际单位制中,牛顿第二定律的表达式才是F =ma二、思想方法题组图25.(2011·淮南模拟)如图2所示,两个质量相同的物体1和2紧靠在一起,放在光滑水平面上,如果它们分别受到水平推力F 1和F 2的作用,而且F 1>F 2,则1施于2的作用力大小为( ) A .F 1 B .F 2 C .12(F 1+F 2) D .12(F 1-F 2)图36.如图3所示,在光滑水平面上,质量分别为m 1和m 2的木块A 和B 之下,以加速度a 做匀速直线运动,某时刻空然撤去拉力F ,此瞬时A 和B 的加速度a 1和a 2,则( ) A .a 1=a 2=0 B .a 1=a ,a 2=0C .a 1=m 1m 1+m 2a ,a 2=m 2m 1+m 2aD .a 1=a ,a 2=-m 1m 2a一、对牛顿第二定律的理解矢量性公式F=ma是矢量式,任一时刻,F与a总同向瞬时性a与F对应同一时刻,即a为某时刻的加速度时,F为该时刻物体所受的合外力因果性F是产生加速度a的原因,加速度a是F作用的结果同一性有三层意思:(1)加速度a是相对同一个惯性系的(一般指地面);(2)F=ma中,F、m、a对应同一个物体或同一个系统;(3)F=ma中,各量统一使用国际单位独立性(1)作用于物体上的每一个力各自产生的加速度都满足F=ma(2)物体的实际加速度等于每个力产生的加速度的矢量和(3)力和加速度在各个方向上的分量也满足F=ma即F x=ma x,F y=ma y【例1】(2010·上海·11)将一个物体以某一速度从地面竖直向上抛出,设物体在运动过程中所受空气阻力大小不变,则物体()A.刚抛出时的速度最大B.在最高点的加速度为零C.上升时间大于下落时间D.上升时的加速度等于下落时的加速度[规范思维]【例2】(2009·宁夏理综·20)如图4所示,一足够长的木板静止在光滑水平面上,一物块静止在木板上,木板和物块间有摩擦.现用水平力向右拉木板,当物块相对木板滑动了一段距离但仍有相对运动时,撤掉拉力,此后木板和物块相对于水平面的运动情况为()图4A.物块先向左运动,再向右运动B.物块向左运动,速度逐渐增大,直到做匀速运动C.木板向右运动,速度逐渐变小,直到做匀速运动D.木板和物块的速度都逐渐变小,直到为零[规范思维][针对训练1] (2009·上海综合·7)图5如图5所示为蹦极运动的示意图.弹性绳的一端固定在O点,另一端和运动员相连.运动员从O点自由下落,至B点弹性绳自然伸直,经过合力为零的C点到达最低点D,然后弹起.整个过程中忽略空气阻力.分析这一过程,下列表述正确的是()①经过B点时,运动员的速率最大②经过C点时,运动员的速率最大③从C点到D点,运动员的加速度增大④从C点到D点,运动员的加速度不变A.①③B.②③C.①④D.②④二、动力学两类基本问题1.分析流程图2.应用牛顿第二定律的解题步骤(1)明确研究对象.根据问题的需要和解题的方便,选出被研究的物体.(2)分析物体的受力情况和运动情况.画好受力分析图,明确物体的运动性质和运动过程.(3)选取正方向或建立坐标系.通常以加速度的方向为正方向或以加速度方向为某一坐标轴的正方向.(4)求合外力F合.(5)根据牛顿第二定律F合=ma列方程求解,必要时还要对结果进行讨论.特别提醒(1)物体的运动情况是由所受的力及物体运动的初始状态共同决定的.(2)无论是哪种情况,加速度都是联系力和运动的“桥梁”.(3)如果只受两个力,可以用平行四边形定则求其合力;如果物体受力较多,一般用正交分解法求其合力.如果物体做直线运动,一般把力分解到沿运动方向和垂直于运动方向;当求加速度时,要沿着加速度的方向处理力即一般情况不分解加速度;特殊情况下当求某一个力时,可沿该力的方向分解加速度.【例3】如图6图6所示,一质量为m的物块放在水平地面上.现在对物块施加一个大小为F的水平恒力,使物块从静止开始向右移动距离x后立即撤去F,物块与水平地面间的动摩擦因数为μ,求:(1)撤去F时,物块的速度大小;(2)撤去F后,物块还能滑行多远.【例4】(2010·安徽理综·22)图7质量为2 kg的物体在水平推力F的作用下沿水平面做直线运动,一段时间后撤去F,其运动的v-t图象如图7所示.g取10 m/s2,求:(1)物体与水平面间的动摩擦因数μ;(2)水平推力F的大小;(3)0~10 s内物体运动位移的大小.[规范思维][针对训练2] (2009·江苏·13)航模兴趣小组设计出一架遥控飞行器,其质量m=2 kg,动力系统提供的恒定升力F=28 N.试飞时,飞行器从地面由静止开始竖直上升.设飞行器飞行时所受的阻力大小不变,g取10 m/s2.(1)第一次试飞,飞行器飞行t1=8 s时到达高度H=64 m,求飞行器所受阻力f的大小.(2)第二次试飞,飞行器飞行t2=6 s时遥控器出现故障,飞行器立即失去升力.求飞行器能达到的最大高度h.(3)为了使飞行器不致坠落到地面,求飞行器从开始下落到恢复升力的最长时间t3.【基础演练】1.(2011·海南华侨中学月考)在交通事故的分析中,刹车线的长度是很重要的依据,刹车线是汽车刹车后,停止转动的轮胎在地面上发生滑动时留下来的痕迹.在某次交通事故中,汽车的刹车线的长度是14 m,假设汽车轮胎与地面间的动摩擦因数恒为0.7,g取10 m/s2,则汽车开始刹车时的速度为()A.7 m/s B.10 m/s C.14 m/s D.20 m/s2.(2011·吉林长春调研)竖直向上飞行的子弹,达到最高点后又返回原处,假设整个运动过程中,子弹受到的阻力与速度的大小成正比,则子弹在整个运动过程中,加速度大小的变化是()A.始终变大B.始终变小C.先变大后变小D.先变小后变大3.如图8甲所示,在粗糙水平面上,物体A在水平向右的外力F的作用下做直线运动,其速度—时间图象如图乙所示,下列判断正确的是()图8A.在0~1 s内,外力F不断增大B.在1~3 s内,外力F的大小恒定C.在3~4 s内,外力F不断增大D.在3~4 s内,外力F的大小恒定图94.(2009·广东理基·4)建筑工人用图9所示的定滑轮装置运送建筑材料,质量为70.0 kg的工人站在地面上,通过定滑轮将20.0 kg的建筑材料以0.500 m/s2的加速度拉升,忽略绳子和定滑轮的质量及定滑轮的摩擦,则工人对地面的压力大小为(g取10 m/s2)()A.510 N B.490 NC.890 N D.910 N图105.如图10所示,足够长的传送带与水平面间夹角为θ,以速度v0逆时针匀速转动.在传送带的上端轻轻放置一个质量为m的小木块,小木块与传送带间的动摩擦因数μ<tanθ.则图中能客观地反映小木块的速度随时间变化关系的是()图116.(2011·福建福州质检)商场搬运工要把一箱苹果沿倾角为θ的光滑斜面推上水平台,如图11所示.他由斜面底端以初速度v0开始将箱推出(箱与手分离),这箱苹果刚好能滑上平台.箱子的正中间是一个质量为m的苹果,在上滑过程中其他苹果对它的作用力大小是()A.mg B.mg sinθC.mg cosθ D.0题号 1 2 3 4 5 6答案7.在某一旅游景区,建有一山坡滑草运动项目.该山坡可看成倾角θ=30°的斜面,一名游客连同滑草装置总质量m=80 kg,他从静止开始匀加速下滑,在时间t=5 s内沿斜面滑下的位移x=50 m.(不计空气阻力,取g=10 m/s2).问:(1)游客连同滑草装置在下滑过程中受到的摩擦力F f为多大?(2)滑草装置与草皮之间的动摩擦因数μ为多大?(3)设游客滑下50 m后进入水平草坪,试求游客在水平面上滑动的最大距离.【能力提升】图128.如图12所示,有一长度x=1 m、质量M=10 kg的平板小车静止在光滑的水平面上,在小车一端放置一质量m=4 kg的小物块,物块与小车间的动摩擦因数μ=0.25,要使物块在2 s内运动到小车的另一端,求作用在物块上的水平力F是多少?(g取10 m/s2)图139.质量为10 kg的物体在F=200 N的水平推力作用下,从粗糙斜面的底端由静止开始沿斜面运动,斜面固定不动,与水平地面的夹角θ=37°,如图13所示.力F作用2 s后撤去,物体在斜面上继续上滑了1.25 s后,速度减为零.求:物体与斜面间的动摩擦因数μ和物体的总位移x.(已知sin 37°=0.6,cos 37°=0.8,g=10 m/s2)10.(2010.天星调研)图14如图14所示,长为L的薄木板放在长为L的正方形水平桌面上,木板的两端与桌面的两端对齐,一小木块放在木板的中点,木块、木板质量均为m,木块与木板之间、木板与桌面之间的动摩擦因数都为μ.现突然施加水平外力F在薄木板上将薄木板抽出,最后小木块恰好停在桌面边上,没从桌面上掉下.假设薄木板在被抽出的过程中始终保持水平,且在竖直方向上的压力全部作用在水平桌面上.求水平外力F的大小.学案12牛顿第二定律及应用(一)牛顿第二定律的理解及动力学两类基本问题【课前双基回扣】1.CD[牛顿第二定律的表达式F=ma表明了各物理量之间的数量关系,即已知两个量,可求第三个量,但物体的质量是由物体本身决定的,与受力无关;作用在物体上的合力,是由和它相互作用的物体作用产生的,与物体的质量和加速度无关.故排除A、B,选C、D.]2.D [由牛顿第二定律F =ma 知,F 合为零,加速度为零,由惯性定律知速度不一定为零;对某一物体,F 合越大,a 越大,由a =ΔvΔt知,a 大只能说明速度变化率大,速度不一定大,故A 、B 项错误;F 合、a 、Δv 三者方向一定相同,而速度方向与这三者方向不一定相同,故C 项错误,D 项正确.] 3.AD4.BD [所谓导出单位,是利用物理公式和基本单位推导出来的,力学中的基本单位只有三个,即kg 、m 、s ,其他单位都是由这三个基本单位衍生(推导)出来的,如“牛顿”(N)是导出单位,即1 N =1 kg·m/s 2(F =ma ),所以题中A 项错误,B 项正确.在国际单位制中,质量的单位只能是kg ,C 错误.在牛顿第二定律的表达式中,F =ma (k =1)只有在所有物理量都采用国际单位制时才能成立,D 项正确.]5.C [将物体1、2看做一个整体,其所受合力为:F 合=F 1-F 2,设质量均为m ,由第二定律得F 1-F 2=2ma ,所以a =F 1-F 22m以物体2为研究对象,受力情况如右图所示..由牛顿第二定律得F 12-F 2=ma ,所以F 12=F 2+ma =F 1+F 22.] 6.D [两物体在光滑的水平面上一起以加速度a 向右匀速运动时,弹簧的弹力F 弹=m 1a ,在力F 撤去的瞬间,弹簧的弹力来不及改变,大小仍为m 1a ,因此对A 来讲,加速度此时仍为a ;对B 物体,取向右为正方向,-m 1a =m 2a 2,a 2=-m 1m 2a ,所以只有D 项正确.]思维提升1.牛顿第二定律是一个实验定律,其公式也就不能像数学公式那样随意变换成不同的表达式.2.a =Δv Δt 是a 的定义式,a =Fm 是a 的决定式,a 虽可由a =Δv Δt进行计算,但a 决定于合外力F 与质量m .3.在牛顿运动定律的应用中,整体法与隔离法的结合使用是常用的一种方法. 4.对于弹簧弹力和细绳弹力要区别开.5.在牛顿运动定律的应用中,整体法与隔离法的结合使用是常用的一种方法,其常用的一种思路是:利用整体法求出物体的加速度,再利用隔离法求出物体间的相互作用力. 【核心考点突破】例1 A [最高点速度为零,物体受重力,合力不可能为零,加速度不为零,故B 项错.上升时做匀减速运动,h =12a 1t 21,下落时做匀加速运动,h =12a 2t 22,又因为a 1=mg +f m ,a 2=mg -f m,所以t 1<t 2,故C 、D 错误.根据能量守恒,开始时只有动能,因此开始时动能最大,速度最大,故A 项正确.][规范思维] 物体的加速度与合外力存在瞬时对应关系;加速度由合外力决定,合外力变化,加速度就变化. 例2 BC [由题意可知,当撤去外力,物块与木板都有向右的速度,但物块速度小于木板的速度,因此,木板给物块的动摩擦力向右,使物块向右加速,反过来,物块给木板的动摩擦力向左,使木板向右减速运动,直到它们速度相等,没有了动摩擦力,二者以共同速度做匀速运动,综上所述,选项B 、C 正确.][规范思维] 正确建立两物体的运动情景,明确物体的受力情况,进而确定加速度的大小方向,再进行运动状态分析.例3 (1) 2(F -μmg )x m (2)(Fμmg-1)x解析 (1)设撤去F 时物块的速度大小为v ,根据牛顿第二定律,物块的加速度 a =F -μmg m又由运动学公式v 2=2ax ,解得v = 2(F -μmg )xm(2)撤去F 后物块只受摩擦力,做匀减速运动至停止,根据牛顿第二定律,物块的加速度a ′=-μmg m =-μg 由运动学公式v ′2-v 2=2a ′x ′,且v ′=0解得x ′=(Fμmg-1)x[规范思维] 本题是已知物体的受力情况,求解运动情况,受力分析是求解的关键.如果物体的加速度或受力情况发生变化,则要分段处理,受力情况改变时的瞬时速度即是前后过程的联系量.多过程问题画出草图有助于解题.例4 (1)0.2 (2)6 N (3)46 m解析 (1)设物体做匀减速直线运动的时间为Δt 2、初速度为v 20、末速度为v 2t 、加速度为a 2,则a 2=v 2t -v 20Δt 2=-2 m/s 2①设物体所受的摩擦力为F f ,根据牛顿第二定律,有 F f =ma 2② F f =-μmg ③联立②③得μ=-a 2g=0.2④(2)设物体做匀加速直线运动的时间为Δt 1、初速度为v 10、末速度为v 1t 、加速度为a 1,则a 1=v 1t -v 10Δt 1=1 m/s 2⑤根据牛顿第二定律,有F +F f =ma 1⑥ 联立③⑥得F =μmg +ma 1=6 N(3)解法一 由匀变速直线运动位移公式,得x =x 1+x 2=v 10Δt 1+12a 1Δt 21+v 20Δt 2+12a 2Δt 22=46 m 解法二 根据v -t 图象围成的面积,得x =(v 10+v 1t 2×Δt 1+12×v 20×Δt 2)=46 m[规范思维] 本题是牛顿第二定律和运动图象的综合应用.本题是已知运动情况(由v -t 图象告知运动信息)求受力情况.在求解两类动力学问题时,加速度是联系力和运动的桥梁,受力分析和运动过程分析是两大关键,一般需列两类方程(牛顿第二定律,运动学公式)联立求解. [针对训练]1.B 2.(1)4 N (2)42 m (3)322s(或2.1 s)【课时效果检测】1.C 2.B 3.BC 4.B 5.D [m 刚放上时,mg sin θ+μmg cos θ=ma 1.当m 与带同速后,因带足够长,且μ<tan θ,故m 要继续匀加速.此时,mg sin θ-μmg cos θ=ma 2,a 2<a 1,故D 正确.]6.C [以箱子和里面所有苹果作为整体来研究,受力分析得,Mg sin θ=Ma ,则a =g sin θ,方向沿斜面向下;再以质量为m 的苹果为研究对象,受力分析得,合外力F =ma =mg sin θ,与苹果重力沿斜面的分力相同,由此可知,其他苹果给它的力的合力应与重力垂直于斜面的分力相等,即mg cos θ,故C 正确.]7.(1)80 N (2)315(3)100 3 m8.16 N解析 由下图中的受力分析,根据牛顿第二定律有F -F f =ma 物① F f ′=Ma 车②其中F f =F f ′=μmg ③由分析图结合运动学公式有x 1=12a 车t 2④x 2=12a 物t 2⑤x 2-x 1=x ⑥由②③解得a 车=1 m/s 2⑦ 由④⑤⑥⑦解得a 物=1.5 m/s 2所以F =F f +ma 物=m (μg +a 物)=4×(0.25×10+1.5) N =16 N. 9.0.25 16.25 m解析 设力F 作用时物体沿斜面上升的加速度大小为a 1撤去力F 后其加速度大小变为a 2,则: a 1t 1=a 2t 2①有力F 作用时,物体受力为:重力mg 、推力F 、支持力F N1、摩擦力F f1,如图所示.在沿斜面方向上,由牛顿第二定律可得: F cos θ-mg sin θ-F f1=ma 1②F f1=μF N1′=μ(mg cos θ+F sin θ)③撤去力F 后,物体受重力mg 、支持力F N2、摩擦力F f2,在沿斜面方向上,由牛顿第二定律得: mg sin θ+F f2=ma 2④F f2=μF N2′=μmg cos θ⑤联立①②③④⑤式,代入数据得:a 2=8 m/s 2 a 1=5 m/s 2 μ=0.25物体运动的总位移x =12a 1t 21+12a 2t 22=⎝⎛⎭⎫12×5×22+12×8×1.252 m =16.25 m 10.6μmg解析 设小木块离开薄木板之前的过程,所用时间为t ,小木块的加速度大小为a 1,移动的距离为x 1,薄木板被抽出后,小木块在桌面上做匀减速直线运动,所用时间为t ′,设其加速度大小为a 2,移动的距离为x 2,有 μmg =ma 1① μmg =ma 2②即有a 1=a 2=μg ③根据运动学规律有x 1=x 2,t =t ′④所以x 1=12μgt 2⑤x 2=12μgt 2⑥根据题意有x 1+x 2=12L ⑦解得t 2=L2μg⑧设小木块没有离开薄木板的过程中,薄木板的加速度为a ,移动的距离为x ,有 x =12at 2⑨ 根据题意有x =x 1+12L ⑩联立⑤⑧⑨⑩得a =3μg ⑪对薄木板,根据牛顿第二定律得F -3μmg =ma , 解得F =6μmg . 易错点评1.应用牛顿第二定律时,要注重对定律“四性”的理解.特别是“瞬时性”是常考要点之一;此外“独立性”也是解题中经常用到的.2.解决动力学两类基本问题的关键是找到加速度这一桥梁,除此之外,还应注意受力分析和运动过程分析,最好能画出受力分析图和运动过程草图.。
牛顿第二定律的应用——弹簧类问题例1.如图所示,A物体重2N,B物体重4N,中间用弹簧连接,弹力大小为2N,此时吊A物体的绳的拉力为T,B对地的压力为F,则T、F的数值可能是( )A.7N,0 B.4N,2N C.1N,6N D.0,6N例2.如图所示,质量相同的A、B两球用细线悬挂于天花板上且静止不动.两球间是一个轻质弹簧,如果突然剪断悬线,则在剪断悬线瞬间B球加速度为__ __;A球加速度为____ ____.例3.两个质量均为m的物体A、B叠放在一个直立的轻弹簧上,弹簧的劲度系数为K。
今用一个竖直向下的力压物块A,使弹簧又缩短了△L(仍在弹性限度内),当突然撤去压力时,求A对B的压力是多大?例4.图所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P处于静止,P的质量m=12kg,弹簧的劲度系数k=300N/m。
现在给P施加一个竖直向上的力F,使P从静止开始向上做匀加速直线运动,已知在t=0.2s内F是变力,在0.2s以后F是恒力,g=10m/s2,则F的最小值是F的最大值是。
练习题1.如图所示,小球质量为m,被3根质量不计的相同弹簧a、b、c固定在O点,c竖直放置,a、b、c之间的夹角均为120°.小球平衡时,弹簧a、b、c的弹力大小之比为3:3:1.设重力加速度为g,当单独剪断c瞬间,小球的加速度大小及方向可能为()A.g/2,竖直向下B.g/2,竖直向上C.g/4,竖直向下D.g/4,竖直向上2.如上图所示,物体A、B间用轻质弹簧相连,已知m A=2 m,m B=m,且物体与地面间的滑动摩擦力大小均为其重力的k倍,在水平外力作用下,A和B一起沿水平面向右匀速运动。
当撤去外力的瞬间,物体A、B的加速度分别为a A= ,a B= 。
(以向右方向为正方向)3.如右图所示,一物块在光滑的水平面上受一恒力F的作用而运动,其正前方固定一个足够长的轻质弹簧,当物块与弹簧接触并将弹簧压至最短的过程中,下列说法中正确的是( )A.物块接触弹簧后即做减速运动B.物块接触弹簧后先加速后减速C.当弹簧处于最大压缩量时,物块的加速度不为零D.当弹簧的弹力等于恒力F时,物块静止E.当物块的速度为零时,它受到的合力不为零4.如右图所示,弹簧左端固定,右端自由伸长到O点并系住物体m,现将弹簧压缩到A点,然后释放,物体一直可以运动到B点,如果物体受到的摩擦力大小恒定,则( )A.物体从A到O先加速后减速B.物体从A到O加速,从O到B减速C.物体在A、O间某点时所受合力为零D.物体运动到O点时所受合力为零5.如图所示,质量分别为m A =10kg 和m B =5kg 的两个物体A 和B 靠在一起放在光滑的水平面上,现给A 、B 一定的初速度,当弹簧对物体A 有方向向左、大小为12N 的推力时,A对B 的作用力大小为 ( )A .3NB .4NC .6ND .12N6.如图,轻弹簧的托盘上有一物体P ,质量m =10kg ,弹簧的劲度系数为k =500N/m ,给P一竖直向上的力F ,使之由静止开始向上作匀加速运动.已知最初0.2s 内F 为变力,0.2s 后F 为恒力,托盘的质量不计,则F 的最小值为 N ,最大值为N .7.一个劲度系数为k =600N/m 的轻弹簧,两端分别连接着质量均为m =15kg 的物体A 、B ,将它们竖直静止地放在水平地面上,如图所示,现加一竖直向上的外力F 在物体A 上,使物体A 开始向上做匀加速运动,经0.5s ,B 物体刚离开地面(设整个加速过程弹簧都处于弹性限度内,且g =10m/s 2)。
牛顿第二运动定律【例1】物体从某一高度自由落下,落在直立于地面的轻弹簧上,如图3-2所示,在A 点物体开始与弹簧接触,到B 点时,物体速度为零,然后被弹回,则以下说法正确的是:A 、物体从A 下降和到B 的过程中,速率不断变小B 、物体从B 上升到A 的过程中,速率不断变大C 、物体从A 下降B ,以及从B 上升到A 的过程中,速率都是先增大,后减小D 、物体在B 点时,所受合力为零【解析】本题主要研究a 与F 合的对应关系,弹簧这种特殊模型的变化特点,以及由物体的受力情况判断物体的运动性质。
对物体运动过程及状态分析清楚,同时对物体正确的受力分析,是解决本题的关键,找出AB 之间的C 位置,此时F 合=0,由A →C 的过程中,由mg>kx 1,得a=g-kx 1/m ,物体做a 减小的变加速直线运动。
在C 位置mg=kx c ,a=0,物体速度达最大。
由C →B 的过程中,由于mg<kx 2,a=kx 2/m-g ,物体做a 增加的减速直线运动。
同理,当物体从B →A 时,可以分析B →C 做加速度度越来越小的变加速直线运动;从C →A 做加速度越来越大的减速直线运动。
C 正确。
例2如图3-10所示,在原来静止的木箱内,放有A 物体,A 被一伸长的弹簧拉住且恰好静止,现突然发现A 被弹簧拉动,则木箱的运动情况可能是 A 、加速下降 B 、减速上升肥 C 、匀速向右运动 D 、加速向左运动【解析】木箱未运动前,A 物体处于受力平衡状态,受力情况为:重力mg ,箱底的支持力N ,弹簧拉力F 和最大的静摩擦力f m (向左)由平衡条件知:N=mg F=f m 。
由于发现A 弹簧向右拉动(已知),可能有两种原因,一种是由A 向右被拉动推知,F>f m ′,(新情况下的最大静摩擦力),可见f m >f m ′即是最大静摩擦力减小了,由f m =μN 知正压力N 减小了,即发生了失重现象,故物体运动的加速度必然竖直向下,所以木箱的运动情况可能是加速下降或减速上升,故A 、B 正确。
弹簧模型Ⅰ、弹簧弹力的瞬时性---不会突变1.如图所示,质量为M 的框架放在水平地面上,一轻弹簧上端固定在框架上,下端固定在一个质量为m 的小球。
小球上下振动时,框架始终没有跳起,当框架与地面间的压力为0时,小球加速度的大小为:A .gB .M m g m -C .0D .M m g m+ 2.四个质量均为m 的小球分别用三条轻绳和一根轻弹簧连接处于平衡状态,如图所示。
现突然迅速剪断轻绳1A 、1B 让小球下落,在剪断轻绳的瞬间,设小球1、2、3、4的加速度分别为1a 、2a 、3a 、4a 。
则有:A .10a =、22a g =、30a =、42a g =B .1a g =、2a g =、32a g =、40a =C .10a =、22a g =、30a =、4a g =D .1a g =、2a g =、3a g =、4a g =3.如图所示,两物体PQ 分别固定在质量可以忽略不计的弹簧两端,竖直放在一块水平板上并处于平衡状态,两物体的质量相等,若突然把平板撤开,则在刚撤开平板的瞬间:A .P 的加速度为零;B .P 的加速度大小为g ;C .Q 的加速度大小为g ;D .Q 的加速度大小为2g 。
★4.如图所示,竖直光滑杆上套有一个小球和两根弹簧,两弹簧的一端各与小球相连,另一端分别用销钉M 、N 固定于杆上,小球处于静止状态,设拔去销钉N 瞬间,小球加速度的大小为212/m s ,若不拔去销钉M 而拔去销钉N 瞬间,小球的加速度可能是(取210/g m s =):A.222/m s ,竖直向上B.222/m s ,竖直向下C.22/m s ,竖直向上D.22/m s ,竖直向下★5.如图所示,倾角为30°的光滑杆上套有一个小球和两根轻质弹簧,两弹簧的一端各与小球相连,另一端分别用销钉M 、N 固定于杆上,小球处于静止状态,设拔去销钉M (撤去弹簧a )瞬间,小球的加速度大小为6m/s 2。
牛顿第二定律的应用——弹簧类问题
例 1.如图所示, A 物体重 2N,B 物体重 4N,中间用弹簧连接,弹力大小
为 2N,此时吊 A 物体的绳的拉力为 T, B 对地的压力为 F,则 T、F 的数值
可能是( )
A.7N,0 B.4N,2N C .1N,6N D .0,6N
例 2.如图所示,质量相同的A、B 两球用细线悬挂于天花板上且静止不动.两球间是一个轻质弹簧,如果突然剪断悬线,则在剪断悬线瞬间B球加速度为__
__;A 球加速度为 ____ ____ .
例 3.两个质量均为 m的物体 A、B 叠放在一个直立的轻弹簧上,弹簧的劲度系数为 K。
今用一个竖直向下的力压物块 A,使弹簧又缩短了△ L(仍在弹性限度内),当突然撤去压力时,求A 对 B 的压力是多大?
例 4.图所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P
处于静止, P 的质量 m=12kg,弹簧的劲度系数k=300N/m。
现在给 P 施加一个竖直向
上的力 F,使 P 从静止开始向上做匀加速直线运动,已知在t=0.2s 内 F 是变力,在
0.2s 以后 F 是恒力, g=10m/s2, 则 F 的最小值是 F 的最大值是。
练习题 1.如图所示,小球质量为 m,被 3 根质量不计的相同弹簧 a、 b、 c 固定在 O 点, c 竖直放置, a、b、c 之间的夹角均为 120°.小球平衡时,弹簧 a、b、 c 的弹力大小
之比为 3:3:1.设重力加速度为 g,当单独剪断 c 瞬间,小球
的加速度大小及方向可能为()
A. g/ 2, 竖直向下B.g/ 2,竖直向上
C. g/ 4,竖直向下D.g/ 4,竖直向上
2.如上图所示,物体A、B 间用轻质弹簧相连,已知m A=2 m,m B = m,且物体与地面间的滑动摩擦力大小均为其重力的k 倍,在水平外力作用下, A 和 B 一起沿水平面向右匀速运动。
当撤去外力的瞬间,物体A、 B的加速度分别为a A=,
a B=。
(以向右方向为正方向)
3.如右图所示,一物块在光滑的水平面上受一恒力 F 的作用而运动,其正前方固定一
个足够长的轻质弹簧,当物块与弹簧接触并将弹簧压至最短的过程中,下列说法中正确的
是 ( )
A.物块接触弹簧后即做减速运动B.物块接触弹簧后先加速后减速
C.当弹簧处于最大压缩量时,物块的加速度不为零
D.当弹簧的弹力等于恒力 F 时,物块静止
E.当物块的速度为零时,它受到的合力不为零
4.如右图所示,弹簧左端固定,右端自由伸长到O点并系住物体 m,现将弹簧压缩到 A
点,然后释放,物体一直可以运动到 B 点,如果物体受到的摩擦力大小
恒定,则 ( )
A.物体从 A 到 O先加速后减速 B .物体从 A 到 O加速,从 O到 B 减速
C.物体在 A、O间某点时所受合力为零
D.物体运动到 O点时所受合力为零
5.如图所示,质量分别为 m A=10kg 和 m B=5kg 的两个物体 A 和 B 靠在一
起放在光滑的水平面上,现给A、 B 一定的初速度,当弹簧对物体 A 有方
向向左、大小为12N的推力时, A 对 B 的作用力大小为( )
A.3N B.4N C.6N D.12N
6.如图,轻弹簧的托盘上有一物体P,质量 m =10kg,弹簧的劲度系数为k = 500N/m,给 P 一竖直向上的力F,使之由静止开始向上作匀加速运动.已知最
初 0.2s 内F 为变力,.后 F 为恒力,托盘的质量不计,则 F 的最小值为
N
,
0 2s
最大值为 N.
7.一个劲度系数为 k=
600N/m
的轻弹簧,两端分别连接着质量均为m的物体 A、
=15kg
B,将它们竖直静止地放在水平地面上,如图所示,现加一竖直向上的外力 F 在物
体 A 上,使物体 A 开始向上做匀加速运动,经0.5s ,B 物体刚离开地面(设整个
加速过程弹簧都处于弹性限度内,且g=10m/s2)。
求此过程中所加外力的最大和最
2,
小值。
{a=4m/s360N;60N
8.两木块 A、B 质量分别为 m、 M,用劲度系数为 k 的轻质弹簧连在一起,放在水平地面上,如图所示,用外力将木块 A 压下一段距离静止,释放后 A 做简谐运动,在 A
振动过程中,木块 B 刚好始终未离开地面,求木块 A 的最大加速度。
[当 A 运动到
平衡位置上方最大位移处时, B 恰好对地面压力为零,此时 A 的加速度最大,设为
a=M+m)g/ m]
9.如图所示,劲度系数为K 的轻弹簧的一端系于墙上,另端连接一物体A.用质量与A相同的物体 B 推 A 使弹簧压缩,分析释放后 AB两物体在何处分离.
(1)地面光滑.(2)地面不光滑,且摩擦系数μA=μB
(3)地面不光滑,且摩擦系数μA>μB
(4)地面不光滑,且摩擦系数μA<μ B
解:若地面光滑,分离时对 B 分析可知, B 受的合外力为 0,加速度为 0,则 A 的加速度也为 0,故分离时弹簧处于原长.
若地面不光滑,分离时对 B 、A 分析受力分别如图甲、乙. F 为弹簧的弹力大小
对 B :f B
= μB mg m a B a B μ B g
=
=
对 A :f A -F ma , f
= μ mg
a μ g -F /m
=
A
A A ,
=
AA
由于分离瞬间 a B =a A 所以弹簧弹力 T=m (μ A -μ B ) g
若 μ A =μ B ,则 F = 0,两物体在原长分离.
若 μ A >μ B ,则 F ,两物体在原长左侧 x =m (μ
A -μ
B ) g
处分离.
>0
K
若 μ A <μ B ,则 F ,两物体在原长右侧 x =m (μ
B -μ
A ) g
处分离.
<0
K
10.如图甲所示,轻弹簧劲度系数为 K ,下挂质量为 m 的物体 A ,手
拿质量为 M 的木板 B 托 A 使弹簧压缩,如图乙所示.此时若突然撤掉
B ,
则 A 向下运动的加速度为 a ( a>g ),现用手控制 B 使之以 a/3 的加速度向下匀加速运动.求:
(1)求物体 A 作匀加速运动的时间.
(2)求出这段运动过程中起始和终止时刻手对木板
B 作用力的表达式。
m [ [ ①
t=2
K ②②2Mg/3 - Ma/3+2 ma/3 ; M(g -a/3 )]。