牛顿第二定律瞬时性在弹簧上的应用
- 格式:pptx
- 大小:423.07 KB
- 文档页数:8
专题10 牛顿第二定律的瞬时性问题加速度与合外力具有瞬时对应关系,二者总是同时产生、同时变化、同时消失,牛顿第二定律的瞬时性问题具体可简化为以下两种模型:1.轻绳、轻杆和接触面:不发生明显形变就能产生弹力,在瞬时性问题中其弹力可以突变.这类问题一般要结合物体在状态突变后的运动来分析状态突变瞬间的加速度,因为状态突变瞬间是状态突变之后运动的初状态。
时性问题中,弹簧的弹力瞬间突变为零。
1.如图所示,在图1、2、3中的小球a、b和c完全相同,轻弹簧S1和S2完全相同,连接的轻绳l1和l2也完全相同,通过轻弹簧或轻绳悬挂于固定点O,整个系统处于静止状态。
现将图1中的轻绳l1剪断、图2中的轻弹簧S1剪断、图3中的轻绳l2剪断,将图1中的小球a的加速度大小记为a1,将图2中的小球b的加速度大小记为a2,将图3中的小球c的加速度大小记为a3,重力加速度大小为g。
则在剪断瞬间()A.a1=3g,a2=2g,a3=g B.a1=2g,a2=2g,a3=0C.a1=2g,a2=g,a3=g D.a1=2g,a2=g,a3=0【答案】D【解析】图1中,对三个小球体整体分析有F1=3mg剪断图1中的轻绳l1时,弹簧S1不能发生突变,弹力与剪断前相同,对小球体a分析有F1−mg=ma1解得a1=2g剪断图2中的轻弹簧S1,弹簧弹力突变为0,对小球体b、c分析有2mg=2ma2解得a2=g此时轻绳l2弹力为0。
剪断图3中的轻绳l2时,弹簧S1不能发生突变,弹力与剪断前相同,即此时小球体c受力仍然平衡,图3中的小球c的加速度大小记为a3=0综合上述可知a1=2g,a2=g,a3=0故选D。
2.物块A1、A2的质量均为m,B1、B2的质量均为2m,A1、A2用一轻杆连接,B1、B2用轻质弹簧连接。
两个装置都放在水平的支托物M上,处于平衡状态,如图所示。
今突然迅速地撤去支托物M,在除去支托物的瞬间,A1、A2加速度分别为a1和a2,B1、B2的加速度分别为a1′和a2′,则()A.a1=0,a2=2g,a1′=0,a2′=2g B.a1=0,a2=2g,a1′=g,a2′=2gC.a1=g,a2=g,a1′=0,a2′=2g D.a1=g,a2=g,a1′=g,a2′=g【答案】C【解析】A1、A2用一轻杆连接,它们的加速度始终相等,在除去支托物的瞬间,由它们组成的系统只受重力的作用,根据牛顿第二定律可知,它们的加速度a1=a2=g因为在除去支托物的瞬间,弹簧上的弹力不能突然消失(主要是弹簧不能突然恢复原长),所以B1的受力不变,加速度仍为零,即a1′=0而B2受到的竖直向上的支持力突然消失,受到的竖直向下的重力2mg和弹簧弹力2mg不变,加速度大小a2′=2g 综上分析,选项C正确,ABD错误。
成功源于勤奋成功源于勤奋
=g =
四、连接体弹簧
6.一根劲度系数为k,质量不计的轻弹簧,上端固定
将物体托住,并使弹簧处于自然长度。
如图7
匀加速向下移动。
求经过多长时间木板开始与物体分离。
的最大速度为
的大小为mg
恒力在此过程中做的功为
的轻弹簧的一端固定在墙上,另一端与置于水平面上质量为
,弹簧水平且无形变.用水平力,缓慢推动物体,在弹性限度内弹簧
后,物体刚运动时的加速度大小为
)
.大小为
.大小为
定在框架上,下端固定
加速度为的加速度可能也为只有重力和弹力对
:对篮球受力分析如图,
、
,解得:越来越大,压力传感器的示数逐渐增大。
故项可能。
:若升降机正在减速下降,对篮球受力分析,由牛顿第二定律可得:
,解得:
逐渐增小。
故项不可能。
的位移,即为,解得:,故
解决本题关键处理好当B刚好离开地面时,
出弹簧的伸长量,结合刚开始时系统处于平衡状态即可求出弹簧的压缩量,进而求出间的弹簧拉伸量减小,当弹簧的弹力为时,的加速度为的加速度为。
第四章专题:牛顿第二定律中的瞬时性问题一、单项选择题1.中国的农历新年家家户户会挂上喜庆的大红灯笼,用来增加节日喜庆的气氛。
现用一根轻质弹簧和一根不可伸长的轻绳在水平天花板下悬挂一只灯笼,如图所示。
静止时形成的△OAB为等边三角形。
若某时刻剪断轻绳,则此瞬间灯笼的加速度大小为(已知重力加速度为g)()gA.√36gB.√33C.g2D.g2.如图,质量相等的小球A和小球B通过轻弹簧相连,A通过轻质绳系于天花板上,系统静止,重力加速度为g。
则当剪断轻绳的瞬间,下列说法正确的是()A.小球B的加速度大小为gB.小球B的加速度大小为2gC.小球A的加速度大小为gD.小球A的加速度大小为2g3.如图所示,两个质量分别为m1=1kg、m2=2kg的物体置于光滑的水平面上,中间用轻质弹簧秤连接。
两个大小分别为F1=30N、F2=15N的水平拉力分别作用在m1、m2上,则()A.系统运动稳定时,弹簧秤的示数是45NB.系统运动稳定时,弹簧秤的示数是15NC.在突然撤去F1的瞬间,m1的加速度大小为25m/s2D.在突然撤去F2的瞬间,m2的加速度大小为7.5m/s24.如图所示,在向右做加速度为g3的匀加速直线运动的车厢内,小球与车厢相对静止,轻绳a斜向上,轻质弹簧b水平。
某一时刻,轻绳a突然断裂(重力加速度为g),断裂瞬间小球的加速度大小为()A.g B.√2gC.53g D.43g5.细绳拴一个质量为m的小球,小球用固定在墙上的水平弹簧支撑,小球与弹簧不粘连.平衡时细绳与竖直方向的夹角为53°,如图所示,以下说法正确的是(已知sin53°=0.8,cos53°=0.6)()A.小球静止时弹簧的弹力大小为35mgB.小球静止时细绳的拉力大小为35mgC.细线烧断后小球做平抛运动D.细线烧断瞬间小球的加速度为53g6.如图所示,一个质量为m的小球用水平轻质弹簧系住,并用固定在地面上、倾角为30°的光滑木板AB托住,小球恰好处于静止状态。
瞬时性问题、动力学中的两类基本问题一、瞬时问题的两类模型轻绳、轻杆和接触面的弹力能跟随外界条件发生突变;弹簧(或橡皮绳)的弹力不能突变,在外界条件发生变化的瞬间可认为是不变的.二、动力学两类基本问题1.解题指导(1)做好两个分析:①受力分析,表示出合力与分力的关系;②运动过程分析,表示出加速度与各运动量的关系.(2)熟悉两种处理方法:合成法和正交分解法.(3)把握一个关键:求解加速度是解决问题的关键.2.必备知识(1)基本思路(2)基本步骤(3)解题关键(1)两类分析——物体的受力分析和物体的运动过程分析。
(2)两个桥梁——加速度是联系运动和力的桥梁;速度是各物理过程间相互联系的桥梁。
三、针对练习1、如图甲、乙所示,细绳拴一个质量为m 的小球,小球分别用固定在墙上的轻质铰链杆和轻质弹簧支撑,平衡时细绳与竖直方向的夹角均为53°,轻杆和轻弹簧均水平。
已知重力加速度为g ,sin 53°=0.8,cos 53°=0.6。
下列结论正确的是( )A .甲、乙两种情境中,小球静止时,细绳的拉力大小均为43mgB .甲图所示情境中,细绳烧断瞬间小球的加速度大小为43gC .乙图所示情境中,细绳烧断瞬间小球的加速度大小为53gD .甲、乙两种情境中,细绳烧断瞬间小球的加速度大小均为53g2、如图所示,细线连接着A 球,轻质弹簧两端连接着质量相等的A ,B 球,在倾角为θ的光滑斜面体C 上静止,弹簧与细线均平行于斜面.C 的底面粗糙,在水平地面上能始终保持静止,在细线被烧断的瞬间,下列说法正确的是( ) A .两个小球的瞬时加速度均沿斜面向下,大小均为g sin θ B .A 球的瞬时加速度沿斜面向下,大小为2g sin θ C .C 对地面的压力等于A ,B 和C 的重力之和 D .地面对C 无摩擦力3、如图所示,物块1的质量为3m ,物块2的质量为m ,两者通过弹簧相连,整个系统置于水平放置的光滑木板上,并处于静止状态.现将木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2的加速度大小分别为a 1、a 2.重力加速度大小为g .则有( ) A .a 1=0,a 2=g B .a 1=g ,a 2=g C .a 1=0,a 2=4 g D .a 1=g ,a 2=4 g4、如图所示,质量分别为m 、2m 的球A 、B 由轻质弹簧相连后再用细线悬挂在正在竖直向上做匀减速运动的电梯内,细线承受的拉力为F ,此时突然剪断细线,在绳断的瞬间,弹簧的弹力大小和小球A 的加速度大小分别为( ) A .2F 3 2F 3m +gB .F 3 2F3m+gC .2F 3 F 3m+gD .F 3 F3m+g5、如图,A 、B 两球质量相等,光滑斜面的倾角为θ,图甲中,A 、B 两球用轻弹簧相连,图乙中A 、B 两球用轻质杆相连,系统静止时,挡板C 与斜面垂直,弹簧、轻杆均与斜面平行,则在突然撤去挡板的瞬间(重力加速度为g )( ) A .图甲中A 球的加速度不为零 B .图乙中两球加速度均为g sin θ C .图乙中轻杆的作用力一定不为零D .图甲中B 球的加速度是图乙中B 球加速度的3倍6、如图所示,质量为2 kg 的物体B 和质量为1 kg 的物体C 用轻弹簧连接并竖直地静置于水平地面上。
牛顿三大定律、牛顿第二定律的瞬时性问题特训目标特训内容目标1牛顿第一定律(1T -4T )目标2牛顿第三定律(5T -8T )目标3牛顿第二定律(9T -12T )目标4牛顿第二定律瞬时性的问题(13T -16T )目标5应用牛顿第二定律分析动态过程(17T -20T )【特训典例】一、牛顿第一定律1甲瓶子盛满水,在密封塞上用细绳悬挂一个铁球,乙瓶子盛满水,在密封塞上用等长细绳悬挂与小铁球体积相同的小泡沫塑料球,且将乙瓶子倒置,如图所示,甲、乙两个瓶子均固定在小车上。
当小车突然向前运动时,则两球的存在状态为()A. B.C. D.【答案】A【详解】对A 选项所示情况,可设想一个与金属小球等体积的水球。
金属球位置的变化,必然代替这个水球的位置。
而同体积的水球和金属球,金属球的质量大,惯性大,运动状态不容易改变,故相对水球来说滞后。
同理,由于同体积水球的质量大于泡沫塑料球的质量,水球惯性大,相对泡沫塑料球来说水球滞后,泡沫塑料球相对水球在前,故A 正确,BCD 错误。
故选A 。
2如图所示,滑冰运动员用力将冰刀后蹬,可以向前滑行;停止用力,会逐渐停下,且滑行的速度越大,停下所需时间越长,滑的越远。
有四位同学对此过程发表了自己的看法,你认为正确的是()A.运动员的运动需要力来维持B.停止用力,运动员停下来是具有惯性的表现C.停止用力,运动员停下来是由于摩擦力的作用D.速度越大,停下所需时间越长,说明惯性的大小和速度有关【答案】C【详解】A.力是改变物体运动状态的原因,不是维持物体运动的,故A错误;BC.停止用力,运动员停下来是由于摩擦力的作用,而继续运动是因为惯性,故B错误,C正确;D.摩擦力一定时,根据运动学公式可知,速度越大,停下所需时间越长,但惯性与自身的质量有关,与速度无关,故D错误。
故选C。
3墨子是春秋战国时期著名的思想家,他的著作《墨经》中写道:“力,刑之所以奋也。
”“刑”同“形”,即物体:“奋”,意思是“(物体)动也”,即开始运动或者运动加快。
瞬时加速度问题1.求解思路:求解物体在某一时刻的瞬时加速度,关键是明确该时刻物体的受力情况或运动状态,再由牛顿第二定律求出瞬时加速度.2.牛顿第二定律瞬时性的“两类”模型(1)刚性绳(轻杆或接触面)——不发生明显形变就能产生弹力的物体,剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间.(2)弹簧(或橡皮绳)——两端同时连接(或附着)有物体的弹簧(或橡皮绳),特点是形变量大,其形变恢复需要较长时间,在瞬时性问题中,其弹力的大小往往可以看成保持不变.3.在求解瞬时加速度时应注意的问题(1)物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析和运动分析.(2)加速度可以随着力的突变而突变,而速度的变化需要一个积累的过程,不会发生突变.典型例题分析1、如图所示,质量为0.2 kg的物体A静止在竖直的轻弹簧上,质量为0.6 kg的物体B由细线悬挂在天花板上,B与A刚好接触但不挤压,现突然将细线剪断,则剪断后瞬间A.B间的作用力大小为(g取10 m/s2)()A.0.5 N B.2.5 N C.0 N D.1.5 N【解析】剪断细线前,A、B间无压力,则弹簧的弹力F=m A g=0.2×10=2 N,剪断细线的瞬间,对整体分析,N=m B g-m B a=0.6×10 N-0.6×7.5 N=1.5 N.故选D项【答案】D2、如图所示,天花板上固定有一光滑的定滑轮,绕过定滑轮且不可伸长的轻质细绳左端悬挂一质量为M的铁块;右端悬挂有两质量均为m的铁块,上下两铁块用轻质细线连接,中间夹一轻质弹簧处于压缩状态,此时细线上的张力为2mg,最初系统处于静止状态.某瞬间将细线烧断,则左端铁块的加速度大小为( )A.14gB.13gC.23gD.13g 【解析】 根据题意,烧断细线前轻绳上的张力为2mg ,可得到M =2m ,以右下端的铁块为研究对象,根据平衡条件可知,细线烧断前弹簧的弹力为mg ,细线烧断前的瞬间,铁块M 与右端上面的铁块m 间轻绳的故C 项正确.【答案】 C3、“儿童蹦极”中,拴在腰间左右两侧的是弹性极好的橡皮绳..质量为m 的小明如图所示静止悬挂时,两橡皮绳的拉力大小均恰为mg ,若此时小明右侧橡皮绳在腰间断裂,则小明此时( )A .加速度为零,速度为零B .加速度a =g ,沿原断裂橡皮绳的方向斜向下C .加速度a =g ,沿未断裂橡皮绳的方向斜向上D .加速度a =g ,方向竖直向下 解析 根据题述,腰间左右两侧的橡皮绳中弹力等于重力.若此时小明右侧橡皮绳在腰间断裂,则小明此时所受合力方向沿原断裂橡皮绳的方向斜向下,大小等于mg ,所以小明的加速度a =g ,沿原断裂橡皮绳的方向斜向下,B 项正确.答案B4、(多选)如图所示,A 、B 、C 三球质量分别为3m 、2m 、m ,轻质弹簧一端固定在斜面顶端、另一端与A 球相连,A 、B 间固定一个轻杆,B 、C 间由一轻质细线连接.倾角为θ=30°的光滑斜面固定在地面上,弹簧、轻杆与细线均平行于斜面,初始系统处于静止状态.已知重力加速度为g.将细线烧断的瞬间,下列说法正确的是( )A .A 、B 两个小球的加速度均沿斜面向上,大小均为g 10B .B 球的加速度为g 2,方向沿斜面向下C .A 、B 之间杆的拉力大小为mgD .A 、B 之间杆的拉力大小为1.2mg解析A、B项,烧断细线前,以A、B、C组成的系统为研究对象,系统静止,处于平衡状态,合力为零,则弹簧的弹力为F=(3m+2m+m)gsinθ=6mgsinθ.以C为研究对象知,细线的拉力为mgsinθ.烧断细线的瞬间,由于弹簧弹力不能突变,弹簧弹力不变,以A、B组成的系统为研究对象,由牛顿第二定律得:F-(3m+2m)gsinθ=(3m+2m)a AB.答案AD5、如图所示,弹簧p和细绳q的上端固定在天花板上,下端用小钩勾住质量为m的小球C,弹簧、细绳和小钩的质量均忽略不计.静止时p、q与竖直方向的夹角均为60°.下列判断正确的有()A.若p和球突然脱钩,则脱钩后瞬间q对球的拉力大小为mgB.若p和球突然脱钩,则脱钩后瞬间球的加速度大小为gC.若q和球突然脱钩,则脱钩后瞬间p对球的拉力大小为mgD.若q和球突然脱钩,则脱钩后瞬间球的加速度大小为g6、(多选)如图,物块a、b和c的质量相同,a和b、b和c之间用完全相同的轻弹簧S1和S2相连,通过系在a 上的细线悬挂于固定点O,整个系统处于静止状态.现将细线剪断,将物块a的加速度的大小记为a1,S1和S2相对于原长的伸长分别记为Δl1和Δl2,重力加速度大小为g,在剪断的瞬间,()A.a1=3g B.a1=0 C.Δl1=2Δl2D.Δl1=Δl2[审题突破](1)剪断前,S1的弹力为________,S2的弹力为________,a物块所受合力为________;(2)剪断瞬间,两弹簧弹力________,物块a所受合力为________.[解析]设物体的质量为m,剪断细绳的瞬间,绳子的拉力消失,弹簧还没有来得及改变,所以剪断细绳的瞬间a受到重力和弹簧S1的拉力F T1,剪断前对bc和弹簧S2组成的整体分析可知F T1=2mg,故a受到的合=mg,根据胡克定律F=kΔx可得Δl1=2Δl2,C正确、D错误.[答案]AC7.如图所示,物块1、2 间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量为m,2、4质量为M,两个系统均置于水平放置的光滑木板上,并处于静止状态.现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2、3、4的加速度大小分别为aA .a 1=a 2=a 3=a 4=0B .a 1=a 2=a 3=a 4=gC .a 1=a 2=g ,a 3=0,a 4=m +M M gD .a 1=g ,a 2=m +M M g ,a 3=0,a 4=m +M M g解析:选C.在抽出木板的瞬间,物块1、2与刚性轻杆接触处的形变立即消失,受到的合力均等于各自重力,所以由牛顿第二定律知a 1=a 2=g ;而物块3、4间的轻弹簧的形变还来不及改变,此时弹簧对物块3向上1、四个质量均为m 的小球,分别用三条轻绳和一根轻弹簧连接,处于平衡状态,如图所示.现突然迅速剪断轻绳A1、B1,让小球下落,在剪断轻绳的瞬间,设小球1、2、3、4的加速度分别用a1、a2、a3和a4表示,则( )A .a 1=g ,a 2=g ,a 3=2g ,a 4=0B .a 1=0,a 2=2g ,a 3=0,a 4=2gC .a 1=g ,a 2=g ,a 3=g ,a 4=gD .a 1=0,a 2=2g ,a 3=g ,a 4=g2、(多选)在动摩擦因数μ=0.2的水平面上有一个质量为m =2 kg 的小球,小球与水平轻弹簧及与竖直方向成θ=45°角的不可伸长的轻绳一端相连,如图所示,此时小球处于静止平衡状态,且水平面对小球的弹力恰好为零.当剪断轻绳的瞬间,取g =10 m/s 2,以下说法正确的是( )A .此时轻弹簧的弹力大小为20 NB .小球的加速度大小为8 m/s 2,方向向左C .若剪断弹簧,则剪断的瞬间小球的加速度大小为10 m/s 2,方向向右D .若剪断弹簧,则剪断的瞬间小球的加速度为0答案ABD解析在剪断轻绳前,小球受重力、绳子的拉力以及弹簧的弹力处于平衡,根据共点力平衡得,弹簧的弹力:F=mgtan45°=20×1=20 N,故A项正确;在剪断轻绳的瞬间,弹簧的弹力仍然为20 N,小球此时受重力、支持力、弹簧弹力和摩擦力四个力作用;小球所受的最大静摩擦力为:f=μmg=0.2×20 N=4 N,根据牛顿第二定律得小球的加速度为:a=(F-f)/m=8 m/s2;合力方向向左,所以向左加速.故B项正确;剪断弹簧的瞬间,轻绳对小球的拉力瞬间为零,此时小球所受的合力为零,则小球的加速度为零,故C项错误,D项正确.3、如图所示,质量为m的小球用水平轻弹簧系住,并用倾角为30°的光滑木板AB托住,小球恰好处于静止状态.当木板AB突然向下撤离的瞬间,小球的加速度大小为( )A.0 B.g C.g D.g。
牛顿运动定律专题(二)※【模型解析】——瞬时性问题(1)刚性绳(或接触面):一种不发生明显形变就能产生弹力的物体,剪断(或脱离)后,弹力立即改变或消失,不需要形变恢复时间,一般题目中所给的细线、轻杆和接触面在不加特殊说明时,均可按此模型处理.(2)弹簧(或橡皮绳):当弹簧的两端与物体相连(即两端为固定端)时,由于物体有惯性,弹簧的长度不会发生突变,所以在瞬时问题中,其弹力的大小认为是不变的,即此时弹簧的弹力不突变.【典型例题】例1.如图,物体A、B用轻质细线2相连,然后用细线1悬挂在天花板上,求剪断轻细线1的瞬间两个物体的加速度a1、a2大小分别为()A.g,0B.g,g C.0,g D.2g,g例1题图例2题图例3题图例2.如图所示,吊篮P悬挂在天花板上,与吊篮质量相等的物体Q被固定在吊篮中的轻弹簧托住,当悬挂吊篮的细绳烧断瞬间,吊蓝P和物体Q的加速度大小是() A.a P=a Q=g B.a P=2g,a Q=0C.a P=g,a Q=2g D.a P=2g,a Q=g例3.如图所示,物块1、2间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量为m,2、4质量为M,两个系统均置于水平放置的光滑木板上,并处于静止状态.现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2、3、4的加速度大小分别为a1、a2、a3、a4.重力加速度大小为g,则有()A.a1=a2=a3=a4=0B. a1=a2=a3=a4=gC.a1=a2=g,a3=0,a4=m+MM g D.a1=g,a2=m+MM g,a3=0,a4=m+MM g例4.细绳拴一个质量为m 的小球,小球用固定在墙上的水平弹簧支撑,小球与弹簧不粘连.平衡时细绳与竖直方向的夹角为53°,如图所示.以下说法正确的是( )A .小球静止时弹簧的弹力大小为35mg B .小球静止时细绳的拉力大小为35mg C .细线烧断瞬间小球的加速度立即为gD .细线烧断瞬间小球的加速度立即为53g 【课后练习】1.如右图所示,在倾角为θ的光滑斜面上有两个用劲度系数为k 的轻质弹簧相连的物块A 、B ,质量均为m ,开始时两物块均处于静止状态.现下压A 再静止释放使A 开始运动,当物块B 刚要离开挡板时,A 的加速度的大小和方向为( )A .0B .2gsin θ,方向沿斜面向下C .2gsin θ,方向沿斜面向上D .gsin θ,方向沿斜面向下1题图 2题图 3题图2.如图所示,竖直放置在水平面上的轻质弹簧上放着质量为3kg 的物体A ,处于静止状态。
牛顿第二定律之瞬时性问题智慧物理【总结】一、瞬时性问题1.牛顿第二定律的表达式为:F 合= 。
加速度由物体所受 决定,。
加速度的方向与物体所受 的方向一致;当物体所受合外力发生突变时,加速度也随着发生 ,而物体运动的速度 发生突变。
2.两种模型的区别(1)轻绳、轻杆和接触面:不发生明显形变就能产生弹力,剪断或脱离后,不需要时间恢复形变,原有弹力立即消失或 ,即会发生突变。
(2)轻弹簧、蹦床和橡皮条:当轻弹簧两端与物体相连(即两端为固定端)时,由于物体有惯性,弹簧的长度不会发生 ,所以在瞬时问题中,其弹力大小认为是 的,即此时弹簧弹力不突变。
二、解题思路1.分析瞬时变化前物体的受力情况;2.分析瞬时变化后哪些力变化或消失;3.求出变化后物体所受合力,根据牛顿第二定律列方程;4.求瞬时加速度。
【专题练习】一、填空题1.如图所示,A B 、两小球用细线连接,C D 、两小球用轻弹簧连接,双手分别提起A C 、两球,使四个小球均在空中处于静止状态,双手同时释放A C 、瞬间(空气阻力不计,重力加速度为g ),小球B 的加速度大小为____________,小球D 的加速度大小为____________。
2.如图所示,两系统均处于静止状态,绳和弹簧质量不计。
重力加速度为g ,则剪断OA 、OC 上端绳的瞬时,物体A 、B 、C 、D 的瞬时加速度分别为:a A=______a B=______ac =______a D=______3.如图甲、乙所示,图中细线均不可伸长,两小球均处于平衡状态且质量相同.如果突然把两水平细线剪断,剪断瞬间小球A的加速度的大小为________,方向为________;小球B 的加速度的大小为________,方向为________;图甲中倾斜细线OA与图乙中弹簧的拉力之比为________(θ、重力加速度g已知).4.如图所示,质量为m的小球用一根细线和一根轻弹簧悬挂起来,小球静止时,细线水平,而弹簧与竖直成θ角。
牛顿第二定律瞬时性问题一、牛顿第二定律瞬时性问题的两种模型二、分析瞬时问题的“两个关键”与“四个步骤”三、典型例题典例1、如图所示,物体A、B质量均为m,中间有一轻质弹簧相连,A用绳悬于O点,当突然剪断OA绳时,关于A物体的加速度,下列说法正确的是( )A.0B.gC.2gD.无法确定典例2、如图所示,一质量为m的小球处于平衡状态。
现将线L2剪断,则剪断L2的瞬间小球的加速度( )A.甲图小球加速度为a=gsin θ,垂直L1斜向下方B.乙图小球加速度为a=gsin θ,垂直L1斜向下方C.甲图小球加速度为a=gtan θ,水平向右D.乙图小球加速度为a=gtan θ,水平向左思考:如图所示,一个质量为m的小球通过水平弹簧和细线悬挂保持静止,弹簧的劲度系数为k,此时弹簧伸长了x,细线与竖直方向成θ角,当细线剪断瞬间,下列说法正确的是( ) A.小球的加速度大小为g,方向竖直向下B.小球的加速度大小为,方向水平向左C.小球的加速度大小为,方向沿原细线方向指向左下方D.不能确定小球的加速度典例3、如图,轻弹簧上端与一质量为m的木块1相连,下端与另一质量为M的木块2相连,整个系统置于水平放置的光滑木板上,并处于静止状态。
现将木板沿水平方向突然抽出,设抽出后瞬间,木块1、2的加速度大小分别为a1、a2。
重力加速度大小为g。
则有: ( )A、 a1=g, a2=gB、 a1=0, a2=gC、 a1=0, a2=( m +M)g/ MD、a1=g, a2= ( m +M)g/ M典例4、如图所示,质量分别为m、2m的小球A、B,由轻质弹簧相连后再用细线悬挂在电梯内,已知电梯正在竖直向上做匀加速直线运动,细线中的拉力为F。
此时突然剪断细线,在线断的瞬间,弹簧弹力的大小和小球A加速度的大小分别为( )A.+gB.+gC.+gD.+g典例5、如图所示,A、B两小球分别连在轻绳两端,B球另一端用弹簧固定在倾角为30°的光滑斜面上。
牛顿第二定律的瞬时性问题根据牛顿第二定律的表达式F=ma,物体的加速度与物体所受的合外力总是同时产生、同时变化、同时消失,故物体的合外力与其加速度具有瞬时对应关系。
所以,合外力恒定时加速度恒定不变,合外力变化时加速度随之发生变化。
在某些情况下物体的合外力受力条件突然发生变化,要求分析物体加速度的变化,这类问题我们称为瞬时性问题。
一、瞬时性问题的解题步骤二、两种模型1、轻绳、轻杆和接触面这些物体产生弹力时没有明显的形变,剪断或脱离后,恢复形变不需要时间,弹力立即消失或改变,如果题目中没有特殊说明,我们均可认为轻绳、轻杆和接触面的弹力发生突变。
例题1:如图甲、乙所示,质量为m的两物体分别用长度均为L的细线悬挂在天花板上的A、B、C、D 四点,A、B及C、D两点间的距离也为L,甲图中物体通过一小段细线悬挂,而乙图中两根等长细线直接系在物体上,现在剪断悬挂在B、D两点的细线,则在剪断细线的瞬间,物体的加速度为()A. 甲图中物体的加速度为0,乙图中物体的加速度为gB. 甲图中物体的加速度为12g,乙图中物体的加速度为32g分析原状态受力情况,求出原状态下各力的大小和方向。
原状态当前状态加速度若原状态是平衡状态,则由平衡条件求解,若原状态处于加速状态,则由牛顿第二定律求解。
分析当前状态与原状态的间的差异,发生了哪些变化?分析当前状态的受力情况,确定合外力,由牛顿第二定律求解加速度。
C. 甲图中物体的加速度为g,乙图中物体的加速度为1 2 gD. 甲图中物体的加速度为32g,乙图中物体的加速度为0分析与解:甲图中细线剪断后,物体将做自由落体运动,直至细线被拉直,所以剪断的瞬间物体加速度为g;乙图中细线剪断后,物体将绕C点做圆周运动,其加速度垂直细线,所以加速度为12g。
答案:C例题2:(多选)如图所示,质量分别为M=10kg和m=5kg的两物体通过细线连接,已知物体M与水平面的摩擦因数为0.1,物体m与水平面的摩擦因数为0.2,用恒定的外力F=30N拉着两物体在水平面上做匀加速运动,某时刻,突然撤去外力F的瞬间,下列说法正确的是()A.两物体的加速度大小均为43m/s2B.细线的拉力为10NC.物体m的加速度为2m/s2D. 细线的拉力为零分析与解:撤去力F的瞬间,由于物体m所受摩擦力产生的加速度大于物体M所受摩擦力产生的加速度,所以两细线间没有拉力,两物体加速度不同,物体M的加速度为1 m/s2,物体m的加速度为2 m/s2.答案:CD例题3:(多选)如图所示,箱子内用两根细线将质量为m的小球悬挂在A、B两点,其中细线AO与水平方向成600角,细线BO水平,箱子做竖直向上的匀加速直线运动,加速度a=g,g为重力加速度。
牛顿第二定律瞬时性问题轻绳、轻弹簧共同之处是均不计重力。
不同点在于:1.轻绳:不可伸长。
即无论绳(或线)所受拉力多大,绳子(或线)的长度不变。
由此特点可知:绳(或线)中的张力可以突变,为瞬时力。
2.轻弹簧由于弹簧受力时,要发生形变需要一段时间,所以弹簧的弹力不能发生突变,为延时力。
【例1】如图1所示,质量相等的两个物体之间用一轻弹簧相连,再用一细线悬挂在天花板上静止,当剪断细线的瞬间两物体的加速度各为多大?练习:如图4所示,质量为m的小球被弹簧和水平细绳悬挂而处于静止,弹簧与竖直方向的夹角为,现剪断水平绳,此瞬间弹簧的拉力为___________;小球的加速度为_________,方向为___________。
连接体问题两个或两个以上物体相互连接参与运动的系统称为连接体.以平衡态或非平衡态下连接体问题拟题屡次呈现于高考卷面中,是考生备考临考的难点之一【例】如图2-1,质量为2 m的物块A与水平地面的摩擦可忽略不计,质量为m的物块B 与地面的动摩擦因数为μ,在已知水平推力F的作用下,A、B做加速运动,A对B的作用力为____________.弹簧问题(动力学角度)如图所示,一轻质弹簧竖直放在水平地面上,小球A由弹簧正上方某高度自由落下,与弹簧接触后,开始压缩弹簧,设此过程中弹簧始终服从胡克定律,那么在小球压缩弹簧的过程中,以下说法中正确的是()A.小球加速度方向始终向上B.小球加速度方向始终向下C.小球加速度方向先向下后向上D.小球加速度方向先向上后向下临界与极值如图,A,B两个物体间用最大张力为100N的轻绳相连,A,B两物质量各为4Kg,8Kg,在拉力F的作用下向上作加速运动,为使轻绳不被拉断,Fmax是多大?1、如图,质量m=10kg的小球挂在倾角α=37º的光滑斜面上,当斜面和小球以a1=g/2的加速度向右加速运动时,小球对绳子的拉力和对斜面的压力分别多大?如果斜面和小球以a 2= 3 g的加速度向右加速运动时,小球对绳子的拉力和对斜面的压力分别多大?2.质量分别为m A=2kg、m B=4kg的物体叠放在水平地面上,B与水平地面间的摩擦系数为0.4,A与B间的静摩擦系数为0.8,水平力F作用在B上(如图),要使A与B间不发生滑动,则F的最大值为多少?若改为F加在A上呢?牛顿运动定律中的图像问题质量为2kg的物体在水平推力F的作用下沿水平面做直线运动,一段时间后撤去F,其运动的v—t图象如图12所示。