第3章 无线传播理论与模型
- 格式:ppt
- 大小:892.00 KB
- 文档页数:57
无线电传播模型及其应用研究无线电传播模型是指一种用来描述无线电信号在空间传播过程中路径损耗和干扰的数学模型。
它是通过模拟传输路径对电磁波的传输和走失、反射和衍射等物理现象进行建模实现的。
由于无线电波在传播过程中所受到的影响因素很多,因此无线电传播模型在有效预测无线电信号覆盖范围、网络规划及运营管理等方面有着不可替代的作用。
在实际应用中,无线电传播模型主要分为传播损耗模型和干扰模型两大类。
传播损耗模型是指无线电信号在空间传输过程中所遇到的电波系数、路径损耗等物理现象对其强度的影响。
这种模型通常被用于预测无线电信号的覆盖范围和质量,如雷达、卫星通信、无线电广播和移动通信等应用。
与之相对,干扰模型则是描述不同无线电设备在同一时间和空间内互相干扰的数学模型。
现代无线电通信技术的广泛应用导致了频谱资源的日益紧张,因此理解不同类型无线电设备之间的干扰关系和评估干扰情况非常关键。
这种模型常用于广播电视转播、无线电电波谱管理及干扰分析等领域的应用。
除了传播损耗模型和干扰模型,无线电传播模型还包括其他多种类型,如宏分布模型和微分布模型。
微分布模型是指对信号传输过程中的衍射、散射等微小影响进行建模和分析。
它通常用于定义具体场景下信号强度和质量参数的变化。
而宏分布模型则是在不同宏观环境下的信道参数进行建模和定义。
这种模型能够更好地模拟不同决定因素下的无线电波特性,如城市、郊区、山区、海岸等地形和气象因素的影响等。
这些模型在无线电信号的规划、部署和电波环境评估等领域中有着广泛的应用。
无线电传播模型的研究和应用已经成为了了解无线电通信技术和广播电视转播等行业的基础。
随着无线电通信技术的不断发展,这种模型的研究和应用也日趋重要。
因此,了解无线电传播模型的基本知识和应用特点是当今通信技术领域的必要条件。
传播的原理与模型介绍传播跟人类生活关系非常密切,对人类社会的一切研究都会涉及到传播。
下面我们来介绍传播的基本原理以及几种著名的传播模型。
一、传播的基本原理为了更好地了解人们的传播过程,我们从六个方面来分析人类信息传播的基本过程:1.人类传播的行为起源于一个信息发送者,他掌握了发送一系列的具体的有特定意义的信息的主动权。
(发送者→发送信息)2.发送者通过选择一些接受者可以理解的词语和肢体语言对要发送的信息进行编码。
(信息→编码成符号)3.信息穿越时空以口头或书面的形式在发送者与接收者之间进行传输。
(信息→以符号传输)4.接收者,也就是信息所指向的个体,将接收到的信息作为一组特定的符号来处理。
(接收者→接收到符号)5.接收者按他自己对这些符号意义的理解进行建构,从而将信息解码。
(符号→被解码成信息)6.对信息进行解释的结果就是接收者在一定程度上受到信息的影响了。
也就是说,传播生效了。
二、传播的基本模型1.香农—韦佛尔模型1949年,克劳德·香农和瓦伦·韦弗合著了《通信的数学原理》一书,并在此书中提出了一个传播模型。
后来几乎任何一个与教学技术有关的传播模型都源于“香农-韦弗”模型。
在该模型中,信源产生或选择一条由即将传输的信号组成的信息。
发射器将信息转化成一组信号并通过一条通道将其传送给接收器。
接收器又将信号转化成信息。
这个模型可以应用到很多不同的场合。
电视信息就是电子领域中的一个很好的例子:制片、导演和解说员就是信源,信息由电视频道传播到电视机即接收器,电视机又将电磁波转化成可观看的图象。
在人际传播中,说话者的大脑就是信源,发声器官即系统就是传送机,空气就是传播渠道。
而听者的耳朵是接收器,头脑是信宿。
这个模型的最后一个组成部分——噪音,是指在传播过程中扭曲或者掩盖信号的任何干扰物。
2.“5W模型”美国政治学家拉斯韦尔在其1948年发表的《传播在社会中的结构与功能》一文中,最早以建立模式的方法对人类社会的传播活动进行了分析,这便是著名的“5W”模式。
WIFI信号传播模型的建立与应用一、概述随着无线技术的发展,WIFI已经成为了近年来最为流行的无线网络技术。
WIFI信号的传播模型是研究WIFI信号在空间中的传输过程,并确定信号强度、衰减、传播距离等参数的方法。
建立WIFI信号传播模型可以有助于了解WIFI信号传输的特点,预测WIFI信号传输范围,优化WIFI网络设施等。
本文将着重介绍WIFI信号传播模型的建立方法和应用场景。
二、WIFI信号传播模型的分类WIFI信号传播模型可以分为两类:统计模型和物理模型。
1.统计模型统计模型基于大量的实验数据,采用经验法则或统计方法来描述WIFI信号在传输过程中的特性,如信号强度、衰减率等。
其中比较常见的统计模型有Path Loss模型、Log Normal Shadowing模型、Rayleigh Fading模型等。
Path Loss模型用于描述信号随着距离的增加而衰减的情况。
它采用线性或非线性函数来近似表示信号强度和距离之间的关系。
Path Loss模型广泛应用于室内环境和城市环境下的WIFI网络。
Log Normal Shadowing模型则考虑到了信号传输过程中的随机因素,如建筑物的遮挡、信道干扰等。
它采用高斯分布函数来描述信号衰减和噪声影响,适用于不同的室内和室外环境。
Rayleigh Fading模型则主要研究WIFI信道中的多径衰减和散射效应,是一种物理随机模型。
Rayleigh Fading模型可以有效地解释信号在空气、树林等非常规环境中的传输特性。
2.物理模型物理模型是基于电磁波传输的物理机制和数学方程来建立WIFI信号传输模型的。
物理模型需要以物理原理为基础,考虑更多的因素如天线、信道环境、噪声等,从而比统计模型更加准确。
物理模型具有良好的适应性和可扩展性,因此被广泛应用于更加复杂的场景中,如无线传感器网络、室内定位等。
常见的物理模型有Free Space Path Loss模型、Two-ray模型、Ricean Fading模型等。
无线电波传播原理1无线电波传播原理• 1.1 电磁场与电磁波基础• 1.2 无线电波传播原理• 1.3 无线传播环境• 1.4 无线信道分析1.1 电磁场与电磁波基础1820年奥斯特电磁1831年法拉第磁电产生产生变化的电场磁场变化的磁场电场激发?电磁场理论麦克斯韦在总结前人工作的基础上,提出了著名的电磁场理论(经典电磁场理论),指出变化电场和变化磁场形成了统一的电磁场,预言电磁场能以波动的形式在空间传播,称为电磁波;并得到电磁波在真空中传播的速度等于光速,从而断定光在本质上就是一种电磁波。
后来,赫兹用振荡电路产生了电磁波,使麦克斯韦的学说得到了实验证明,为电学和光学奠定了统一的基础。
因此,麦克斯韦的经典电磁场理论是人类对电磁规律的历史性总结,是19世纪物理学发展的最辉煌成就,是物理学发展史上一个重要的里程碑。
电磁波的诞生赫兹----德国物理学家赫兹对人类伟大的贡献是用实验证实了电磁波的存在,发现了光电效应。
1888年,成了近代科学史上的一座里程碑。
开创了无线电电子技术的新纪元。
赫兹用各种实验,证明了不仅电磁波的性质和光波相同,而且传播速度也相同,并可发生反射、折射、干涉、衍射和偏振等现象,即电磁波服从一般波动所具有的一切规律。
如果空间的电场或磁场变化是周期性的,我们用周期和频率来描述变化快慢。
电磁场变化过程中产生的电磁波的频率等于电磁场的变化频率;电磁波在传播中从一种介质进入另一种介质时,其频率不会发生改变,但其传播速度会发生改变。
电磁波的应用从1888年赫兹用实验证明了电磁波的存在,1895年俄国科学家波波夫发明了第一个无线电报系统。
1914年语音通信成为可能。
1920年商业无线电广播开始使用。
20世纪30年代发明了雷达。
40年代雷达和通讯得到飞速发展,自50年代第一颗人造卫星上天,卫星通讯事业得到迅猛发展。
如今电磁波已在通讯、遥感、空间控测、军事应用、科学研究等诸多方面得到广泛的应用。
无线电通信的起源1897 年:马可尼完成无线通信试验——电报发收两端距离为18 海里试验是在固定站与一艘拖船之间进行的20 世纪初:两次世界大战导致无线通信蓬勃发展步话机、对讲机等1941 年美陆军就开始装备步话机短波波段,电子管电磁波分类-按传输方式电磁波分类-按传输方式电磁波分类-按波长电磁波分类-按波长各波段电磁波特点长波通信:沿地面传播,衰减小、穿透能力强 中波通信:地波传播及夜晚电离层反射传播 短波通信:天波传播,适合远距离传输超短波通信:直线传播,视距通信,广播电视、移动通信微波通信:工作频带宽,长距离接力通信第1讲无线电波传播原理• 1.1 电磁场与电磁波基础• 1.2 无线电波传播原理• 1.3 无线传播环境• 1.4 无线信道分析传播途径①建筑物反射波②绕射波③直射波④地面反射波①建筑物反射波②绕射波③直射波④地面反射波第1讲无线电波传播原理• 1.1 电磁场与电磁波基础• 1.2 无线电波传播原理• 1.3 无线传播环境• 1.4 无线信道分析1.3 无线传播环境•问题:移动通信比较固定通信有那些特殊性呢?•多径无线传播无线路径是一个很复杂的传播媒介•手机发射功率有限手机的发射功率客观限制了蜂窝小区的服务范围手机电池寿命和对人体危害决定了发射功率大小•频率资源有限带宽一定信道编码等占用额外频率资源频率需要被重复利用==> 产生同频干扰•用户行为的不确定性第1讲无线电波传播原理• 1.1 电磁场与电磁波基础• 1.2 无线电波传播原理• 1.3 无线传播环境• 1.4 无线信道分析无线信道分析在移动通信研究中的意义无线通信系统的信道十分复杂:9地理环境的复杂性和多样性9用户移动的随机性9多径传播无线信道是制约移动通信质量的主要因素无线信道是研究各种技术的主要推动力量无线信道的建模对于整个移动通信系统仿真的正确性和可靠性有着举足轻重的意义1.4 无线信道分析•无线信道中的损耗一般分为三个层次:—大尺度(又称路径损耗)【path loss】—中等尺度(阴影衰落、慢衰落)【shadowing】—小尺度衰落(快衰落)【fast fading】无线信道分析场强平均值随距离增加而衰减(路径损耗,大尺度衰落)•电磁波在空间传播的损耗场强中值呈慢速变化(慢衰落,阴影衰落,中等尺度衰落)•由地形地貌导致场强瞬时值呈快速变化(快衰落,小尺度衰落)•多径效应——由移动体周围的局部散射体引起的多径传播,表现为快衰落•多普勒效应——由移动体的运动引起,多径条件下引起频谱展宽三种衰落区别•大尺度衰落主要是路径损耗,可用自由空间传播模型来近似;其特点是:慢变,信道在很长时间内可以认为是恒定的,而且衰落的幅度很小。
无线信号传播模型简介概述无线电波信道要成为稳定而高速的通信系统的媒介要面临很多严峻的挑战。
它不仅容易受到噪声、干扰、阻塞(blockage)和多径的影响,而且由于用户的移动,这些信道阻碍因素随时间而随机变化。
在这里,由于路径损耗和信号阻塞,我们试图找出接收信号强度随距离而变化的规律。
路径损耗(path loss)——被定义成接收功率和发射功率之差——是发射机的辐射和信道传播效应引起的功率损耗引起的。
路径损耗模型假设在相同的发射——接收距离下,路径损耗是相同的。
信号阻塞(signal blockage)是接收机和发射机之间吸收功率的障碍物引起的。
路径损耗引起的变化只有距离改变很大(100—1000米)时才明显;而信号阻塞(signal blockage)引起的变化对距离要敏感得多,变化的尺度与障碍物体的尺寸成比例(室外环境是10-100米,室内环境要小一些)。
由于路径损耗和信号阻塞引起的变化都是在较大的距离变化下才比较明显,它们有时候被称为大尺度传播效应。
而由于大量多径信号分量相互之间的相加(constructive)干涉和相消(destructive)干涉引起的信号强度变化在很短的距离下——接近信号的波长——就很明显,因此这种改变被称为小尺度传播效应。
下图是综合了路径损耗、阻塞和多径三种效应后,接收功率和发射功率的比值随距离而变化的假设图。
在简单介绍了信号模型后,我们先从最简单的信号传播模型讲起——自由空间损耗。
两点之间既没有衰减又没有反射的信号传播遵循自由空间传播规律。
接着我们介绍射线追踪(ray tracing)传播模型。
这些模型都是用来近似模拟可以由麦克斯韦方程组严格计算的电磁波传播模型。
当信号的多径分量比较少时,这些模型的准确度很高。
射线追踪(ray tracing)传播模型受信号传播所在区域的几何形状和导电特性的影响很大。
我们还列出了一些更简化的、参数更少的、主要应用于实际网络的工程分析和无需复杂计算的网络设计的通用传播模型。
无线电波传播模型及其优化研究随着无线通信技术的不断发展和应用,无线电波传播模型成为研究的热点之一。
它主要研究无线电信号在不同环境下的传播规律,为无线通信系统提供优化方案。
本文将介绍无线电波传播模型及其优化研究的相关内容。
一、无线电波传播模型无线电波传播模型主要用于描述无线信号在空气中通过自由空间、大气、地面等不同传播模式下的传播规律。
具体地说,无线电波传播模型包括自由空间传播模型、二元模型、多径模型、衰减模型等。
这些模型都适用于不同的环境和情况下。
1. 自由空间传播模型自由空间传播模型是最基础的无线电波传播模型之一,指的是无线信号在真空中传播时的情况。
它利用弱化的电磁辐射公式,描述无线信号的衰减规律,衰减强度与距离的平方成反比。
这种传播模型仅适用于真空或类似真空的空间,并且不考虑其他介质的影响。
2. 二元模型二元模型是一种经典的无线电波传播模型,也称作大地衰减模型。
它主要用于描述无线信号在陆地上的传播规律,衰减规律与距离的平方成反比。
二元模型的优点在于简单易行,但它仅适用于平坦地区,并不适用于山区和城市。
3. 多径模型多径模型是一种复杂的无线电波传播模型,它描述了无线信号在复杂的环境中的传播规律。
当无线信号被建筑物、树木等阻挡时,会在不同方向上产生反射、散射等多种传播模式,导致信号衰减、多径扩散等现象。
多径模型考虑了这些因素的影响,并且通过使用矢量和矩阵的运算,对复杂的无线信号进行分析和建模。
4. 衰减模型衰减模型用于描述无线信号在空气中传播时所受到的衰减效应,即无线信号的能量随距离呈现指数衰减。
衰减模型可以控制无线信号在不同环境下的传输范围和信噪比,从而提高通信质量和网络容量。
衰减模型还可以用于建立传输信噪比图,帮助无线通信系统的设计和建设。
二、无线电波传播模型的优化研究在现实应用中,无线电波传播模型需要不断优化和完善,以适应各种环境和要求。
下面是几种无线电波传播模型的优化方法。
1. 建筑物阻挡效应建筑物是城市化进程中不可避免的要素,同时也是阻碍无线信号传播的最主要的因素之一。