牛顿第二定律总结
- 格式:doc
- 大小:266.50 KB
- 文档页数:7
高中物理必修一:牛顿第二定律知识点、公式总结
F合= ma (是矢量式)或者∑F x = m a x∑F y = m a y
理解:(1)矢量性(2)瞬时性(3)独立性(4)同体性(5)同系性(6)同单位制
●力和运动的关系
①物体受合外力为零时,物体处于静止或匀速直线运动状态;
②物体所受合外力不为零时,产生加速度,物体做变速运动.
③若合外力恒定,则加速度大小、方向都保持不变,物体做匀变速运动,匀变速运动的轨迹可以是直线,
也可以是曲线.
④物体所受恒力与速度方向处于同一直线时,物体做匀变速直线运动.
⑤根据力与速度同向或反向,可以进一步判定物体是做匀加速直线运动或匀减速直线运动;
⑥若物体所受恒力与速度方向成角度,物体做匀变速曲线运动.
⑦物体受到一个大小不变,方向始终与速度方向垂直的外力作用时,物体做匀速圆周运动.此时,外力
仅改变速度的方向,不改变速度的大小.
⑧物体受到一个与位移方向相反的周期性外力作用时,物体做机械振动.
表1给出了几种典型的运动形式的力学和运动学特征.
综上所述:判断一个物体做什么运动,一看受什么样的力,二看初速度与合外力方向的关系.力与运动的关系是基础,在此基础上,还要从功和能、冲量和动量的角度,进一步讨论运动规律.。
牛顿第二定律牛顿第二定律是经典力学中最基本、最重要的定律之一。
它描述了物体所受力与物体运动状态之间的关系。
根据牛顿第二定律,物体的加速度与施加在物体上的合力成正比,与物体的质量成反比。
本文将详细介绍牛顿第二定律的原理、公式及其应用。
一、定律的原理牛顿第二定律的原理可以总结为以下公式:F = ma其中,F表示物体所受的合力,m表示物体的质量,a表示物体的加速度。
该公式表明,一个物体所受的力越大,其加速度也越大;而物体的质量越大,则所受的力对其产生的加速度越小。
二、公式的推导牛顿第二定律的公式可以通过以下推导得到:首先,我们知道力的定义可以表示为:F = dp/dt其中,F表示力,p表示物体的动量,t表示时间。
根据动量的定义,我们有:p = mv其中,m表示物体的质量,v表示物体的速度。
对动量求导数得到:dp/dt = m(dv/dt) + v(dm/dt)将dp/dt代入力的定义中,得到:F = m(dv/dt) + v(dm/dt)由于质量m在运动过程中一般保持不变,所以dm/dt为0,上式可以简化为:F = m(dv/dt)根据加速度的定义a = dv/dt,上式可以再次简化为:F = ma三、应用举例牛顿第二定律可以应用于各种场景中,以下是几个常见的例子:1. 自由落体运动当物体在重力作用下自由下落时,其受到的合力仅为重力,根据牛顿第二定律,物体的加速度与重力之间满足:F = mg = ma其中,m表示物体的质量,g表示重力加速度,上式可以简化为:a = g这就是为什么在自由落体运动中,所有物体的加速度都相等且为重力加速度的原因。
2. 匀速圆周运动在匀速圆周运动中,物体受到向心力的作用,根据牛顿第二定律,向心力与物体的质量、向心加速度之间满足:F = mv²/r = ma其中,m表示物体质量,v表示物体在圆周上的速度,r表示圆周半径,上式可以简化为:v²/r = a这说明向心加速度与速度的平方成正比,与圆周半径的倒数成正比。
物理牛顿第二定律知识点总结牛顿第二定律是经典力学中的重要定律之一,它描述了物体受力时的运动规律。
该定律的数学表达形式为F=ma,其中F表示物体所受的合力,m表示物体的质量,a表示物体的加速度。
下面将对牛顿第二定律的几个关键点进行总结。
1. 牛顿第二定律的基本原理牛顿第二定律是基于质点力学的基本原理之一,它指出物体所受的合力与物体的质量和加速度成正比。
当物体受到合力时,它将产生加速度,而加速度的大小与合力成正比,与物体的质量成反比。
2. 牛顿第二定律的数学表达牛顿第二定律的数学表达形式为F=ma,其中F表示物体所受的合力,m表示物体的质量,a表示物体的加速度。
这个公式表明,当物体所受的合力增大时,它的加速度也会增大;当物体的质量增大时,它的加速度会减小。
3. 牛顿第二定律的单位根据国际单位制,力的单位是牛顿(N),质量的单位是千克(kg),加速度的单位是米每平方秒(m/s²)。
因此,牛顿第二定律的单位可以表示为N=kg×m/s²。
4. 牛顿第二定律的应用牛顿第二定律在物理学中有广泛的应用。
例如,在机械运动中,可以利用牛顿第二定律来计算物体的加速度、速度和位移。
在工程学中,可以利用牛顿第二定律来设计和分析各种机械系统。
在天体力学中,可以利用牛顿第二定律来研究行星、卫星等天体的运动规律。
5. 牛顿第二定律的局限性牛顿第二定律在某些情况下可能不适用。
例如,在极小尺度的微观领域,量子力学的规律会取代经典力学的描述;在高速运动的情况下,相对论效应需要考虑。
此外,牛顿第二定律也无法解释某些特殊情况下的运动规律,如黑洞的行为等。
6. 牛顿第二定律的推广形式牛顿第二定律可以推广到多体系统中。
对于多个物体组成的系统,每个物体所受的合力等于其质量乘以加速度。
通过对每个物体的运动方程进行联立,可以求解出整个系统的运动规律。
牛顿第二定律是经典力学中的重要定律,它描述了物体受力时的运动规律。
通过对物体所受的合力、质量和加速度之间的关系进行分析,可以应用牛顿第二定律解决各种物理问题。
牛顿第二定律力等于质量乘以加速度牛顿第二定律是经典力学中的核心定律之一,由英国物理学家艾萨克·牛顿于17世纪发现并提出。
该定律简洁明了地表达了力与物体质量和加速度之间的数学关系。
根据牛顿第二定律,力等于物体质量乘以加速度。
牛顿第二定律可以用以下公式表示:F = m * a其中,F代表作用在物体上的力,m代表物体的质量,a代表物体的加速度。
牛顿第二定律的实际应用非常广泛。
在日常生活中,我们可以通过这个定律解释许多常见的现象和情况。
下面将通过一些实例来说明牛顿第二定律的应用。
例子1:运动的车辆当一辆车行驶时,发动机产生的动力推动车辆前进。
根据牛顿第二定律,车辆所受到的合力等于质量乘以加速度。
因此,如果一个汽车的质量较大,它所需的力也就越大,才能使加速度达到预期的水平。
这也解释了为什么较重的物体需要更大的力来移动。
例子2:自行车行驶当我们骑自行车时,踩踏脚蹬向后施加一个力,使自行车前进。
根据牛顿第二定律,施加在自行车上的力等于自行车的质量乘以加速度。
如果我们增加踩踏的力,自行车将加速前进。
反之,如果我们减少施加的力,自行车将减速。
例子3:抛掷运动当我们抛出一个物体时,我们施加了一个向前的力。
根据牛顿第二定律,物体所受到的合力等于其质量乘以加速度。
因此,当物体质量较大时,我们需要施加更大的力才能将其抛得更远。
牛顿第二定律不仅适用于日常生活中的情况,也适用于更复杂的物理问题。
例如,在机械工程中,通过应用牛顿第二定律,可以计算和预测机械系统中的各种力和运动的关系。
在航天领域,牛顿第二定律也被用来计算航天器在太空中的加速度和运动。
总结:牛顿第二定律是物理学中的重要定律之一,直观地表达了力与物体质量和加速度的关系。
通过应用该定律,我们能够解释和预测许多物理现象,并在工程和科学研究中得到广泛应用。
牛顿第二定律的重要性不仅限于理论,它在我们的日常生活中也起到了重要的作用。
在我们理解了牛顿第二定律的基础上,我们能够更深入地研究和探索物体的运动规律,为工程设计和科学研究提供有力的依据。
方法05 牛顿第二定律实验要点归纳总结与数据处理的方法1.实验要点归纳通过在木板右侧垫木块使木板有一定的倾角,则小车所受重力沿木板方向的分力与其所受摩擦力平衡。
平衡摩擦力后,在不受拉力作用时用手轻拨小车,小车2.探究牛顿第二定律实验图像数据处理的技巧若 a F 图线是实验 装 置 放 在 光 滑 水平面得到的 ,设小车 质量为 M .根据牛顿第在二定律,有Ma =F 变形得M F a =, 则a F 图像的斜率M k 1=, 根 据斜率可求小车质量若间的动摩擦因数为图像的斜率因数 若定律有所受的合外力1.(2022·山东·统考高考真题)在天宫课堂中、我国航天员演示了利用牛顿第二定律测量物体质量的实验。
受此启发。
某同学利用气垫导轨、力传感器、无线加速度传感器、轻弹簧和待测物体等器材设计了测量物体质量的实验,如图甲所示。
主要步骤如下:≫将力传感器固定在气垫导轨左端支架上,加速度传感器固定在滑块上;≫接通气源。
放上滑块。
调平气垫导轨;≫将弹簧左端连接力传感器,右端连接滑块。
弹簧处于原长时滑块左端位于O 点。
A 点到O 点的距离为5.00cm ,拉动滑块使其左端处于A 点,由静止释放并开始计时;≫计算机采集获取数据,得到滑块所受弹力F 、加速度a 随时间t 变化的图像,部分图像如图乙所示。
回答以下问题(结果均保留两位有效数字):(1)弹簧的劲度系数为 N/m 。
(2)该同学从图乙中提取某些时刻F 与a 的数据,画出a —F 图像如图丙中I 所示,由此可得滑块与加速度传感器的总质量为 kg 。
(3)该同学在滑块上增加待测物体,重复上述实验步骤,在图丙中画出新的a —F 图像≫,则待测物体的质量为 kg 。
【答案】 12 0.20 0.13【详解】(1)[1]由题知,弹簧处于原长时滑块左端位于O 点,A 点到O 点的距离为5.00cm 。
拉动滑块使其左端处于A 点,由静止释放并开始计时。
牛顿第二定律应用的典型问题1. 力和运动的关系例1. 如图1所示,轻弹簧下端固定在水平面上。
一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。
在小球下落的这一全过程中,下列说法中正确的是()A. 小球刚接触弹簧瞬间速度最大B. 从小球接触弹簧起加速度变为竖直向上C. 从小球接触弹簧到到达最低点,小球的速度先增大后减小D. 从小球接触弹簧到到达最低点,小球的加速度先减小后增大例2. 一航天探测器完成对月球的探测任务后,在离开月球的过程中,由静止开始沿着与月球表面成一倾斜角的直线飞行,先加速运动,再匀速运动,探测器通过喷气而获得推动力,以下关于喷气方向的描述中正确的是()A. 探测器加速运动时,沿直线向后喷气B. 探测器加速运动时,竖直向下喷气C. 探测器匀速运动时,竖直向下喷气D. 探测器匀速运动时,不需要喷气故正确答案选C。
2. 力和加速度的瞬时对应关系(1)物体运动的加速度a与其所受的合外力F有瞬时对应关系。
每一瞬时的加速度只取决于这一瞬时的合外力,而与这一瞬时之间或瞬时之后的力无关。
若合外力变为零,加速度也立即变为零(加速度可以突变)。
这就是牛顿第二定律的瞬时性。
(2)中学物理中的“绳”和“线”,一般都是理想化模型,具有如下几个特性:①轻,即绳(或线)的质量和重力均可视为零。
由此特点可知,同一根绳(或线)的两端及其中间各点的张力大小相等。
②软,即绳(或线)只能受拉力,不能承受压力(因绳能弯曲)。
由此特点可知,绳与其他物体相互作用力的方向是沿着绳子且背离受力物体的方向。
③不可伸长:即无论绳子所受拉力多大,绳子的长度不变。
由此特点知,绳子中的张力可以突变。
(3)中学物理中的“弹簧”和“橡皮绳”,也是理想化模型,具有如下几个特性:①轻:即弹簧(或橡皮绳)的质量和重力均可视为零。
由此特点可知,同一弹簧的两端及其中间各点的弹力大小相等。
②弹簧既能受拉力,也能受压力(沿弹簧的轴线);橡皮绳只能受拉力,不能承受压力(因橡皮绳能弯曲)。
③由于弹簧和橡皮绳受力时,其形变较大,发生形变需要一段时间,所以弹簧和橡皮绳中的弹力不能突变。
但是,当弹簧和橡皮绳被剪断时,它们所受的弹力立即消失。
例3. 如图3所示,竖直光滑杆上套有一个小球和两根弹簧,两弹簧的一端各与小球相连,另一端分别用销钉M、N固定于杆上,小球处于静止状态,设拔去销钉M瞬间,小球加速度的大小为。
若不拔去销钉M而拔去销钉N瞬间,小球的加速度可能是()A. ,竖直向上B. ,竖直向下C. ,竖直向上D. ,竖直向下解析:原来小球处于静止状态时,若上面的弹簧为压缩状态,则拔去M瞬间小球会产生向上的加速度,拔去N瞬间小球会产生向下加速度。
设上下弹簧的弹力分别为。
在各瞬间受力如图4所示。
拔M前静止:拔M瞬间:拔N瞬间:联立<1><2><3>式得拔去N瞬间小球产生的加速度可能为,方向竖直向下。
原来小球处于静止状态时,若上面的弹簧为拉伸状态,则拔去M瞬间小球会产生向下的加速度,拔去N瞬间小球会产生向上加速度,如图5所示。
图5拔M前静止:拔M瞬间:拔N瞬间:联立<1><2><3>式得:拔去N瞬间小球产生的加速度可能为,方向竖直向上。
综合以上分析,可知正确答案为BC。
3. 力的独立作用原理一个物体可以同时受几个力的作用,每一个力都使物体产生一个效果,如同其他力不存在一样,即力与它的作用效果完全是独立的,这就是力的独立作用原理。
力可以合成和分解,效果也可以合成和分解,其运算法则均为平行四边形定则。
为此,合力与其合效果对应,分力与其分效果对应,对物体的运动往往看到的是合效果,在研究具体问题时,可根据受力的特点求合力,让合效果与合力对应;也可将效果分解,让它与某一方向上的分力对应。
正因为力的作用是相互独立的,所以牛顿第二定律在运用中常按正交法分解为例4. 某型航空导弹质量为M,从离地面H高处水平飞行的战斗机上水平发射,初速度为,发射之后助推火箭便给导弹以恒定的水平推力F作用使其加速,不计空气阻力和导弹质量的改变,下列说法正确的有()A. 推力F越大,导弹在空中飞行的时间越长B. 不论推力F多大,导弹在空中飞行的时间一定C. 推力F越大,导弹的射程越大D. 不论推力F多大,导弹的射程一定解析:推力F和重力G分别在两个正交的方向上,均单独对导弹产生各自的加速度,因高度H一定,在竖直方向上,导弹是自由落体运动,故落地时间与F无关,为一定值。
而水平方向导弹的射程由决定,显然F越大,a越大,水平射程越大。
即本题的正确答案为BC。
4. 连结体问题此类问题,在高考中只限于两个物体的加速度相同的情况。
通常是对两个物体组成的整体运用牛顿第二定律求出整体的加速度,然后用隔离法求出物体间的相互作用力。
例5. 如图6所示,质量为2m的物块A,与水平地面的摩擦不计,质量为m的物块B与地面的摩擦因数为μ,在已知水平推力F的作用下,A、B做加速运动,则A和B之间的作用力为____________。
图6解析:由题意知,地面对物块A的摩擦力为0,对物块B的摩擦力为。
对A、B整体,设共同运动的加速度为a,由牛顿第二定律有:对B物体,设A对B的作用力为,同理有联立以上三式得:5. 超重和失重问题当物体处于平衡状态时,物体对水平支持物的压力(或竖直悬挂物的拉力)大小等于物体受到的重力,即。
当物体m具有向上或向下的加速度a时,物体对水平支持物的压力(或竖直悬挂物的拉力)大小大于或小于物体受到的重力G的现象,分别叫做超重和失重,并且超出或失去部分为。
具体应用可分两种情况。
(1)定性分析对于一些只需作定性分析的问题,利用超重或失重的概念能够巧妙地使问题得到解决。
在具体分析过程中,关键是正确判断系统的超重与失重现象,清楚系统的重心位置的变化情况。
当系统的重心加速上升时为超重,当系统的重心加速下降时为失重。
例6. 如图7所示,A为电磁铁,C为胶木秤盘,电磁铁A和秤盘C(包括支架)的总质量为M,B为铁片,质量为m,整个装置用轻绳悬挂于O点。
当电磁铁通电,铁片被吸引上升的过程中,轻绳中拉力F的大小为()A. B.C. D.解析:以A、B、C组成的系统为研究对象,A、C静止,铁片B由静止被吸引加速上升。
则系统的重心加速上升,系统处于超重状态,故轻绳的拉力,正确答案为D。
(2)定量分析超重并不是重力增加,失重也不是失去重力或重力减少,在同一地点地球作用于物体的重力始终存在且没有发生变化,只是物体对支持物的压力(或对悬挂物的拉力)发生了变化,看起来好像物重有所增大或减小。
当物体相对于地面有向上的加速度或相对于地面的加速度竖直向上的分量不为零时,物体处于超重状态,超出的部分在数值上等于或(为加速度的竖直分量)。
当物体相对于地面有向下的加速度或相对于地面的加速度竖直向下的分量不为零时,物体处于失重状态,失去的部分在数值上等于或,利用上述结论可以进行定量计算。
例7. 如图8所示,一根弹簧上端固定,下端挂一质量为的秤盘,盘中放有质量为m的物体,当整个装置静止时,弹簧伸长了L,今向下拉盘使弹簧再伸长△L,然后松手放开,设弹簧总是在弹性范围内,则刚松手时,物体m对盘压力等于多少?解析:视m、为系统,开始平衡有再伸长△L,系统受的合外力为,故此时系统的加速度a方向向上,系统处于超重状态。
对m来说超重故刚松手时,物体m对盘的压力结合<1>式可得:6. 临界问题在临界问题中包含着从一种物理现象转变为另一种物理现象,或从一物理过程转入另一物理过程的转折状态。
常出现“刚好”、“刚能”、“恰好”等语言叙述。
例8. 一斜面放在水平地面上,倾角,一个质量为0.2kg的小球用细绳吊在斜面顶端,如图9所示。
斜面静止时,球紧靠在斜面上,绳与斜面平行,不计斜面与水平面的摩擦,当斜面以的加速度向右运动时,求细绳的拉力及斜面对小球的弹力。
(g取)图9解析:斜面由静止向右加速运动过程中,当a较小时,小球受到三个力作用,此时细绳平行于斜面;当a增大时,斜面对小球的支持力将会减少,当a增大到某一值时,斜面对小球的支持力为零;若a继续增大,小球将会“飞离”斜面,此时绳与水平方向的夹角将会大于θ角。
而题中给出的斜面向右的加速度,到底属于上述哪一种情况,必须先假定小球能够脱离斜面,然后求出小球刚刚脱离斜面的临界加速度才能断定。
设小球刚刚脱离斜面时斜面向右的加速度为,此时斜面对小球的支持力恰好为零,小球只受到重力和细绳的拉力,且细绳仍然与斜面平行。
对小球受力分析如图10所示。
图10易知代入数据解得:因为,所以小球已离开斜面,斜面的支持力同理,由受力分析可知,细绳的拉力为此时细绳拉力与水平方向的夹角为7. 对系统应用牛顿第二定律设系统内有两个物体,质量分别为和,受到系统以外的作用力分别为,对与对的作用力分别为和,两物体的加速度分别为,由牛顿第二定律得两物体受到的合外力为:由牛顿第三定律得:由以上三式得:其中式中为系统所受的合外力,同理可证,上述结论对多个物体组成的系统也是成立的,即为如按正交分解则得:例9. 如图11所示,质量为M的框架放在水平地面上,一个轻质弹簧固定在框架上,下端拴一个质量为m的小球,当小球上下振动时,框架始终没有跳起,在框架对地面的压力为零的瞬间,小球加速度大小为()图11A. gB.C. 0D.解析:运用牛顿第二定律关键在受力分析,式中各量必须对应同一个研究对象,下面用两种方法解答。
解法一:分别以框架和小球为研究对象,当框架对地面的压力为零时作受力分析如图12、13所示。
对框架:对小球:所以,方向向下。
答案选D。