汽车自动变速器详解
- 格式:pptx
- 大小:7.09 MB
- 文档页数:70
基础知识一.自动变速器动力传递概述自动变速器由液力元件、变速机构、控制系统、主传动部件等几大部分组成。
变速机构可分为固定平行轴式、行星齿轮式和金属带式无级自动变速器(CVT)三种。
我国在用的车辆中,大多数自动变速器都采用行星齿轮式变速机构,这也是本文重点分析的对象。
行星齿轮机构一般由2个或2个以上行星齿轮组按不同的组合方式构成,其作用是通过对不同部件的驱动或制动,产生不同速比的前进挡、倒挡和空挡。
换挡执行元件的作用是约束行星齿轮机构的某些构件,包括固定并使其转速为0,或连接某部件使其按某一规定转速旋转。
通过适当选择行星齿轮机构被约束的基本元件和约束方式,就可以得到不同的传动比,形成不同的挡位。
换挡执行元件包括离合器、制动器和单向离合器3种不同的元件,离合器的作用是连接或驱动,以将变速机构的输入轴(主动部件)与行星齿轮机构的某个部件(被动部件)连接在一起,实现动力传递。
制动器的作用是固定行星齿轮机构中的某基本元件,它工作时将被制动元件与变速器壳体连接在一起,使其固定不能转动。
单向离合器具有单向锁止的特点,当与之相连接的元件的旋转趋势使其受力方向与锁止方向相同时,该元件被固定(制动)或连接(驱动);当受力方向与锁止方向相反时,该元件被释放(脱离连接)。
由此可见,单向离合器在不同的状态下具有与离合器、制动器相同的作用。
由以上介绍可知,掌握不同组合行星齿轮机构的运动规律是自动变速器故障诊断的基础。
二.单排单级行星齿轮机构1.单排单级行星齿轮机构的传动比最简单的行星齿轮机构由一个太阳轮、一个内齿圈和一个行星架组成,我们称之为一个单排单级行星排,如图1所示。
由于单排行星齿轮机构具有两个自由度,为了获得固定的传动比,需将太阳轮、齿圈或行星架三者之一制动(转速为0)或约束(以某一固定的转速旋转),以获得我们所需的传动比;如果将三者中的任何两个连接为一体,则整个行星齿轮机构以同一速度旋转。
目前,在有关自动变速器的资料中,有关传动比的计算公式有以下几个:(n1-nH)/(n3-nH)=-Z3/Z1 式(1)式中:n1-太阳轮转速;nH-行星架转速;n3-内齿圈转速;Z1-太阳轮齿数;Z3-内齿圈齿数n1+αn2-(1+α)n3=0 式(2)式中:n1-太阳轮转速;n2-内齿圈转速;n3-行星架转速;α=内齿圈齿数/太阳轮齿数=Z2/Z1Z2=Z1+Z3 式(3)式中:Z1-太阳轮齿数;Z2-行星架假想齿数;Z3-内齿圈齿数下面对这3个公式的原理与推导过程作以介绍,这也是本文后面对不同型号自动变速器速比计算方法的基础。
汽车自动变速器构造及工作原理原理演示文稿汽车自动变速器是现代汽车驱动系统中的重要部件之一,它的主要作用是根据发动机转速和车辆行驶速度,合理地选择不同的齿比,以提供最佳的动力输出和燃油经济性。
本文将详细介绍汽车自动变速器的构造和工作原理,并通过演示来帮助读者更好地理解。
一、自动变速器的构造:1.液力变矩器:液力变矩器是汽车自动变速器的关键部件之一,它通过液压传动方式实现动力输出。
液力变矩器由泵轮、涡轮和导向转子三部分组成。
泵轮由发动机带动,涡轮与变速器输入轴相连,导向转子与输出轴相连。
当发动机运转时,泵轮驱动液体在涡轮中形成一个旋转的涡流,涡轮将这个旋转涡流转化为动力输出,从而驱动汽车行驶。
2.行星齿轮组:行星齿轮组是实现不同齿比选择的核心机构。
它由太阳轮、行星轮和内齿轮三部分组成。
通过改变太阳轮、行星轮和内齿轮之间的连接方式,可以实现不同的齿比。
在实际运行中,变速器会根据车速和行驶状态,自动切换不同的齿比,以实现最佳的动力输出。
3.液压操纵系统:液压操纵系统通过控制油压来实现行星齿轮组的切换。
一般来说,液压操纵系统包括离合器、制动器、却流器等部件。
离合器用于连接或断开相应的行星齿轮组,制动器用于制动相应的行星齿轮组,却流器用于控制液压系统的压力。
二、自动变速器的工作原理:1.挡位选择过程:当驾驶员选择驾驶模式(如P(停车)、R(倒车)、N(空挡)、D (驾驶)等),控制器将信号传递给液压操纵系统,液压操纵系统根据信号切换对应的行星齿轮组连接方式,确定所需齿比。
2.液力变矩器过程:当变速杆位于驾驶档位时,变速器输入轴上的齿轮开始转动,驱动液力变矩器的泵轮。
液压系统通过控制阀门和泵的转速,调节液力变矩器中的工作压力和转矩。
液力变矩器将发动机的转矩传递给变速器输出轴,驱动车辆前进。
当驾驶员加速或减速时,液压操纵系统会根据车速和发动机转速的变化,通过控制液力变矩器的油流量和压力来实现变速器齿比的自动调整。
自动变速器的结构和工作原理一、结构自动变速器是一种用于汽车的传动装置,主要作用是根据车辆的速度和负载条件,自动调整发动机输出的扭矩和转速,以提供最佳的动力传递和燃油经济性。
它由多个部件组成,包括液力变矩器、行星齿轮组、离合器、制动器、齿轮轴和控制单元等。
1. 液力变矩器:液力变矩器是自动变速器的核心部件之一,它通过液体的动力传递来实现发动机与变速器之间的连接。
液力变矩器由泵轮、涡轮和导向叶片组成,当发动机转速增加时,泵轮产生液压力,驱动涡轮转动,从而传递动力。
2. 行星齿轮组:行星齿轮组是自动变速器的主要传动装置,由太阳轮、行星轮和环形轮组成。
通过不同组合的行星轮与太阳轮、环形轮的连接,可以实现不同的传动比,从而实现不同的挡位。
3. 离合器:离合器用于连接或断开发动机与变速器之间的动力传递。
自动变速器通常配备多个离合器,通过控制离合器的开合状态,可以实现不同挡位的切换。
4. 制动器:制动器用于停止或限制齿轮轴的旋转,从而实现换挡过程中的顺畅切换。
制动器通常由摩擦片和压力装置组成,通过控制制动器的压力来实现制动效果。
5. 齿轮轴:齿轮轴是连接各个齿轮的轴,它们通过齿轮的啮合来实现动力传递。
6. 控制单元:控制单元是自动变速器的大脑,它通过传感器监测车辆的速度、负载和驾驶者的需求,然后根据预设的程序来控制变速器的工作状态,实现自动换挡。
二、工作原理自动变速器的工作原理可以简单概括为以下几个步骤:1. 液力传递:当发动机启动后,液力变矩器开始工作,通过液体的动力传递将发动机的转动力传递给变速器,实现动力输出。
2. 换挡控制:控制单元通过传感器监测车辆的速度和负载情况,根据预设的程序来判断何时需要进行换挡操作。
当需要换挡时,控制单元会发送信号给相应的离合器和制动器,实现齿轮的切换。
3. 离合器操作:当换挡信号发出后,控制单元会控制相应的离合器断开或连接,断开离合器时,发动机的动力不再传递给变速器,连接离合器时,发动机的动力重新传递给变速器。
汽车MTATAMTCVTDSG变速器构造及原理详解汽车变速器是连接发动机和车轮的一个关键部件,通过变速器可以调整发动机输出的转矩和速度,用来适应不同的路况和驾驶需求。
目前市场上常见的汽车变速器有MT、AT、AMT、CVT和DSG等类型,每种变速器都有各自的构造和原理。
1.手动变速器(MT)手动变速器是最传统的变速器类型,由离合器和多个齿轮组成。
驾驶员需要通过踩离合器将发动机和齿轮脱离,然后根据驾驶需求手动选择适当的齿轮进行换挡。
手动变速器可以提供较高的驾驶操控性和油耗经济性,但需要驾驶员具备一定的技术和经验。
2.自动变速器(AT)自动变速器是无需驾驶员手动操作的变速器类型,由液力变矩器(torque converter)和多个齿轮组成。
液力变矩器可以在发动机和齿轮之间传递动力,并允许发动机在低速时保持运转。
自动变速器能够根据车速和发动机负载自动选择适当的挡位进行换挡,提供了更加舒适和省力的驾驶体验。
3.机械自动变速器(AMT)机械自动变速器是一种介于手动变速器和自动变速器之间的变速器类型,它利用电/气动控制系统实现自动换挡。
AMT在结构上与手动变速器相似,但通过电/气动系统控制离合器和齿轮的动作。
相比于手动变速器,AMT的换挡更加顺畅和快速,同时也保留了手动变速器的驾驶操控性。
4.连续变速器(CVT)连续变速器采用了不同于传统变速器的工作原理,它通过无级变速机构(infinite variable transmission)来实现平稳而连续的变速。
CVT不需要离合器和固定齿轮,而是通过两个活动的传动带或金属链条来调整齿轮比例。
这样可以确保发动机和车轮间的动力输出始终保持在理想状态,提供更加平顺和高效的驾驶体验。
5.双离合器变速器(DSG)双离合器变速器是一种相对较新的变速器类型,它由两个独立的离合器和一套液压控制系统组成。
其中一个离合器用于连接发动机和一组齿轮,另一个离合器则连接另一组齿轮和车轮。
汽车自动变速器构造与原理解析汽车这玩意儿,真是个神奇的家伙!要是没有了变速器,咱们开车就跟跑步似的,完全没法享受那种风驰电掣的快感。
今天咱们就来聊聊这个自动变速器,它可不是一个简单的机器,而是个复杂的小精灵,默默地在我们开车的时候发挥着重要的作用。
1. 自动变速器的基本构造1.1 变速器的“心脏”首先,自动变速器的心脏,大家肯定猜到了,就是变速箱。
变速箱里有很多齿轮,就像一个个小玩意儿在这里跳舞。
根据车速的不同,变速器会自动选择合适的齿轮,就像你在不同场合换衣服一样,真是让人佩服!这可不是随便换的,而是通过复杂的传感器来感知车辆的状态,决定使用哪个档位。
要是没有这些智能设备,咱们开车的时候就得像开老爷车一样,手动换挡,那真是太麻烦了!1.2 液力变矩器的“魔力”接下来,液力变矩器也是变速器里的一块“重要拼图”。
这个小家伙就像是变速器的魔术师,负责将发动机的动力传递给变速箱。
液力变矩器的工作原理可真不简单,它利用液体的流动来完成动力的传递,就像是把热汤倒进碗里,温温的,滑滑的,舒舒服服地传递到每一个齿轮。
这样一来,不管你是加速还是减速,车子都能平稳地跟上你的节奏,简直就是开车的贴心小助手啊!2. 自动变速器的工作原理2.1 自动换挡的“神秘”说到工作原理,咱们得提到自动换挡。
自动变速器通过一系列的电子控制单元,来感应车速、油门和发动机转速等信息。
你想想,当你踩下油门的时候,车子是瞬间就能加速的,而这个过程就是变速器在背后默默地操控着。
就像你玩游戏一样,操作一瞬间,人物就飞速前进,感觉爽到飞起!2.2 适应不同驾驶需求的“灵活”还有一点特别重要,自动变速器非常聪明,能够根据不同的驾驶需求进行调整。
比如说,你在城市里走走停停,变速器会自动调节换挡频率,让你在低速行驶时更加平稳。
而如果你在高速公路上飞驰,它又能迅速换到高档位,让你尽情享受那种“风在耳边呼啸”的感觉。
总之,它就像是车子的“心理医生”,总能感应到你的需求,给你最舒适的驾驶体验。
汽车自动变速器的工作原理汽车自动变速器是现代汽车中的重要部件,它负责根据不同的路况和驾驶需求,自动调整车辆的档位。
下面将详细介绍汽车自动变速器的工作原理,分为以下几个方面。
一、变速器的结构成分1.液力变矩器:液力变矩器是连接发动机和变速器之间的传动组件,它能够通过液体的流动调整动力输出和扭矩转换。
2.行星齿轮组:行星齿轮组是变速器中的核心部分,由行星齿轮和太阳齿轮、行星架等组成,通过不同齿轮的组合实现档位的变换。
3.离合器和制动器:离合器和制动器的作用是固定或释放不同的齿轮组件,使其能够连接或分离传动系统,实现档位的变换。
4.控制单元:控制单元是汽车自动变速器的大脑,通过接收来自传感器的信号,制定相应的控制策略,并控制液力变矩器、离合器和制动器的动作。
二、工作原理1.起步阶段:当驾驶员踩下油门时,发动机产生动力输出,经过液力变矩器传递给行星齿轮组。
同时,控制单元根据传感器的信号,判断当前的工况,并调整液力变矩器的转矩输出。
2.档位变换:根据车速、加速度、油门踏板位置等参数,控制单元决定是否进行档位变换。
当需要加速时,控制单元指令离合器和制动器的动作,实现档位的变换。
此时,某个离合器释放,同时对应的制动器固定,使得特定的齿轮组与发动机输出的动力相连。
3.行驶和换挡过程:在行驶过程中,离合器和制动器会根据控制单元的指令,实时完成相应档位的变换。
液力变矩器通过液体的流动,根据发动机的动力输出和车辆的需求,提供合适的转矩输出。
4.停车和倒车:当车辆需要停车或进行倒车时,控制单元会指令离合器和制动器的动作,使得所有齿轮组断开连接,实现车辆的停止或倒退。
三、优势和不足1.优势:- 自动控制:汽车自动变速器能够根据驾驶员的需求自动调整档位,驾驶更加便捷。
- 平顺换挡:汽车自动变速器的换挡过程平稳,不会产生冲击感,提供了更加舒适的驾驶体验。
- 节省燃料:汽车自动变速器能够根据当前的工况和车速自动调整档位,提供最优化的燃料效率,节省燃料消耗。
汽车自动变速器的主要类型及特点汽车自动变速器(AT)的主要类型及目前的使用情况AT有以下几种形式:(1)液力机械AT—HMT(Hydrodynamic Mechanical Transmission)广泛应用于轿车、公共汽车、重型车辆、商用车和工程车辆上,它是目前AT的主流。
(2)机械式AT—AMT(Automated Mechanical Transmission)在通常机械式变速器基础上加上微机控制电液伺服操纵自动换档机构组成,目前它应用于部分低档轿车上和局部卡车和商用车上。
(3)无级式AT—CVT(Continuously Variable Transmission)有以下几种形式:●机械式:有不少形式,目前主要的是推块金属V型带式传动,在轿车上已开始批量试用。
●液压传动式(HST hydrostatic transmission):在工程车辆和农业机械上已应用。
虽本田公司最近开发了泵和马达制成一体的液压和机械双流传动的AT,用于微型多功能车上,但存在转速限制、效率、噪声、重量和尺寸等问题,在汽车上基本没有应用。
●电力式:用于电动汽车(EV electric vehicle)。
AMT的结构和性能特点分析AMT是在普通人工换档机械式变速器基础上加上替代人工换档的电子控制操纵机构组成,此自动换档机构有人称为换档机械手。
AMT是在普通机械变速器上进行改造而成的,仅改变其中手动换挡操纵部分,生产制造继承性好,改造投入费用少,技术难度似乎不大,可以先局部自动化。
例如:先离合器自动操纵、局部档位间实现自动操纵等,然后再实现全面自动化。
这对资金缺乏、制造能力低、技术力量薄弱的我国汽车工业来说,具有一定的吸引力。
已有几家国内单位进行了研究开发,取得了可喜的成绩。
AMT保留原来的机械变速器,因此其传动性能基本上和机械变速器相同。
除了齿轮传动外,主要特点是具有以下两大机构:起步装置,带扭矩减振器的主离合器;换档装置,带同步器的换档啮合套。
变速器1、MT:手动变速器(MT:Manual Transmission)采用齿轮组,由于每档的齿轮组的齿数是固定的,所以各档的变速比是个定值(也就是所谓的“级”),所以说它是有级变速器。
手动变速器是最常见的变速器。
MT的优缺点:优点:随着路面的不断变化随时增减档,节约了燃油,增加了驾驶乐趣,维护成本低,不容易使人发困,驾驶技术含量高。
缺点:对于新手来说,操作烦琐,容易把过多的精力用在油、离配合及挂挡上、容易熄火、分散注意力,有些新手还有低头看换档的习惯,容易产生安全隐患!2、AT:自动变速器(AT:Automatic Transmission)是利用车速和负荷(油门踏板的行程)进行双参数控制,档位根据上面的两个参数来自动升降。
AT与MT的相同点,就是二者都是有级式变速器,只不过AT能根据车速的快慢来自动实现档位的增减,一定程度上可以减轻手动档“顿挫”的变档感觉。
AT的优缺点:优点:AT不用离合器换档,档位少变化大,连接平稳,操作容易。
缺点:A、一是对速度变化反应较慢,没有手动档灵敏,因此许多玩车人士喜欢开手动档车;B、二是费油;C、三是机构复杂,修理困难。
3、AMT:AMT 是英文Automated Mechanical transmission的缩写,学名是机械式自动变速器。
AMT就是手动变速箱加了一套电动换挡机构,实质上还是手动变速箱。
换个说法,AMT就是手动档加了个自动换档的机构,替你换,当你不想让他帮你换时,可以把他关了,用手换档。
AMT是用芯片模拟人工换挡的过程,达到换挡不需要踩离合的目的。
另外,AMT换挡“顿挫”感明显,远不如AT平滑,与CVT相比,差距就更大了。
4、CVT:无级变速器它和MT、 AT、 AMT都不同,CVT,即无级变速器,顾名思义就是在一定传动比范围内能线性的调节传动比,相当于有无数个档位。
它对变速器本身的各主要关键部件要求极为严格,加工精度要求极高。
与有级式的区别在于,它的变速比不是间断的点,而是一系列连续的值,动力传输平滑而顺畅,没有传统自动变速器换档的顿挫感,也消除了手动变速器频繁换档的烦琐。
汽车自动变速器的工作原理汽车自动变速器是一种自动控制变速器的装置,可以根据车辆的行驶状况自动调整变速器的档位,以提高车辆的动力性和经济性。
下面将从五个方面介绍汽车自动变速器的工作原理。
1. 动力传递汽车自动变速器的动力传递主要依靠液力传动。
在液力传动系统中,发动机的动力通过液力变矩器传递给变速器。
液力变矩器由泵轮、涡轮和导轮组成,其中泵轮与发动机相连,涡轮与变速器输入轴相连。
当发动机工作时,泵轮旋转产生涡流,将动力传递给涡轮,再通过导轮的调节,实现动力的无级变速。
2. 换挡控制汽车自动变速器的换挡控制主要依靠自动控制系统来完成。
自动控制系统根据车辆的行驶状况、发动机的工况以及驾驶员的意图等信息,自动调整变速器的档位。
换挡控制主要通过调节变速器油路的油压来实现,油压的调节由阀体和电磁阀等控制元件完成。
3. 液力变矩器液力变矩器是汽车自动变速器的重要组成部分,它由泵轮、涡轮和导轮组成。
泵轮与发动机相连,涡轮与变速器输入轴相连,导轮则起到调节涡流的作用。
当发动机工作时,泵轮旋转产生涡流,将动力传递给涡轮,再通过导轮的调节,实现动力的无级变速。
同时,液力变矩器还具有离合器和减震器的功能,可以在必要时切断动力传递,减轻变速器振动的负面影响。
4. 自动控制系统汽车自动变速器的自动控制系统是实现自动换挡的关键部分。
自动控制系统通过接收来自各种传感器和执行器的信号,对车辆的行驶状况、发动机的工况以及驾驶员的意图等信息进行综合分析,并根据预设的控制逻辑来决定变速器的档位。
同时,自动控制系统还能够根据实际情况进行自我调整和优化,以提高车辆的动力性和经济性。
5. 电子控制系统汽车自动变速器的电子控制系统是实现自动化控制的核心部分。
电子控制系统主要由传感器、执行器和控制器组成。
传感器用于监测车辆的行驶状况和发动机的工况,并将信号传输给控制器;执行器根据控制器的指令来调节变速器的档位和油压;控制器则是整个电子控制系统的核心,它根据传感器的信号和预设的控制逻辑来决定执行器的动作。
汽车自动变速器工作原理
汽车自动变速器是一种能够根据车辆行驶状况自动选择合适的挡位进行换挡的装置。
其工作原理主要涉及离合器、齿轮和液压控制系统。
首先,汽车自动变速器的离合器系统起到连接或分离发动机和变速器的作用。
当驾驶员踩下离合器踏板时,离合器压盘与变速器输入轴的摩擦片分离,发动机的动力不传递至变速器。
而当离合器释放时,发动机的动力通过输入轴传到变速器。
其次,汽车自动变速器中的齿轮系统包含一组不同大小的齿轮,这些齿轮可通过转动实现不同的挡位。
通常变速器有多个齿轮(包括同步器等部件)组成的轮系,在不同的挡位下,通过齿轮组的组合或离合,实现不同的传动比。
最后,汽车自动变速器还包含一个液压控制系统,用于判断车辆行驶状态并控制换挡。
液压控制系统通过传感器监测车速、油门踏板以及其他重要参数,然后控制液压阀门的开闭,以调整油压来实现换挡。
例如,当车速升高时,液压控制系统会感知到这一变化并自动切换到更高的挡位以提供更高的速度。
综上所述,汽车自动变速器工作的基本原理是通过离合器的连接与分离、齿轮的组合和液压控制系统的调节,实现车辆的自动换挡,并根据不同的行驶状态选择合适的挡位来进行传动。