高一数学正弦定理余弦定理习题及答案
- 格式:doc
- 大小:561.00 KB
- 文档页数:5
正 余 弦 定 理1.在ABC ∆中,A B>是sin sin A B>的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 2、已知关于x 的方程22cos cos 2sin 02Cx x A B -⋅+=的两根之和等于两根之积的一半,则ABC∆一定是( )(A )直角三角形(B )钝角三角形(C )等腰三角形(D )等边三角形. 3、 已知a,b,c 分别是△ABC 的三个内角A,B,C 所对的边,若则sinC= . 4、如图,在△ABC 中,若b = 1,c,23C π∠=,则a= 。
5、在ABC ∆中,角,,A B C 所对的边分别为a ,b ,c,若a =2b =,sin cos B B +=A 的大小为 .6、在∆ABC 中,,,a b c 分别为角,,A B C 的对边,且274sin cos 222B C A +-= (1)求A ∠的度数(2)若a =3b c +=,求b 和c 的值AB7、 在△ABC 中已知acosB=bcosA,试判断△ABC 的形状.8、如图,在△ABC 中,已知3=a ,2=b ,B=45求A 、C 及c .1、解:在ABC A B ∆>中,2sin 2sin sin sin a b R A R B A B ⇔>⇔>⇔>,因此,选C .2、【答案】由题意可知:211cos cos cos 2sin 222C CA B -=⋅⋅=,从而2cos cos 1cos()1cos cos sin sin A B A B A B A B =++=+-cos cos sin sin 1A B A B +=,cos()1A B -=又因为A B ππ-<-<所以0A B -=,所以ABC ∆一定是等腰三角形选C3、【命题立意】本题考察正弦定理在解三角形中的应用.【思路点拨】由已知条件求出B 、A 的大小,求出C ,从而求出sin .C 【规范解答】由A+C=2B 及180A B C ++=得60B =,由正弦定理得13sin 60A =得1sin 2A =,由a b <知60AB <=,所以30A =,180C A B =--90=,所以sin sin 90 1.C ==4、【命题立意】本题考查解三角形中的余弦定理。
第04讲正弦定理和余弦定理(精练)-2023年高考数学一轮复习讲练测(新教材新高考)第04讲正弦定理和余弦定理(精练)一、单选题(2022·全国·高三专题练习)1.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若222a b c +<,则ABC 是()A .等腰三角形B .锐角三角形C .直角三角形D .钝角三角形(2022·江苏·高一课时练习)2.已知正三角形的边长为2,则该三角形的面积()A .4BC D .1(2022·江苏·高一课时练习)3.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,45,30,6A C c === ,则a 等于()A .B .C .D .(2022·河南·高二阶段练习(文))4.如图,在直角梯形ABCD 中,//AB CD ,90ABC ∠=︒,2AB =,5CD =,6BC =,则CAD ∠=()A .30︒B .45︒C .60︒D .75︒(2022·江苏·南京市第九中学高一期中)5.图1是我国古代数学家赵爽创制的一幅“赵爽弦图”,它是由四个全等的直角三角形和一个小的正方形拼成一个大的正方形.某同学深受启发,设计出一个图形,它是由三个全等的钝角三角形和一个小的正三角形拼成一个大的正三角形,如图2,若BD =1,且三个全等三角形的面积和与小正三角形的面积之比为94,则△ABC 的面积为()A .94B C .134D .4(2022·江苏·盐城市伍佑中学高一期中)6.已知△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin cos c A C =,c =,18ab =,则a b +的值是()A .B .C .9D .11(2022·重庆八中高一期中)7.如图,四边形ABCD 四点共圆,其中BD 为直径,4AB =,3BC =,60ABC ∠=︒,则ACD 的面积为()A .6B .2C .6D .6(2022·河南·唐河县第一高级中学高一阶段练习)8.设向量a 与b 的夹角为θ,定义a 与b 的“向量积”:a b ⨯ .可知a b ⨯是一个向量,它的模为||||||sin a b a b θ⨯=⋅.已知在ABC 中,角,,A B C 所对的边分别为,,,3a b c A π=,)22||896BA BC b a ⨯=- ,则cos B =()A B .C .7-D 二、多选题(2022·山东淄博·高一期中)9.在ABC 中,如下判断正确的是()A .若sin 2sin 2AB =,则ABC 为等腰三角形B .若A B >,则sin sin A B >C .若ABC 为锐角三角形,则sin cos A B >D .若sin sin A B >,则A B>10.在ABC 中,内角、、A B C 所对的边分别为a 、b 、c ,则下列说法正确的是()A .sin sin sin +=+a b cA B CB .若A B >,则sin 2sin 2A B >C .cos cos c a B b A =+D .若0AB AC BC AB AC⎛⎫⎪+⋅= ⎪⎝⎭,且12AB AC AB AC ⋅=,则ABC 为等边三角形(2022·山东菏泽·高一期中)11.在ABC 中,D 在线段AB 上,且AD =5,BD =3,若CB =2CD,cos CDB ∠=则()A.sin CDB ∠B .△DBC 的面积为3C .ABC的周长为8+D .ABC 为钝角三角形三、填空题(2022·江西·上高二中高二阶段练习(文))12.已知ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,D 为边BC 上一点,且AD 为BAC ∠的角平分线,若3BAC π∠=,AD =,则4b c +最小值为___________.(2022·全国·高三专题练习)13.一艘渔船航行到A 处看灯塔B 在A 的北偏东75°,距离为C 在A 的北偏西45°,距离为海里,该船由A 沿正北方向继续航行到D 处时再看灯塔B 在其南偏东45°方向,则CD =______海里.四、解答题(2022·山东·肥城市教学研究中心模拟预测)14.如图,在ABC 中,内角,,A B C 所对的边分别为,,a b c ,2cos 2b A c a =-.(1)求角B ;(2)若2sin sinC sin A B ⋅=,2AD CD ==,求四边形ABCD 面积的最大值.(2022·宁夏·平罗中学三模(文))15.已知函数()f x m n =⋅ ,向量()sin cos n x x x =+ ,()cos sin ,2sin m x x x =- ,在锐角ABC 中内角,,A B C 的对边分别为,,a b c ,(1)若()1f A =,求角A 的大小;(2)在(1)的条件下,a cb +的最大值.(2022·安徽·安庆一中高三阶段练习(理))16.在锐角ABC 中,角,,A B C所对的边分别为,,,4,sin 4a b c a b A ===.(1)求sin C 的值;(2)点,D E 分别在边,AB AC 上,ABC 的面积是ADE V 面积的2倍.求DE 的最小值.参考答案:1.D【分析】根据余弦定理,得到cos 0C <,求得(,)2C ππ∈,即可求解.【详解】因为222a b c +<,由余弦定理可得222cos 02a b c C ab+-=<,又由(0,)C π∈,所以(,)2C ππ∈,所以ABC 是钝角三角形.故选:D.2.B【分析】由三角形面积公式可求出.【详解】根据三角形面积公式可得该三角形的面积为122sin 602⨯⨯⨯︒=故选:B.3.B【分析】根据正弦定理即可求解﹒【详解】由正弦定理得sin sin a c A C =,∴66sin4521sin302a===故选:B ﹒4.B【分析】先求出22,AC AD ,再利用余弦定理求解.【详解】因为2226240AC =+=,2226(52)45AD =+-=,在ACD 中,由余弦定理得222cos 22AD AC CD CAD AD AC +-∠==⋅,又因为0180CAD ︒<∠<︒,所以45CAD ∠=︒.故选:B.5.D【分析】设小正三角形边长为x ,由面积比求得x ,再计算出小正三角形面积可得大正三角形面积.【详解】设DE x =,则211sin 1(1)sin12013224ABD DEFBD AD ADB x S x S x ⋅∠⨯⨯+︒+==!!,解得2x =(23-舍去),所以224DEF S ==!,94ABCS ==!故选:D .6.C【分析】由条件sin cos c A C =结合正弦定理可求C ,再结合余弦定理求a b +.【详解】∵sin cos c A C =,∴sin sin cos C A A C =,又(0,)A π∈,sin 0A ≠,∴tan C =(0,)C π∈,∴3C π=,又2222cos c a b ab C =+-,c =18ab =,∴222718a b =+-,∴222()281a b a b ab +=++=,∴9a b +=,故选:C.7.C【分析】先在ABC 利用余弦定理求出边AC ,再利用正弦定理求出直径BD ,进而利用直角三角形求出AD 、CD ,再利用三角形的面积公式进行求解.【详解】在ABC 中,因为4AB =,3BC =,60ABC ∠=︒,所以由余弦定理,得AC =由正弦定理,得=sin sin 603AC BD ABC ==∠;在Rt △ABD 和Rt BCD中,3AD ===3CD ===,又180120ADC ABC ∠=-∠= ,所以ACD 的面积为123326S =⨯⨯⨯=.故选:C.8.B【分析】根据新定义及三角的面积公式可化为()22182129sin b a bc A -=,再由余弦定理转化为关于,b c 的方程,得出3b c =,再由余弦定理求出cos B 即可.【详解】因为()22||896BA BC b a ⨯=-,所以)221sin 289ac b a B -=,即)2289△ABC S b a -=,)221829sin b a A -=,由余弦定理,2222cos a b c bc A =+-,即222a b c bc =+-,代入上式得,22289()b b c bc ⎤-+-=⎦,化简得22690-+=b bc c ,即2(3)0-=b c ,3b c ∴=,此时.a ==22214cos 2a c b B ac +-∴-==.故选:B 9.BCD【分析】选项A.由题意可得22A B =或22A B π+=,从而可判断;选项B.若A B >,则a b >,由正弦定理可判断;选项C.若ABC 为锐角三角形,则2A B π+>,即所以022A B ππ>>->,由正弦函数的单调性可判断;选项D.在ABC 中,若sin sin A B >,由正弦定理可得22a bR R>,从而可判断.【详解】选项A.在ABC 中,若sin 2sin 2A B =,则22A B =或22A B π+=所以A B =或2A B π+=,所以ABC 为等腰或直角三角形.故A 不正确.选项B.在ABC 中,若A B >,则a b >,由正弦定理可得2sin 2sin R A R B >,即sin sin A B >,故B 正确.选项C.若ABC 为锐角三角形,则2A B π+>所以022A B ππ>>->,所以sin sin cos 2A B B π⎛⎫>-= ⎪⎝⎭,故C 正确.选项D.在ABC 中,若sin sin A B >,由正弦定理可得22a bR R>,即a b >,所以A B >,故D 正确.故选:BCD 10.ACD【解析】利用正弦定理以及边角互化可判断A 、B 、C ,利用向量数量积可判断D.【详解】对于A ,由sin sin sin sin sin a b c b cA B C B C+===+,故A 正确;对于B ,若A B >,当120A =o ,30B = 时,则sin 2sin 2A B <,故B 不正确;对于C ,()cos cos sin sin cos sin cos sin sin c a B b A C A B B A A B C =+⇒=+=+=,故C 正确;对于D ,由0AB AC BC AB AC⎛⎫⎪+⋅= ⎪⎝⎭,可得BAC ∠的角平分线与BC 垂直,所以ABC 为等腰三角形又12AB AC AB AC ⋅=,可得3BAC π∠=,所以ABC 为等边三角形,故D 正确;故选:ACD 11.ABD【分析】由同角的三角函数关系即可判断A ,设CD a =,利用余弦定理及面积公式即可判断B ,利用余弦定理求得AC ,进而判断C ,利用余弦定理可判断D.【详解】因为cos CDB ∠=sin CDB ∠,故A 正确;设CD a =,则2BC a =,在BCD △中,2222cos BC CD BD BD CD CDB =+-⋅⋅∠,解得a =,所以112sin 33225DBC S BD CD CDB =⋅⋅∠=⨯⨯= ,故B 正确;因为ADC CDB π∠=-∠,所以()cos cos cos 5ADC CDB CDB π∠=-∠=-∠=,在ADC △中,2222cos AC AD CD AD DC ADC =+-⋅⋅∠,解得AC =所以ABC 的周长为()3584AB AC BC ++=+++,故C 错误;因为8AB =为最大边,所以2223cos 025BC AC AB C BC AC +-==-<⋅,即C 为钝角,所以ABC 为钝角三角形,故D 正确.故选:ABD.12.9【分析】第一步利用等面积法求出,b c 的关系式,再利用基本不等式求解即可.【详解】由题意画图如下:因为AD 为BAC ∠的角平分线,3BAC π∠=,ABC ABD ADC S S S =+ 所以111sin 60sin 30sin 30222AB AC AB AD AD AC ⋅︒=⋅︒+⋅︒化简得11111,,1222c c b bc b c b c⋅==++=利用基本不等式“1的代换”得()()1145+449154b c b c b c c b b c b c ⎛⎫++=+⨯=+=+≥+ ⎪⎝⎭故答案为:9.13.【分析】利用方位角求出B 的大小,利用正弦定理直接求解AD 的距离,直接利用余弦定理求出CD 的距离即可.【详解】如图,在△ABD 中,因为在A 处看灯塔B 在货轮的北偏东75°的方向上,距离为海里,货轮由A 处向正北航行到D 处时,再看灯塔B 在南偏东45°方向上,所以B =180°−75°−45°=60°由正弦定理sin sin AD ABB ADB=∠,所以sin 6s in AB BAD ADB==∠海里;在△ACD 中,AD =6,AC=CAD =45°,由余弦定理可得:(222222cos 4563263182CD AD AC AD AC ︒=+-⋅⋅=+-⨯⨯=,所以CD=故答案为:14.(1)π3B =(2)【分析】(1)根据正弦定理化边为角,然后利用两角和的正弦公式即可求解.(2)由余弦定理得到ABC 为等边三角形,在ADC △中,利用余弦定理表达出2=88cos x θ-,然后根据三角形面积公式即可求解.(1)由正弦定理得:2sin cos 2sin sin B A=C A ⋅-,所以()2sin cos sin 2sin 2sin cos 2cos sin B A+A=A B A B A B⋅+=+即sin 2sin cos A=A B⋅()10,π,sin 0cos 2A AB ∈∴≠⇒= ,()π0,π3B B ∈∴=(2)由2sin sin sin A C =B ⋅2b =ac∴由余弦定理得222222222cos b a c ac B a c ac a c b =+-=+-=+-,222+2a c =b ∴()222222+2+20a c =a c ac =a cb =∴---a c∴=ABC ∴ 为等边三角形,设=AC =x ADC θ∠,,在ADC △中,24+4cos 222x =θ-⨯⨯,解得2=88cos x θ-2++2sin 88cos +2sin ABC ACD ABCD S =S S ==θθθ- 四边形)π4sin3=θ-()当ππ=32θ-,即5π6=θ时,S 有最大值15.(1)3A π=(2)【分析】(1)利用平面向量数量积运算法则和恒等变换公式化简函数()f x 的解析式,然后求解即可,要注意角A 的取值范围;(2)利用余弦定理和基本不等式求解即可.(1)由题()22cos sin cos 2sin 26f x m n x x x x x π⎛⎫=⋅=-+=+ ⎪⎝⎭所以()2sin 216f A A π⎛⎫=+= ⎪⎝⎭,即1sin 262A π⎛⎫+= ⎪⎝⎭又因为0,2A π⎛⎫∈ ⎪⎝⎭,所以5266A ππ+=,3A π=.(2)由余弦定理2222cos a b c bc A =+-,代入数据得:223b c bc =+-,整理得到()()()2222133324b c b c bc b c b c 骣+琪=+-³+-´=+琪桫解得b c +≤b c ==等号成立.故c b +的最大值为16.(1)4(2)【分析】(1)根据题意1cos 4A =,进而结合正弦定理得sin B =cos B =()sin sin C A B =+求解即可;(2)结合(1)得4c b ==,进而根据面积关系得8AD AE ⋅=,最后结合基本不等式与余弦定理得212DE ≥,进而得答案.(1)解:ABC是锐角三角形,1sin cos 44A A =∴=.在ABC中,4a b ==,由正弦定理得4sin sin b A B a ==,cos 4B ∴=.()C A B =π-+ ,()1sin sin sin cos cos sin 4C A B A B A B ∴=+=+=⨯(2)解:由(1)知,sin sin ,4B C c b =∴==.由题意得1sin 1622,81sin 2ABC ADE bc A S AD AE S AD AE AD AE A ==∴⋅=⋅⋅⋅ .由余弦定理得,222132cos 21222DE AD AE AD AE A AD AE AD AE AD AE =+-⋅≥⋅-⋅=⋅=,当且仅当AD AE ==“=”成立.所以DE的最小值为。
§4.6 正弦定理和余弦定理题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)三角形中三边之比等于相应的三个内角之比.( × )(2)在△ABC 中,若sin A >sin B ,则A >B .( √ )(3)当b 2+c 2-a 2>0时,三角形ABC 为锐角三角形.( × )(4)在△ABC 中,a sin A =a +b -c sin A +sin B -sin C.( √ ) (5)在三角形中,已知两边和一角就能求三角形的面积.( √ )题组二 教材改编2.[P10B 组T2]在△ABC 中,a cos A =b cos B ,则这个三角形的形状为________. 答案 等腰三角形或直角三角形解析 由正弦定理,得sin A cos A =sin B cos B ,即sin 2A =sin 2B ,所以2A =2B 或2A =π-2B ,即A =B 或A +B =π2, 所以这个三角形为等腰三角形或直角三角形.3.[P18T1]在△ABC 中,A =60°,AC =4,BC =23,则△ABC 的面积等于________. 答案 23解析 ∵23sin 60°=4sin B,∴sin B =1,∴B =90°, ∴AB =2,∴S △ABC =12×2×23=2 3.题组三 易错自纠4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若c <b cos A ,则△ABC 为( )A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形答案 A解析 由已知得sin C <sin B cos A ,∴sin(A +B )<sin B cos A ,∴sin A ·cos B +cos A ·sin B <sin B ·cos A ,又sin A >0,∴cos B <0,∴B 为钝角,故△ABC 为钝角三角形.5.(2018·桂林质检)在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( )A .有一解B .有两解C .无解D .有解但解的个数不确定答案 C解析 由正弦定理得b sin B =c sin C, ∴sin B =b sin C c =40×3220=3>1. ∴角B 不存在,即满足条件的三角形不存在.6.(2018·包头模拟)设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a,3sin A =5sin B ,则角C =________.答案 2π3解析 由3sin A =5sin B ,得3a =5b .又因为b +c =2a ,所以a =53b ,c =73b , 所以cos C =a 2+b 2-c 22ab =⎝⎛⎭⎫53b 2+b 2-⎝⎛⎭⎫73b 22×53b ×b =-12. 因为C ∈(0,π),所以C =2π3.题型一 利用正、余弦定理解三角形1.(2016·山东)△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =c ,a 2=2b 2(1-sin A ),则A 等于( )A.3π4B.π3C.π4D.π6答案 C解析 在△ABC 中,由余弦定理得a 2=b 2+c 2-2bc cos A ,∵b =c ,∴a 2=2b 2(1-cos A ),又∵a 2=2b 2(1-sin A ),∴cos A =sin A ,∴tan A =1,∵A ∈(0,π),∴A =π4,故选C. 2.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c .已知8b =5c ,C =2B ,则cos C 等于( ) A.725 B .-725 C .±725 D.2425答案 A解析 ∵8b =5c ,∴由正弦定理,得8sin B =5sin C .又∵C =2B ,∴8sin B =5sin 2B ,∴8sin B =10sin B cos B .∵sin B ≠0,∴cos B =45, ∴cos C =cos 2B =2cos 2B -1=725. 3.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________. 答案 1解析 因为sin B =12且B ∈(0,π), 所以B =π6或B =5π6. 又C =π6,B +C <π,所以B =π6,A =π-B -C =2π3. 又a =3,由正弦定理得a sin A =b sin B ,即3sin 2π3=b sin π6, 解得b =1.思维升华 (1)解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.(2)三角形解的个数的判断:已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.题型二 和三角形面积有关的问题典例 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a cos B .(1)证明:A =2B ;(2)若△ABC 的面积S =a 24,求角A 的大小. (1)证明 由正弦定理得sin B +sin C =2sin A cos B ,故2sin A cos B =sin B +sin(A +B )=sin B +sin A cos B +cos A sin B ,于是sin B =sin(A -B ).又A ,B ∈(0,π),故0<A -B <π,所以B =π-(A -B )或B =A -B ,因此A =π(舍去)或A =2B ,所以A =2B .(2)解 由S =a 24,得12ab sin C =a 24, 故有sin B sin C =12sin A =12sin 2B =sin B cos B , 由sin B ≠0,得sin C =cos B .又B ,C ∈(0,π),所以C =π2±B . 当B +C =π2时,A =π2; 当C -B =π2时,A =π4. 综上,A =π2或A =π4. 思维升华 (1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.跟踪训练 (1)(2018·承德质检)若AB =2,AC =2BC ,则S △ABC 的最大值为( )A .2 2 B.32 C.23D .32 答案 A解析 设BC =x ,则AC =2x .根据三角形的面积公式,得S △ABC =12·AB ·BC sin B =x 1-cos 2B .① 根据余弦定理,得cos B =AB 2+BC 2-AC 22AB ·BC =4+x 2-2x 24x =4-x 24x.② 将②代入①,得S △ABC =x 1-⎝⎛⎭⎫4-x 24x 2=128-(x 2-12)216. 由三角形的三边关系,得⎩⎨⎧2x +x >2,x +2>2x ,解得22-2<x <22+2,故当x =23时,S △ABC 取得最大值22,故选A.(2)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是________.答案 332 解析 ∵c 2=(a -b )2+6,∴c 2=a 2+b 2-2ab +6.①∵C =π3, ∴c 2=a 2+b 2-2ab cos π3=a 2+b 2-ab .② 由①②得-ab +6=0,即ab =6.∴S △ABC =12ab sin C =12×6×32=332.题型三 正弦定理、余弦定理的简单应用命题点1 判断三角形的形状典例 (1)在△ABC 中,cos A 2=1+cos B 2,则△ABC 一定是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .无法确定答案 A解析 由已知得cos 2A 2=1+cos B 2, ∴2cos 2A 2-1=cos B ,∴cos A =cos B , 又0<A ,B <π,∴A =B ,∴△ABC 为等腰三角形.(2)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定答案 B解析 由正弦定理得sin B cos C +sin C cos B =sin 2A ,∴sin(B +C )=sin 2A ,即sin(π-A )=sin 2A ,sin A =sin 2A .∵A ∈(0,π),∴sin A >0,∴sin A =1,即A =π2,∴△ABC 为直角三角形. 引申探究1.本例(2)中,若将条件变为2sin A cos B =sin C ,判断△ABC 的形状.解 ∵2sin A cos B =sin C =sin(A +B ),∴2sin A cos B =sin A cos B +cos A sin B ,∴sin(A -B )=0.又A ,B 为△ABC 的内角.∴A =B ,∴△ABC 为等腰三角形.2.本例(2)中,若将条件变为a 2+b 2-c 2=ab ,且2cos A sin B =sin C ,判断△ABC 的形状. 解 ∵a 2+b 2-c 2=ab ,∴cos C =a 2+b 2-c 22ab =12, 又0<C <π,∴C =π3, 又由2cos A sin B =sin C 得sin(B -A )=0,∴A =B ,故△ABC 为等边三角形.命题点2 求解几何计算问题典例 (1)如图,在△ABC 中,B =45°,D 是BC 边上一点,AD =5,AC =7,DC =3,则AB =________.答案 562 解析 在△ACD 中,由余弦定理可得 cos C =49+9-252×7×3=1114, 则sin C =5314. 在△ABC 中,由正弦定理可得AB sin C =AC sin B, 则AB =AC sin C sin B =7×531422=562. (2)(2018·吉林三校联考)在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是______.答案 (6-2,6+2)解析 如图所示,延长BA 与CD 相交于点E ,过点C 作CF ∥AD 交AB 于点F ,则BF <AB <BE . 在等腰三角形CBF 中,∠FCB =30°,CF =BC =2,∴BF =22+22-2×2×2cos 30°=6- 2.在等腰三角形ECB 中,∠CEB =30°,∠ECB =75°,BE =CE ,BC =2,BE sin 75°=2sin 30°,∴BE =212×6+24=6+ 2. ∴6-2<AB <6+ 2.思维升华 (1)判断三角形形状的方法①化边:通过因式分解、配方等得出边的相应关系.②化角:通过三角恒等变换,得出内角的关系,此时要注意应用A +B +C =π这个结论.(2)求解几何计算问题要注意:①根据已知的边角画出图形并在图中标示;②选择在某个三角形中运用正弦定理或余弦定理.跟踪训练 (1)(2018·安徽六校联考)在△ABC 中,cos 2B 2=a +c 2c(a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .等边三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形 答案 B 解析 ∵cos 2B 2=1+cos B 2,cos 2B 2=a +c 2c, ∴(1+cos B )·c =a +c ,∴a =cos B ·c =a 2+c 2-b 22a, ∴2a 2=a 2+c 2-b 2,∴a 2+b 2=c 2,∴△ABC 为直角三角形.(2)如图,在△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin ∠BAC =223,AB =32,AD =3,则BD 的长为________.答案 3解析 因为sin ∠BAC =223,且AD ⊥AC , 所以sin ⎝⎛⎭⎫π2+∠BAD =223,所以cos ∠BAD =223,在△BAD 中,由余弦定理, 得BD =AB 2+AD 2-2AB ·AD cos ∠BAD= (32)2+32-2×32×3×223= 3.二审结论会转换典例 (12分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a -c =66b ,sin B =6sin C .(1)求cos A 的值; (2)求cos ⎝⎛⎭⎫2A -π6的值.(1)求cos A ―――――――→根据余弦定理求三边a ,b ,c 的长或长度关系 ―――――――――→已知a -c =66b 利用正弦定理将sin B =6sin C 化为b =6c (2)求cos ⎝⎛⎭⎫2A -π6―→求cos 2A ,sin 2A ―→ 求sin A ,cos A ――→第(1)问已求出cos A 根据同角关系求sin A规范解答解 (1)在△ABC 中,由b sin B =c sin C及sin B =6sin C , 可得b =6c ,[2分] 又由a -c =66b ,有a =2c ,[4分] 所以cos A =b 2+c 2-a 22bc =6c 2+c 2-4c 226c 2=64.[7分](2)在△ABC 中,由cos A =64, 可得sin A =104.[8分] 于是cos 2A =2cos 2A -1=-14,[9分]sin 2A =2sin A ·cos A =154.[10分] 所以cos ⎝⎛⎭⎫2A -π6=cos 2A cos π6+sin 2A sin π6 =⎝⎛⎭⎫-14×32+154×12=15-38.[12分]1.(2017·长沙模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =13,b =3,A =60°,则边c 等于( ) A .1 B .2 C .4 D .6 答案 C解析 ∵a 2=c 2+b 2-2cb cos A , ∴13=c 2+9-2c ×3×cos 60°,即c 2-3c -4=0,解得c =4或c =-1(舍去).2.在△ABC 中,角A ,B ,C 对应的边分别为a ,b ,c ,若A =2π3,a =2,b =233,则B 等于( )A.π3B.5π6C.π6或5π6D.π6 答案 D解析 ∵A =2π3,a =2,b =233,∴由正弦定理a sin A =bsin B ,可得sin B =b a sin A =2332×32=12.∵A =2π3,∴B =π6.3.(2017·哈尔滨模拟)在△ABC 中,AB =3,AC =1,B =30°,△ABC 的面积为32,则C 等于( )A .30°B .45°C .60°D .75° 答案 C解析 ∵S △ABC =12·AB ·AC ·sin A =32,即12×3×1×sin A =32, ∴sin A =1,由A ∈(0°,180°),∴A =90°,∴C =60°.故选C.4.△ABC 的三个内角A ,B ,C 所对边的长分别为a ,b ,c ,a sin A sin B +b cos 2A =2a ,则b a 等于( )A .2 3B .2 2 C. 3 D.2 答案 D 解析 (边化角)由a sin A sin B +b cos 2A =2a 及正弦定理,得 sin A sin A sin B +sin B cos 2A =2sin A ,即sin B =2sin A ,所以b a =sin Bsin A= 2.5.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,sin A ,sin B ,sin C 成等比数列,且c =2a ,则cos B 的值为( ) A.14 B.34 C.24 D.23 答案 B解析 因为sin A ,sin B ,sin C 成等比数列, 所以sin 2B =sin A sin C ,由正弦定理得b 2=ac , 又c =2a ,故cos B =a 2+c 2-b 22ac=a 2+4a 2-2a 24a 2=34.6.(2017·郑州模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b 3cos B =asin A,则cos B 等于( )A .-12 B.12 C .-32 D.32答案 B解析 由正弦定理知sin B 3cos B =sin A sin A=1,即tan B =3,由B ∈(0,π),所以B =π3,所以cos B=cos π3=12,故选B.7.(2016·全国Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a=1,则b =________. 答案2113解析 在△ABC 中,由cos A =45,cos C =513,可得sin A =35,sin C =1213,sin B =sin(A +C )=sin A cos C +cos A ·sin C =6365,由正弦定理得b =a sin B sin A =2113.8.(2018·成都模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为______. 答案 π3或2π3解析 由余弦定理,得a 2+c 2-b 22ac =cos B ,结合已知等式得cos B ·tan B =32,∴sin B =32,又0<B <π,∴B =π3或2π3. 9.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,B =π6,C =π4,则△ABC 的面积为________. 答案3+1解析 ∵b =2,B =π6,C =π4.由正弦定理b sin B =csin C,得c =b sin Csin B =2×2212=22,A =π-⎝⎛⎭⎫π6+π4=7π12, ∴sin A =sin ⎝⎛⎭⎫π4+π3=sin π4cos π3+cos π4sin π3 =6+24. 则S △ABC =12bc ·sin A =12×2×22×6+24=3+1.10.(2018·长春质检)E ,F 是等腰直角三角形ABC 斜边AB 上的三等分点,则tan ∠ECF =________. 答案 34解析 如图,设AB =6,则AE =EF =FB =2. 因为△ABC 为等腰直角三角形, 所以AC =BC =3 2.在△ACE 中,A =45°,AE =2,AC =32, 由余弦定理可得CE =10. 同理,在△BCF 中可得CF =10. 在△CEF 中,由余弦定理得 cos ∠ECF =10+10-42×10×10=45,所以tan ∠ECF =34.11.(2018·珠海模拟)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =b tan A . (1)证明:sin B =cos A ;(2)若sin C -sin A cos B =34,且B 为钝角,求A ,B ,C .(1)证明 由正弦定理知a sin A =b sin B =c sin C=2R , ∴a =2R sin A ,b =2R sin B ,代入a =b tan A 得 sin A =sin B ·sin Acos A ,又∵A ∈(0,π),∴sin A >0,∴1=sin B cos A ,即sin B =cos A .(2)解 由sin C -sin A cos B =34知,sin(A +B )-sin A cos B =34,∴cos A sin B =34.由(1)知,sin B =cos A ,∴cos 2A =34,由于B 是钝角,故A ∈⎝⎛⎭⎫0,π2,∴cos A =32,A =π6. sin B =32,B =2π3,∴C =π-(A +B )=π6. 12.(2017·全国Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为a 23sin A .(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长. 解 (1)由题设得12ac sin B =a 23sin A,即12c sin B =a 3sin A. 由正弦定理,得12sin C sin B =sin A 3sin A ,故sin B sin C =23.(2)由题设及(1),得cos B cos C -sin B sin C =-12,即cos(B +C )=-12.所以B +C =2π3,故A =π3.由题意得12bc sin A =a 23sin A ,a =3,所以bc =8.由余弦定理,得b 2+c 2-bc =9,即(b +c )2-3bc =9.由bc =8,得b +c =33. 故△ABC 的周长为3+33.13.(2018·银川模拟)在△ABC 中,三个内角A ,B ,C 所对的边分别为a ,b ,c ,若S △ABC =23,a +b =6,a cos B +b cos Ac =2cos C ,则c 等于( )A .27B .4C .2 3D .33 答案 C解析 ∵a cos B +b cos Ac =2cos C ,由正弦定理,得sin A cos B +cos A sin B =2sin C cos C , ∴sin(A +B )=sin C =2sin C cos C ,由于0<C <π,sin C ≠0,∴cos C =12,∴C =π3,∵S △ABC =23=12ab sin C =34ab ,∴ab =8,又a +b =6,解得⎩⎪⎨⎪⎧ a =2,b =4或⎩⎪⎨⎪⎧a =4,b =2,c 2=a 2+b 2-2ab cos C =4+16-8=12, ∴c =23,故选C.14.(2018·大理模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足a sin B =3b cos A .若a =4,则△ABC 周长的最大值为________. 答案 12解析 由正弦定理a sin A =bsin B,可将a sin B =3b cos A 转化为sin A sin B =3sin B cos A . 又在△ABC 中,sin B >0,∴sin A =3cos A , 即tan A = 3. ∵0<A <π,∴A =π3.由余弦定理得a 2=16=b 2+c 2-2bc cos A =(b +c )2-3bc ≥(b +c )2-3⎝⎛⎭⎫b +c 22,则(b +c )2≤64,即b +c ≤8(当且仅当b =c =4时等号成立), ∴△ABC 周长=a +b +c =4+b +c ≤12,即最大值为12.15.在△ABC 中,若AB =4,AC =7,BC 边的中线AD =72,则BC =________.答案 9解析 如图所示,延长AD 到E ,使DE =AD ,连接BE ,EC .因为AD 是BC 边上的中线, 所以AE 与BC 互相平分,所以四边形ACEB 是平行四边形,所以BE =AC =7. 又AB =4,AE =2AD =7, 所以在△ABE 中,由余弦定理得, AE 2=49=AB 2+BE 2-2AB ·BE ·cos ∠ABE =AB 2+AC 2-2AB ·AC ·cos ∠ABE . 在△ABC 中,由余弦定理得,BC 2=AB 2+AC 2-2AB ·AC ·cos(π-∠ABE ), ∴49+BC 2=2(AB 2+AC 2)=2(16+49), ∴BC 2=81,∴BC =9.16.(2018·贵阳质检)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a 2-(b -c )2=(2-3)bc ,sin A sin B =cos 2C2,BC 边上的中线AM 的长为7.(1)求角A 和角B 的大小; (2)求△ABC 的面积.解 (1)由a 2-(b -c )2=(2-3)bc , 得a 2-b 2-c 2=-3bc , ∴cos A =b 2+c 2-a 22bc =32,又0<A <π,∴A =π6.由sin A sin B =cos 2C2,得12sin B =1+cos C 2, 即sin B =1+cos C , 则cos C <0,即C 为钝角, ∴B 为锐角,且B +C =5π6,则sin ⎝⎛⎭⎫5π6-C =1+cos C ,化简得cos ⎝⎛⎭⎫C +π3=-1, 解得C =2π3,∴B =π6.(2)由(1)知,a =b ,在△ACM 中, 由余弦定理得AM 2=b 2+⎝⎛⎭⎫a 22-2b ·a2·cos C =b 2+b 24+b 22=(7)2, 解得b =2,故S △ABC =12ab sin C =12×2×2×32= 3.。
正弦定理和余弦定理专题试题及答案1.在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形2.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( ) A .有一解 B .有两解 C .无解 D .有解但解的个数不确定3.已知△ABC 中,内角A ,B ,C 的对边分别为ɑ,b ,c ,若ɑ2=b 2+c 2-bc ,bc =4,则△ABC 的面积为( ) A.12 B .1 C.3 D .24.在△ABC 中,内角A ,B ,C 的对边分别为ɑ,b ,c ,且bsin A =3ɑcos B .则B =( ) A.π6 B.π4 C.π3 D.π25.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c.若3a =2b ,则2sin 2B -sin 2Asin 2A的值为( )A .-19B .13C .1D .726.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,且满足c sin A =3a cos C ,则sin A +sin B 的最大值是( )A .1B . 2C . 3D .37.在△ABC 中,若A=,B=,BC=3,则AC=( )A. B. C.2D.48.在△ABC 中,若a 2+b 2<c 2,则△ABC 的形状是 ( )A.锐角三角形B.直角三角形C.钝角三角形D.不能确定9.已知△ABC 的内角A,B,C 的对边分别为a,b,c,且=,则B= ( ) A.B. C. D.10.在△ABC 中,角A,B,C 所对的边长分别为a,b,c.若C=120°,c=a,则 ( )A.a>bB.a<bC.a=bD.a 与b 的大小关系不能确定11.在△ABC 中,已知AB →·AC →=tan A ,当A =π6时,△ABC =的面积为________.12.若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是________.13.△ABC 中,点D 是BC 上的点,AD 平分∠BAC,BD=2DC. (1)求.(2)若∠BAC=60°,求B.14.在△ABC 中,角A,B,C 的对边分别为a,b,c,且bcosC=3acosB-ccosB. (1)求cosB 的值. (2)若·=2,且b=2,求a 和c 的值.15.如图,在△ABC 中,点P 在BC 边上,∠PAC =60°,PC =2,AP +AC =4.(1)求∠ACP ;(2)若△APB 的面积是332,求sin ∠BAP .16.在△ABC 中,角A ,B ,C 的对边分别是ɑ,b ,c ,且b 2=ɑc =ɑ2-c 2+bc. (1)求bsin Bc的值; (2)试判断△ABC 的形状,并说明理由.正弦定理和余弦定理专题试题及答案1.在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形答案:C2.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( ) A .有一解 B .有两解 C .无解 D .有解但解的个数不确定 解析:由正弦定理得b sin B =csin C,∴sin B =bsin Cc=40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在. 答案:C3.已知△ABC 中,内角A ,B ,C 的对边分别为ɑ,b ,c ,若ɑ2=b 2+c 2-bc ,bc =4,则△ABC 的面积为( ) A.12B .1 C. 3 D .2 解析:∵ɑ2=b 2+c 2-bc ,∴cos A =12,∴A =π3,又bc =4,∴△ABC 的面积为12bcsin A =3,故选C.答案:C4.在△ABC 中,内角A ,B ,C 的对边分别为ɑ,b ,c ,且bsin A =3ɑcos B .则B =( ) A.π6 B.π4 C.π3 D.π2解析:根据题意结合正弦定理, 得sin Bsin A =3sin Acos B. 因为sin A ≠0,所以sin B =3cos B , 即sin B cos B =tan B =3,所以B =π3. 答案:C5.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c.若3a =2b ,则2sin 2B -sin 2A sin 2A的值为( )A .-19B .13C .1D .72解析:由正弦定理可得2sin 2B -sin 2A sin 2A =2⎝ ⎛⎭⎪⎫sinB sin A 2-1=2⎝ ⎛⎭⎪⎫b a 2-1,因为3a =2b ,所以b a =32,所以2sin 2B -sin 2A sin 2A =2×⎝ ⎛⎭⎪⎫322-1=72。
高考数学《正弦定理、余弦定理及解三角形》真题练习含答案一、选择题1.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,若a =2 ,b =3 ,B =π3,则A =( )A .π6B .56 πC .π4D .π4 或34 π答案:C解析:由正弦定理得a sin A =b sin B ,∴sin A =a sin B b =2×323=22 ,又a <b ,∴A为锐角,∴A =π4.2.在△ABC 中,b =40,c =20,C =60°,则此三角形解的情况是( ) A .有一解 B .有两解C .无解D .有解但解的个数不确定 答案:C解析:由正弦定理b sin B =c sin C ,∴sin B =b sin Cc =40×3220 =3 >1,∴角B 不存在,即满足条件的三角形不存在.3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,b =3,c =7 ,则角C =( )A .π6B .π4C .π3D .π2答案:C解析:由余弦定理得c 2=a 2+b 2-2ab cos C ,得cos C =a 2+b 2-c 22ab =4+9-72×2×3 =12,又C 为△ABC 内角,∴C =π3 .4.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a 2=b 2+c 2-bc ,bc =4,则△ABC 的面积为( )A .12 B .1 C .3 D .2答案:C解析:由余弦定理得a 2=b 2+c 2-2bc cos A ,又a 2=b 2+c 2-bc ,∴2cos A =1,cos A =12 ,∴sin A =1-cos 2A =32 ,∴S △ABC =12 bc sin A =12 ×4×32=3 . 5.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3,cos B =23,则b =( )A.14 B .6 C .14 D .6 答案:D解析:∵b sin A =3c sin B ,由正弦定理得ab =3bc ,∴a =3c ,又a =3,∴c =1,由余弦定理得b 2=a 2+c 2-2ac ·cos B =9+1-2×3×23=6,∴b =6 .6.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定 答案:B解析:∵b cos C +c cos B =a sin A ,∴sin B cos C +sin C cos B =sin 2A ,∴sin A =1,又A 为△ABC 的内角,∴A =90°,∴△ABC 为直角三角形.7.钝角三角形ABC 的面积是12,AB =1,BC =2 ,则AC =( )A .5B .5C .2D .1 答案:B解析:∵S △ABC =12 AB ×BC ×sin B =22 sin B =12 ,∴sin B =22,若B =45°,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos 45°=1+2-2×2 ×22 =1,则AC =1,则AB 2+AC 2=BC 2,△ABC 为直角三角形,不合题意;当B =135°时,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos 135°=1+2+2×2 ×22=5,∴AC =5 .8.如图,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为( )A .502 mB .503 mC .252 mD .2522m答案:A解析:由正弦定理得AC sin B =ABsin C,∴AB =AC ·sin Csin B =50×22sin (180°-45°-105°) =502 .9.[2024·全国甲卷(理)]记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知B =60°,b 2=94ac ,则sin A +sin C =( )A .32 B .2C .72D .32答案:C解析:∵b 2=94 ac ,∴由正弦定理可得sin 2B =94sin A sin C .∵B =60°,∴sin B =32 ,∴34 =94 sin A sin C ,∴sin A sin C =13.由余弦定理可得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac ,将b 2=94 ac 代入整理得,a 2+c 2=134ac ,∴由正弦定理得sin 2A +sin 2C =134 sin A sin C ,则(sin A +sin C )2=sin 2A +sin 2C +2sin A sin C =134 sin A sin C+2sin A sin C =214 sin A sin C =214 ×13 =74 ,∴sin A +sin C =72 或-72(舍).故选C.二、填空题10.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若(a +b +c )(a -b +c )=ac ,则B =________.答案:23π解析:由(a +b +c )(a -b +c )=ac 得a 2+c 2-b 2+ac =0.由余弦定理得cos B =a 2+c 2-b 22ac =-12 ,又B 为△ABC 的内角,∴B =23π.11.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c =a cos B ,①则A =________;②若sin C =13,则cos (π+B )=________.答案:①90° ②-13解析:①∵c =a ·cos B ,∴c =a ·a 2+c 2-b 22ac,得a 2=b 2+c 2,∴∠A =90°;②∵cos B =cos (π-A -C )=sin C =13 .∴cos (π+B )=-cos B =-sin C =-13 .12.[2023·全国甲卷(理)]在△ABC 中,∠BAC =60°,AB =2,BC =6 ,∠BAC 的角平分线交BC 于D ,则AD =________.答案:2 解析:方法一 由余弦定理得cos 60°=AC 2+4-62×2AC ,整理得AC 2-2AC -2=0,得AC=1+3 .又S △ABC =S △ABD +S △ACD ,所以12 ×2AC sin 60°=12 ×2AD sin 30°+12 AC ×AD sin30°,所以AD =23AC AC +2 =23×(1+3)3+3=2.方法二 由角平分线定理得BD AB =CD AC ,又BD +CD =6 ,所以BD =26AC +2,CD =6AC AC +2 .由角平分线长公式得AD 2=AB ×AC -BD ×CD =2AC -12AC(AC +2)2 ,又由方法一知AC =1+3 ,所以AD 2=2+23 -12×(1+3)(3+3)2=2+23 -(23 -2)=4,所以AD =2.[能力提升]13.(多选)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a =8,b <4,c =7,且满足(2a -b )cos C =c ·cos B ,则下列结论正确的是( )A .C =60°B .△ABC 的面积为63 C .b =2D .△ABC 为锐角三角形 答案:AB解析:∵(2a -b )cos C =c cos B ,∴(2sin A -sin B )cos C =sin C cos B ,∴2sin A cos C =sin B cos C +cos B sin C ,即2sin A cos C =sin (B +C ),∴2sin A cos C =sin A .∵在△ABC 中,sin A ≠0,∴cos C =12 ,∴C =60°,A 正确.由余弦定理,得c 2=a 2+b 2-2ab cos C ,得49=64+b 2-2×8b cos 60°,即b 2-8b +15=0,解得b =3或b =5,又b <4,∴b =3,C 错误.∴△ABC 的面积S =12 ab sin C =12 ×8×3×32 =63 ,B 正确.又cos A =b 2+c 2-a 22bc=9+49-642×3×7<0,∴A 为钝角,△ABC 为钝角三角形,D 错误. 14.[2023·全国甲卷(理)]已知四棱锥P ABCD 的底面是边长为4的正方形,PC =PD =3,∠PCA =45°,则△PBC 面积为( )A .22B .32C .42D .62 答案:C解析:如图,过点P 作PO ⊥平面ABCD ,垂足为O ,取DC 的中点M ,AB 的中点N ,连接PM ,MN ,AO ,BO .由PC =PD ,得PM ⊥DC ,又PO ⊥DC ,PO ∩PM =P ,所以DC ⊥平面POM ,又OM ⊂平面POM ,所以DC ⊥OM .在正方形ABCD 中,DC ⊥NM ,所以M ,N ,O 三点共线,所以OA =OB ,所以Rt △P AO ≌Rt △PBO ,所以PB =P A .在△P AC 中,由余弦定理,得P A =PC 2+AC 2-2PC ·AC cos 45° =17 ,所以PB =17 .在△PBC 中,由余弦定理,得cos ∠PCB =PC 2+BC 2-BP 22PC ·BC =13 ,所以sin ∠PCB =223 ,所以S △PBC =12 PC ·BCsin ∠PCB =42 ,故选C.15.[2022·全国甲卷(理),16]已知△ABC 中,点D 在边BC 上,∠ADB =120°,AD =2,CD =2BD .当ACAB取得最小值时,BD =________.答案:3 -1解析:以D 为坐标原点,DC 所在的直线为x 轴,DC →的方向为x 轴的正方向,过点D 且垂直于DC 的直线为y 轴,建立平面直角坐标系(图略),易知点A 位于第一象限.由AD =2,∠ADB =120°,得A (1,3 ).因为CD =2BD ,所以设B (-x ,0),x >0,则C (2x ,0).所以AC=(2x -1)2+(0-3)2=4x 2-4x +4,AB =(-x -1)2+(0-3)2=x 2+2x +4 ,所以⎝⎛⎭⎫AC AB 2=4x 2-4x +4x 2+2x +4.令f (x )=4x 2-4x +4x 2+2x +4,x >0,则f ′(x )=(4x 2-4x +4)′(x 2+2x +4)-(4x 2-4x +4)(x 2+2x +4)′(x 2+2x +4)2=(8x -4)(x 2+2x +4)-(4x 2-4x +4)(2x +2)(x 2+2x +4)2=12(x 2+2x -2)(x 2+2x +4)2 .令x 2+2x -2=0,解得x =-1-3 (舍去)或x =3 -1.当0<x <3 -1时,f ′(x )<0,所以f (x )在(0,3 -1)上单调递减;当x >3 -1时,f ′(x )>0,所以f (x )在(3 -1,+∞)上单调递增.所以当x =3 -1时,f (x )取得最小值,即ACAB 取得最小值,此时BD =3 -1.16.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且6S =(a +b )2-c 2,则tan C =________.答案:125解析:由余弦定理得2ab cos C =a 2+b 2-c 2,又6S =(a +b )2-c 2,所以6×12 ab sin C =(a +b )2-c 2=a 2+b 2-c 2+2ab =2ab cos C +2ab ,化简得3sin C =2cos C +2,结合sin 2C +cos 2C =1,解得sin C =1213 ,cos C =513 ,所以tan C =125.。
正弦定理练习题1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( )A. B. C.D .262362.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4B .4C .4D.2363233.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =4,b =4,则角B 为( )32A .45°或135° B .135°C .45°D .以上答案都不对4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .1∶5∶6B .6∶5∶1C .6∶1∶5D .不确定5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =,则c =( )2A .1B.C .2D.12146.在△ABC 中,若=,则△ABC 是( )cos Acos B ba A .等腰三角形 B .等边三角形 C .直角三角形D .等腰三角形或直角三角形7.已知△ABC 中,AB =,AC =1,∠B =30°,则△ABC 的面3积为( )A.B.C.或D.或323432334328.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =,b =2,B =120°,则a 等于( )6 A.B .2C.D.6329.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =,C =,则A =________.3π310.在△ABC 中,已知a =,b =4,A =30°,则433sin B =________.11.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________.12.在△ABC 中,a =2b cos C ,则△ABC 的形状为________.13.在△ABC 中,A =60°,a =6,b =12,S △ABC =18,则33=________,c =________.a +b +csin A +sin B +sin C 14.在△ABC 中,已知a =3,cos C =,S △ABC =4,则2133b =________.15.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =2,sin cos =,sin B sin C =cos 2,求A 、B 及b 、c .3C 2C 214A216.△ABC 中,ab =60,sin B =sin C ,△ABC 的面积为315,求边b 的长.3余弦定理练习题1.在△ABC 中,如果BC =6,AB =4,cos B =,那么AC 等于( )13A .6 B .2 C .3 66D .462.在△ABC 中,a =2,b =-1,C =30°,则c 等于( )3A. B.C.D .23253.在△ABC 中,a 2=b 2+c 2+bc ,则∠A 等于( )3A .60° B .45°C .120°D .150°4.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =ac ,则∠B 的值为( )3A.B.C.或D.或π6π3π65π6π32π35.在△ABC 中,a 、b 、c 分别是A 、B 、C 的对边,则a cos B +b cos A 等于( )A .aB .bC .cD .以上均不对6.已知锐角三角形ABC 中,||=4,||=1,△ABC 的面积为AB → AC→ ,则·的值为( )3AB → AC → A .2 B .-2 C .4D .-47.在△ABC 中,b =,c =3,B =30°,则a 为( )3A.B .2C.或2D .233338.已知△ABC 的三个内角满足2B =A +C ,且AB =1,BC =4,则边BC 上的中线AD 的长为________.9.已知a 、b 、c 是△ABC 的三边,S 是△ABC 的面积,若a =4,b =5,S =5,则边c 的值为________.310.在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,则cos A ∶cos B ∶cos C =________.11.在△ABC 中,a =3,cos C =,S △ABC =4,则2133b =________.12.已知△ABC 的三边长分别是a 、b 、c ,且面积S =,则角C =________.a 2+b 2-c 2413.在△ABC 中,BC =a ,AC =b ,a ,b 是方程x 2-2x +2=03的两根,且2cos(A +B )=1,求AB 的长.14.在△ABC 中,BC =,AC =3,sin C =2sin A .(1)求AB 的值;5(2)求sin(2A -)的值.π4正弦定理1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( )A. B. C. D .26236解析:选A.应用正弦定理得:=,求得b ==.a sin Ab sin B a sin B sin A 62.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4B .4C .4D.236323解析:选C.A =45°,由正弦定理得b ==4.a sin Bsin A 63.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =4,b =4,则角32B 为( )A .45°或135°B .135°C .45°D .以上答案都不对解析:选C.由正弦定理=得:sin B ==,又∵a >b ,∴B <60°,a sin A b sin B b sin Aa 22∴B =45°.4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .1∶5∶6B .6∶5∶1C .6∶1∶5D .不确定解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6.5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =,2则c =( )A .1B.C .2D.1214解析:选A.C =180°-105°-45°=30°,由=得c ==1.b sin Bc sin C 2×sin 30°sin45°6.在△ABC 中,若=,则△ABC 是( )cos A cos B ba A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰三角形或直角三角形解析:选D.∵=,∴=,b a sin B sin A cos A cos B sin Bsin A sin A cos A =sin B cos B ,∴sin2A =sin2B即2A =2B 或2A +2B =π,即A =B ,或A +B =.π27.已知△ABC 中,AB =,AC =1,∠B =30°,则△ABC 的面积为( )3A. B.3234C.或D.或3233432解析:选D.=,求出sin C =,∵AB >AC ,ABsin C ACsin B 32∴∠C 有两解,即∠C =60°或120°,∴∠A =90°或30°.再由S △ABC =AB ·AC sin A 可求面积.128.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =,b =,B =120°,则a 等26于( )A. B .26C. D.32解析:选D.由正弦定理得=,6sin120°2sin C ∴sin C =.12又∵C 为锐角,则C =30°,∴A =30°,△ABC 为等腰三角形,a =c =.29.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =,C =,则3π3A =________.解析:由正弦定理得:=,a sin A csin C 所以sin A ==.a ·sin C c12又∵a <c ,∴A <C =,∴A =.π3π6答案:π610.在△ABC 中,已知a =,b =4,A =30°,则sin B =________.433解析:由正弦定理得=a sin A bsin B ⇒sin B ===.b sin Aa 4×1243332答案:3211.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________.解析:C =180°-120°-30°=30°,∴a =c ,由=得,a ==4,a sin Ab sin B 12×sin30°sin120°3∴a +c =8.3答案:8312.在△ABC 中,a =2b cos C ,则△ABC 的形状为________.解析:由正弦定理,得a =2R ·sin A ,b =2R ·sin B ,代入式子a =2b cos C ,得2R sin A =2·2R ·sin B ·cos C ,所以sin A =2sin B ·cos C ,即sin B ·cos C +cos B ·sin C =2sin B ·cos C ,化简,整理,得sin(B -C )=0.∵0°<B <180°,0°<C <180°,∴-180°<B -C <180°,∴B -C =0°,B =C .答案:等腰三角形13.在△ABC 中,A =60°,a =6,b =12,S △ABC =18,则33=________,c =________.a +b +c sin A +sin B +sin C 解析:由正弦定理得===12,又S △ABC =bc sin A ,∴a +b +c sin A +sin B +sin C a sin A 63sin60°12×12×sin60°×c =18,123∴c =6.答案:12 614.在△ABC 中,已知a =3,cos C =,S △ABC =4,则b =________.2133解析:依题意,sin C =,S △ABC =ab sin C =4,223123解得b =2.3答案:2315.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =2,sin cos =,sin3C 2C214B sin C =cos 2,求A 、B 及b 、c .A 2解:由sin cos =,得sin C =,C 2C 21412又C ∈(0,π),所以C =或C =.π65π6由sin B sin C =cos 2,得A 2sinB sinC =[1-cos(B +C )],12即2sin B sin C =1-cos(B +C ),即2sin B sin C +cos(B +C )=1,变形得cos B cos C +sin B sin C =1,即cos(B -C )=1,所以B =C =,B =C =(舍去),π65π6A =π-(B +C )=.2π3由正弦定理==,得a sin A bsin B csin C b =c =a =2×=2.sin Bsin A 31232故A =,B =,b =c =2.2π3π6=×-×=.2553101055101022又0<A +B <π,∴A +B =.π4(2)由(1)知,C =,∴sin C =.3π422由正弦定理:==得a sin Ab sin Bc sin Ca =b =c ,即a =b ,c =b .510225∵a -b =-1,∴b -b =-1,∴b =1.222∴a =,c =.2516.△ABC 中,ab =60,sin B =sin C ,△ABC 的面积为15,求边b 的长.33解:由S =ab sin C 得,15=×60×sin C ,123123∴sin C =,∴∠C =30°或150°.12又sin B =sin C ,故∠B =∠C .当∠C =30°时,∠B =30°,∠A =120°.又∵ab =60,=,∴b =2.3a sin A bsin B 15当∠C =150°时,∠B =150°(舍去).故边b 的长为2.15余弦定理1.在△ABC 中,如果BC =6,AB =4,cos B =,那么AC 等于( )13A .6 B .26C .3 D .466解析:选A.由余弦定理,得AC =AB 2+BC 2-2AB ·BC cos B==6.42+62-2×4×6×132.在△ABC 中,a =2,b =-1,C =30°,则c 等于( )3A. B.32C. D .25解析:选B.由余弦定理,得c 2=a 2+b 2-2ab cos C=22+(-1)2-2×2×(-1)cos30°33=2,∴c =.23.在△ABC 中,a 2=b 2+c 2+bc ,则∠A 等于( )3A .60° B .45°C .120° D .150°解析:选D.cos ∠A ===-,b 2+c 2-a 22bc -3bc2bc 32∵0°<∠A <180°,∴∠A =150°.4.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =ac ,则∠B 的值为( )3A.B.π6π3C.或D.或π65π6π32π3解析:选D.由(a 2+c 2-b 2)tan B =ac ,联想到余弦定理,代入得3cos B ==·=·.a 2+c 2-b 22ac321tan B 32cos B sin B 显然∠B ≠,∴sin B =.∴∠B =或.π232π32π35.在△ABC 中,a 、b 、c 分别是A 、B 、C 的对边,则a cos B +b cos A 等于( )A .a B .b C .c D .以上均不对解析:选C.a ·+b ·==c .a 2+c 2-b 22ac b 2+c 2-a 22bc2c 22c 6.已知锐角三角形ABC 中,||=4,||=1,△ABC 的面积为,则·的AB → AC → 3AB → AC→ 值为( )A .2B .-2C .4D .-4解析:选A.S △ABC ==||·||·sin A 312AB → AC→ =×4×1×sin A ,12∴sin A =,又∵△ABC 为锐角三角形,32∴cos A =,12∴·=4×1×=2.AB → AC→127.在△ABC 中,b =,c =3,B =30°,则a 为( )3A. B .233C.或2 D .233解析:选C.在△ABC 中,由余弦定理得b 2=a 2+c 2-2ac cos B ,即3=a 2+9-3a ,3∴a 2-3a +6=0,解得a =或2.3338.已知△ABC 的三个内角满足2B =A +C ,且AB =1,BC =4,则边BC 上的中线AD 的长为________.解析:∵2B =A +C ,A +B +C =π,∴B =.π3在△ABD 中,AD =AB 2+BD 2-2AB ·BD cos B==.1+4-2×1×2×123答案:39.已知a 、b 、c 是△ABC 的三边,S 是△ABC 的面积,若a =4,b =5,S =5,3则边c 的值为________.解析:S =ab sin C ,sin C =,∴C =60°或120°.1232∴cos C =±,又∵c 2=a 2+b 2-2ab cos C ,12∴c 2=21或61,∴c =或.2161答案:或216110.在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,则cos A ∶cosB ∶cosC =________.解析:由正弦定理a ∶b ∶c =sin A ∶sin B ∶sin C =2∶3∶4,设a =2k (k >0),则b =3k ,c =4k ,cos B ===,a 2+c 2-b 22ac2k 2+ 4k 2- 3k 22×2k ×4k1116同理可得:cos A =,cos C =-,7814∴cos A ∶cos B ∶cos C =14∶11∶(-4).答案:14∶11∶(-4)11.在△ABC 中,a =3,cos C =,S △ABC =4,则b =________.2133解析:∵cos C =,∴sin C =.13223又S △ABC =ab sin C =4,123即·b ·3·=4,1222233∴b =2.3答案:2312.已知△ABC 的三边长分别是a 、b 、c ,且面积S =,则角a 2+b 2-c 24C =________.解析:ab sin C =S ==·12a 2+b 2-c 24a 2+b 2-c 22abab2=ab cos C ,∴sin C =cos C ,∴tan C =1,∴C =45°.12答案:45°13.在△ABC 中,BC =a ,AC =b ,a ,b 是方程x 2-2x +2=0的两根,且2cos(A +B )3=1,求AB 的长.解:∵A +B +C =π且2cos(A +B )=1,∴cos(π-C )=,即cos C =-.1212又∵a ,b 是方程x 2-2x +2=0的两根,3∴a +b =2,ab =2.3∴AB 2=AC 2+BC 2-2AC ·BC ·cos C=a 2+b 2-2ab (-)12=a 2+b 2+ab =(a +b )2-ab =(2)2-2=10,3∴AB =.1014.在△ABC 中,BC =,AC =3,sin C =2sin A .5(1)求AB 的值;(2)求sin(2A -)的值.π4解:(1)在△ABC 中,由正弦定理=,ABsin C BCsin A 得AB =BC =2BC =2.sin C sin A 5(2)在△ABC 中,根据余弦定理,得cos A ==,AB 2+AC 2-BC 22AB ·AC255于是sin A ==.1-cos2A 55从而sin 2A =2sin A cos A =,45cos 2A =cos 2 A -sin 2 A =. 所以sin(2A -)=sin 2A cos -cos 2A sin =.35π4π4π4210。
正弦定理、余弦定理练习题年级__________ 班级_________ 学号_________ 姓名__________ 分数____一、选择题(共20题,题分合计100分)1.已知在△ABC中,sin A:sin B:sin C=3:2:4,那么cos C的值为A.-B.C.-D.2.在△ABC中,a=λ,b=λ,A=45°,则满足此条件的三角形的个数是A.0B.1 C.2 D.无数个3.在△ABC中,b cos A=a cos B,则三角形为A.直角三角形B.锐角三角形C.等腰三角形D.等边三角形4.已知三角形的三边长分别为x2+x+1,x2-1和2x+1(x>1),则最大角为A.150°B.120°C.60°D.75°5.在△ABC中,=1,=2,(+)·(+)=5+2则边||等于A.B.5-2 C. D.6.在△ABC中,已知B=30°,b=50,c=150,那么这个三角形是A.等边三角形B.直角三角形C.等腰三角形D.等腰三角形或直角三角形7.在△ABC中,若b2sin2C+c2sin2B=2bc cos B cos C,则此三角形为A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形8.正弦定理适应的范围是A.Rt△B.锐角△C.钝角△D.任意△9.已知△ABC中,a=10,B=60°,C=45°,则c=A.10+B.10(-1)C.(+1)D.1010.在△ABC中,b sin A<a<b,则此三角形有A.一解B.两解C.无解D.不确定11.三角形的两边分别为5和3,它们夹角的余弦是方程5x2-7x-6=0的根,则三角形的另一边长为A.52B.2C.16D.412.在△ABC中,a2=b2+c2+bc,则A等于A.60°B.45°C.120D.30°13.在△ABC中,,则△ABC是A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形14.在△ABC中,a=2,A=30°,C=45°,则△ABC的面积S△ABC等于A.B.2 C.+1 D.(+1)15.已知三角形ABC的三边a、b、c成等比数列,它们的对角分别是A、B、C,则sin A sin C 等于A.cos2BB.1-cos2BC.1+cos2BD.1+sin2B16.在△ABC中,sin A>sin B是A>B的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件17.在△ABC中,b Cos A=a cos B,则三角形为A.直角三角形B.锐角三角形C.等腰三角形D.等边三角形18.△ABC中,sin2A=sin2B+sin2C,则△ABC为A.直角三角形B.等腰直角三角形C.等边三角形D.等腰三角形19.△ABC中,A=60°,b=1,这个三角形的面积为,则△ABC外接圆的直径为A. B. C. D.20.在△ABC中,,则k为A.2RB.RC.4RD.(R为△ABC外接圆半径)二、填空题(共18题,题分合计75分)1.在△ABC中,A=60°,C=45°,b=2,则此三角形的最小边长为.2.在△ABC中,= .3.在△ABC中,a∶b∶c=(+1)∶∶2,则△ABC的最小角的度数为.4.在△ABC中,已知sin A∶sin B∶sin C=6∶5∶4,则sec A= .5.△ABC中,,则三角形为_________.6.在△ABC中,角A、B均为锐角且cos A>sin B,则△ABC是___________.7.在△ABC中,若此三角形有一解,则a、b、A满足的条件为____________________.8.已知在△ABC中,a=10,b=5,A=45°,则B= .9.已知△ABC中,a=181,b=209,A=121°14′,此三角形解.10.在△ABC中,a=1,b=1,C=120°则c= .11.在△ABC中,若a2>b2+c2,则△ABC为;若a2=b2+c2,则△ABC为;若a2<b2+c2且b2<a2+c2且c2<a2+b2,则△ABC为.12.在△ABC中,sin A=2cos B sin C,则三角形为_____________.13.在△ABC中,BC=3,AB=2,且,A= .14.在△ABC中,B=,C=3,B=30°,则A= .15.在△ABC中,a+b=12,A=60°,B=45°,则a= ,b= .16.若2,3,x为三边组成一个锐角三角形,则x的范围为.17.在△ABC中,化简b cos C+c cos B= .18.钝角三角形的边长是三个连续自然数,则三边长为.三、解答题(共24题,题分合计244分)1.已知在△ABC中,c=10,A=45°,C=30°,求a、b和B.2.已知△ABC的三边长a=3,b=4,c=,求三角形的最大内角.3.已知在△ABC中,∠A=45°,a=2,c=,解此三角形.4.在四边形ABCD中,BC=a,DC=2a,四个角A、B、C、D度数的比为3∶7∶4∶10,求AB的长.5.在△ABC中,A最大,C最小,且A=2C,A+C=2B,求此三角形三边之比.6.证明:在△ABC中,.(其中R为△ABC的外接圆的半径)7.在△ABC中,最大角A为最小角C的2倍,且三边a、b、c为三个连续整数,求a、b、c的值.8.如下图所示,半圆O的直径MN=2,OA=2,B为半圆上任意一点,以AB为一边作正三角形ABC,问B在什么位置时,四边形OACB面积最大?最大面积是多少?9.在△ABC中,若sin A∶sin B∶sin C=m∶n∶l,且a+b+c=S,求a.10.根据所给条件,判断△ABC的形状(1)a cos A=b cos B(2)11.△ABC中,a+b=10,而cos C是方程2x2-3x-2=0的一个根,求△ABC周长的最小值.12.在△ABC中,a、b、c分别是角A、B、C的对边,设a+c=2b,A-C=,求sin B的值.13.已知△ABC中,a=1,b=,A=30°,求B、C和c.14.在△ABC中,c=2,tan A=3,tan B=2,试求a、b及此三角形的面积.15.已知S△ABC=10,一个角为60°,这个角的两边之比为5∶2,求三角形内切圆的半径.16.已知△ABC中,,试判断△ABC的形状.17.已知△ABC的面积为1,tan B=,求△ABC的各边长.18.求值:19.已知△ABC的面积,解此三角形.20.在△ABC中,a=,b=2,c=+1,求A、B、C及S△.21.已知(a2+bc)x2+2=0是关于x的二次方程,其中a、b、c是△ABC的三边,(1)若∠A为钝角,试判断方程根的情况.(2)若方程有两相等实根,求∠A的度数.22.在△ABC中,(a2+b2)sin(A-B)=(a2-b2)sin(A+B),判断△ABC的形状.23.在△ABC中,a>b,C=,且有tan A·tan B=6,试求a、b以及此三角形的面积.24.已知:k是整数,钝角△ABC的三内角A、B、C所对的边分别为a、b、c(1)若方程组有实数解,求k的值.(2)对于(1)中的k值,若且有关系式,试求A、B、C的度数.正弦定理、余弦定理答案一、选择题(共20题,合计100分)1 A 2A3C 4 B 5 C 6D 7A 8 D 9B 10 B 11 B 12C 13C 14C 15.B 16. C 17:C 18A 19C 20. A二、填空题(共18题,合计75分)1. 2(-1) 2 3. 45° 4. 8 5.等腰三角形 6.:钝角三角形7. a=b sin A或b<a8. 60°或120°9无10.11.钝角三角形直角三角形锐角三角形12.等腰三角形13. 120°14.或215. 36-1216.<x<17.a18. 2、3、4三、解答题(共24题,合计244分)1.a=B=105°b=2.∠C=120°3.∠B=75°或∠B=15°b=+1,∠C=60°,∠B=75°或b=-1,∠C=120°,∠B=15°4. AB的长为5.:此三角形三边之比为6∶5∶47.a=6,b=5,c=48.当θ=时,S四边形OACB最大,最大值为+29.10(1)△ABC是等腰三角形或直角三角形(2)△ABC为等边三角形11△ABC周长的最小值为12.13.B1=60°,B2=120°;C1=90°,C2=30°;c1=2,c2=114..15.16.等边三角形17.18.20. A=60°,B=45°,C=75°,S△=21. (1)没有实数根(2)60°22.等腰三角形或直角三角形23.24.(1)k=1,2,3(2)C=45°,B=15°。
一、选择题:1.在△ABC 中,a =15,b =10,A =60°,则cos B =( ) A .-223 B.223 C .-63D.632.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .若a 2-b 2=3bc ,sin C =23sin B ,则A =( )A .30°B .60°C .120°D .150°3.(2010·江西)E ,F 是等腰直角△ABC 斜边AB 上的三等分点,则tan ∠ECF =( )A.1627B.23C.33D.344.△ABC 中,若lg a -lg c =lgsin B =-lg 2且B ∈⎝ ⎛⎭⎪⎫0,π2,则△ABC 的形状是( )A .等边三角形B .直角三角形C .等腰三角形D .等腰直角三角形 5.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,如果a 、b 、c 成等差数列,∠B =30°,△ABC 的面积为0.5,那么b 为( )A .1+ 3B .3+ 3 C.3+33 D .2+ 36.已知锐角A 是△ABC 的一个内角,a 、b 、c 是三角形中各内角的对应边,若sin 2A -cos 2A =12,则( )A .b +c =2aB .b +c <2ªC .b +c ≤2aD .b +c ≥2a 7、若ABC ∆的内角A 满足2sin 23A =,则sin cos A A +=..53 D .53-8、如果111A B C ∆的三个内角的余弦值分别等于222A B C ∆的三个内角的正弦值,则A .111ABC ∆和222A B C ∆都是锐角三角形 B .111A B C ∆和222A B C ∆都是钝角三角形C .111A B C ∆是钝角三角形,222A B C ∆是锐角三角形D .111A B C ∆是锐角三角形,222A B C ∆是钝角三角形9、ABC 的三内角,,A B C 所对边的长分别为,,a b c 设向量(,)p a c b =+,(,)q b a c a =-- ,若//p q,则角C 的大小为(A)6π (B)3π (C) 2π (D) 23π10、已知等腰ABC △的腰为底的2倍,则顶角A 的正切值是( )11、ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等比数列,且2c a =,则cos B =A .14 B .34 C 12、在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =3π,a =3,b =1,则c = (A) 1 (B )2 (C )3—1 (D )3 二、填空题:13、在ABC ∆中,若sin :sin :sin 5:7:8A B C =,则B ∠的大小是___________. 14、在∆ABC 中,已知433=a ,b =4,A =30°,则sinB = . 15、在△ABC 中,已知BC =12,A =60°,B =45°,则AC =16、已知△ABC 的三个内角A 、B 、C 成等差数列,且AB =1,BC =4,则边BC 上的中线AD 的长为 . 三、解答题:17。
《正弦定理和余弦定理》典型例题透析类型一:正弦定理的应用:例1.已知在ABC ∆中,10c =,45A =o ,30C =o ,解三角形.思路点拨:先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出边a ,然后用三角形内角和求出角B ,最后用正弦定理求出边b . 解析:sin sin a c A C=Q , ∴sin 10sin 45102sin sin 30c A a C ⨯===oo∴ 180()105B A C =-+=o o , 又sin sin b c B C=, ∴sin 10sin1056220sin 75205652sin sin 304c B b C ⨯====⨯=o o o 总结升华:1. 正弦定理可以用于解决已知两角和一边求另两边和一角的问题;2. 数形结合将已知条件表示在示意图形上,可以清楚地看出已知与求之间的关系,从而恰当地选择解答方式.举一反三:【变式1】在∆ABC 中,已知032.0=A ,081.8=B ,42.9a cm =,解三角形。
【答案】根据三角形内角和定理,0180()=-+C A B 000180(32.081.8)=-+066.2=; 根据正弦定理,0sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ; 根据正弦定理,0sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A 【变式2】在∆ABC 中,已知075B =,060C =,5c =,求a 、A .【答案】00000180()180(7560)45A B C =-+=-+=, 根据正弦定理5sin 45sin 60o o a =,∴56a =【变式3】在∆ABC 中,已知sin :sin :sin 1:2:3A B C =,求::a b c 【答案】根据正弦定理sin sin sin a b c A B C==,得::sin :sin :sin 1:2:3a b c A B C ==. 例2.在3,60,1ABC b B c ∆===o 中,,求:a 和A ,C . 思路点拨: 先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出角C ,然后用三角形内角和求出角A ,最后用正弦定理求出边a .解析:由正弦定理得:sin sin b c B C=, ∴sin 1sin 23c B C b ===o , (方法一)∵0180C <<o o , ∴30C =o 或150C =o ,当150C =o 时,210180B C +=>o o ,(舍去);当30C =o 时,90A =o ,∴222a b c =+=.(方法二)∵b c >,60B =o , ∴C B <,∴60C <o 即C 为锐角, ∴30C =o ,90A =o ∴222a b c =+=.总结升华:1. 正弦定理也可用于解决已知两边及一边的对角,求其他边和角的问题。
正弦定理、余弦定理综合训练题1.[2016·全国卷Ⅰ] △ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a =5,c =2,cos A =23,则b =( ) A. 2 B.3 C .2 D .3[解析] D 由余弦定理得5=b 2+4-2×b ×2×23,解得b =3或b =-13(舍去),故选D. 2.[2016·全国卷Ⅲ] 在△ABC 中,B =π4,BC 边上的高等于13BC ,则sin A =( ) A.310 B.1010 C.55 D.31010[解析] D 作AD ⊥BC 交BC 于点D ,设BC =3,则有AD =BD =1,AB =2,由余弦定理得AC = 5.由正弦定理得5sin π4=3sin A,解得sin A =3×225=31010. 3.[2013·新课标全国卷Ⅰ] 已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,23cos 2 A +cos 2A =0,a =7,c =6,则b =( )A .10B .9C .8D .5[解析] D 由23cos 2A +cos 2A =0,得25cos 2A =1.因为△ABC 为锐角三角形,所以cos A =15.在△ABC 中,根据余弦定理,得49=b 2+36-12b ·15,即b 2-125b 4.[2016·全国卷Ⅱ] △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =________.[解析] 因为cos A =45,cos C =513,且A ,C 为三角形的内角,所以sin A =35,sin C =1213,sin B =sin(A +C )=sin A cos C +cos A sin C =6365.又因为a sin A =b sin B ,所以b =a sin B sin A =2113. -13=0,解得b =5或b =-135(舍去). 5.[2015·全国卷Ⅰ] 已知a ,b ,c 分别是△ABC 内角A ,B ,C 的对边,sin 2B =2sin A sin C.(1)若a =b ,求cos B;(2)若B =90°,且a =2, 求△ABC 的面积.解:(1)由题设及正弦定理可得b 2=2ac .又a =b ,所以可得b =2c ,a =2c .由余弦定理可得cos B =a 2+c 2-b 22ac =14. (2)由(1)知b 2=2ac .因为B =90°,所以由勾股定理得a 2+c 2=b 2.故a 2+c 2=2ac ,得c =a =2,所以△ABC 的面积为1.6.[2015·全国卷Ⅱ] △ABC 中,D 是BC 上的点,AD 平分∠BAC ,BD =2D C.(1)求sin ∠B sin ∠C; (2)若∠BAC =60°,求∠B.解:(1)由正弦定理得AD sin ∠B =BD sin ∠BAD ,AD sin ∠C =DC sin ∠CAD. 因为AD 平分∠BAC ,BD =2DC ,所以sin ∠B sin ∠C =DC BD =12. (2)因为∠C =180°-(∠BAC +∠B ),∠BAC =60°,所以sin ∠C =sin(∠BAC +∠B )=32cos ∠B +12sin ∠B. 由(1)知2sin ∠B =sin ∠C ,所以tan ∠B =33,即∠B =30°. 7.[2014·新课标全国卷Ⅱ] 四边形ABCD 的内角A 与C 互补,AB =1,BC =3,CD =DA =2.(1)求C 和BD ;(2)求四边形ABCD 的面积.解:(1)由题设及余弦定理得BD 2=BC 2+CD 2-2BC ·CD cos C=13-12cos C ,①BD 2=AB 2+DA 2-2AB ·DA cos A=5+4cos C .②由①②得cos C =12,故C =60°,BD =7. (2)四边形ABCD 的面积S =12AB ·DA sin A +12BC ·CD sin C =⎝⎛⎭⎫12×1×2+12×3×2sin 60°=2 3. 8.[2016·山东卷] △ABC 中,角A ,B ,C 的对边分别是a ,b ,c .已知b =c ,a 2=2b 2(1-sin A ),则A =( )A.3π4B.π3C.π4D.π6[解析] C ∵b =c ,a 2=2b 2(1-sin A ),∴2b 2sin A =b 2+c 2-a 2=2bc cos A =2b 2cos A ,∴tan A=1,即A =π4. 9.[2015·广东卷] 设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =23,cos A =32且b <c ,则b =( ) A .3 B .22 C .2 D. 3 [解析] C 由余弦定理得a 2=b 2+c 2-2bc cos A ,所以22=b 2+(23)2-2×b ×23×32,即b 2-6b +8=0,解得b =2或b =4.因为b <c, 所以b =2.10.[2016·上海卷] 已知△ABC 的三边长分别为3,5,7,则该三角形的外接圆半径等于________.[解析] 利用余弦定理可求得最大边7所对角的余弦值为32+52-722×3×5=-12,所以此角的正弦值为32.设三角形外接圆的半径为R ,由正弦定理得2R =732,所以R =733. 11.[2016·北京卷] 在△ABC 中,∠A =2π3,a =3c ,则b c=________.[解析] 由余弦定理a 2=b 2+c 2-2bc cos A 可得,3c 2=b 2+c 2-2bc cos 2π3,整理得b c 2+b c-2=0,解得b c =1或b c=-2(舍去).12.[2016·浙江卷] 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a cos B .(1)证明:A =2B ;(2)若cos B =23,求cos C 的值. 解:(1)证明:由正弦定理得sin B +sin C =2sin A cos B ,故2sin A cos B =sin B +sin(A +B )=sin B +sin A cos B +cos A sin B ,于是sin B =sin(A -B ). 又A ,B ∈(0,π),故0<A -B <π,所以B =π-(A -B )或B =A -B ,因此A =π(舍去)或A =2B ,所以A =2B.(2)由cos B =23得sin B =53,cos 2B =2cos 2B -1=-19,故cos A =-19,sin A =459,cos C =-cos(A +B )=-cos A cos B +sin A sin B =2227.。
高一数学正弦定理余弦定理习题及答案
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
正 余 弦 定 理
1.在ABC ∆中,A B >是sin sin A B >的 ( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
2、已知关于x 的方程22cos cos 2sin 02C x x A B -⋅+
=的两根之和等于两根之积的一半,则ABC ∆一定是 ( )
(A )直角三角形(B )钝角三角形(C )等腰三角形(D )等边三角形.
3、 已知a,b,c 分别是△ABC 的三个内角A,B,C 所对的边,若a=1,b=3, A+C=2B,则sinC= .
4、如图,在△ABC 中,若b = 1,c =3,23C π∠=
,则a= 。
5、在ABC ∆中,角,,A B C 所对的边分别为a ,b ,c ,若2a =,2b =,sin cos 2B B +=,则角A 的大小为 .
6、在∆ABC 中,,,a b c 分别为角,,A B C 的对边,且2
74sin cos 222
B C A +-= (1)求A ∠的度数 (2)若3a =,3b c +=,求b 和c 的值
7、 在△ABC 中已知acosB=bcosA,试判断△ABC 的形状.
8、如图,在△ABC 中,已知3=a ,2=b ,B=45︒ 求A 、C 及c .
A
B 323
π
1、解:在ABC A B ∆>中,2sin 2sin sin sin a b R A R B A B ⇔>⇔>⇔>,因此,选C .
2、【答案】由题意可知:211cos cos cos 2sin 222
C C A B -=⋅⋅=,从而2cos cos 1cos()1cos cos sin sin A B A B A B A B =++=+-
cos cos sin sin 1A B A B +=,cos()1A B -=又因为A B ππ-<-<所以0A B -=,所以ABC ∆一定是等腰三角形选C
3、【命题立意】本题考察正弦定理在解三角形中的应用.
【思路点拨】由已知条件求出B 、A 的大小,求出C ,从而求出sin .C
【规范解答】由A+C=2B 及180A B C ++=得60B =,由正弦定理得
1sin sin 60A =得1sin 2
A =,由a b <知60A
B <=,所以30A =,180
C A B =--
90=,所以sin sin 90 1.C ==
4、【命题立意】本题考查解三角形中的余弦定理。
【思路点拨】对C ∠利用余弦定理,通过解方程可解出a 。
【规范解答】由余弦定理得,222121cos
33
a a π+-⨯⨯⨯=,即220a a +-=,解得1a =或2-(舍)。
【答案】1
【方法技巧】已知两边及一角求另一边时,用余弦定理比较好。
5、【命题立意】本题考查了三角恒等变换、已知三角函数值求解以及正弦定理,考查了考生的推理论证能力和运算求解能力。
【思路点拨】先根据sin cos B B +=B ,再利用正弦定理求出sin A ,最后求出A.
【规范解答】由sin cos B B +=12sin cos 2B B +=,即sin 2B 1=,因为
0<B<π,所以B=45,又因为a =2b =,所以在ABC ∆中,由正弦定理
得:2=sin A sin 45,解得1sin A 2
=,又<b a ,所以A<B=45,所以A=30. 【答案】30°或
6π
6.【答案】由题意得 []2721cos()2cos 12B C A -+-+= ()2721cos 2cos 12A θ+-+= ∴1cos 2
A = 03
A π<<
2221
cos 22
b c a A bc +-==()223b c a bc +-=将3a b c =+=代入得2,bc =由3b c +=及2bc =,得1,2b c ==或2,1b c ==. 7、 【分析】利用正弦定理或余弦定理判断三角形形状,可以将三角形中的边用角表示,也可将角用边来表示.从中找到三角形中的边角关系,判断出三角形的形状.
【答案】解法1:由扩充的正弦定理:代入已知式
2RsinAcosB=2RsinBcosA
sinAcosB-cosAsinB=0 , sin(A-B)=0
A-B=0 ∴A=B 即△ABC 为等腰三角形
解法2:由余弦定理: 2
2222222bc a c b b ac b c a a -+⋅=-+⋅ 22b a = ∴ b a =
即△ABC 为等腰三角形. 8、 【分析】在解斜三角形应用过程中,注意要灵活地选择正弦定和余弦定理,解得其它的边和角
【答案】解法1:由正弦定理得:232
45sin 3sin sin === b B a A ∵B=45︒<90︒ 即b <a ∴A=60︒或120︒
当A=60︒时C=75︒ 2
2645sin 75sin 2sin sin +=== B C b c 当A=120︒时C=15︒ 22645sin 15sin 2sin sin -===
B C b c 解法2:设c =x 由余弦定理 B ac c a b cos 2222-+=将已知条件代入,整理:0162=+-x x 解之:226±=x 当226+=c 时2)13(231226223)226(22cos 22221=++=+⋅⋅-++=-+=bc a c b A 从而A=60︒ ,C=75︒ 当2
26-=c 时同理可求得:A=120︒ C=15︒.。