(完整版)无线信号传播模型简介
- 格式:doc
- 大小:131.53 KB
- 文档页数:5
1链路分析Link Analysis在任何一个通信系统中,我们都会关注一个重要的参数:C/N。
C/N是carrier-to-noise ratio的缩写,它表示在通信接收端的载波噪声比,反映了信道中信号功率和噪声功率的比值,因此C/N可以来衡量一个通信系统的价值。
链路方程式(Link equation)是用通信系统的其它重要参数来计算C/N的方程式。
根据链路方程式:(1)其中ERP是发射天线的有效辐射功率(effective radiated power),L p 是信道的传播损耗,G r是接收天线的增益,N是实际噪声功率。
ERP 可以用下面的公式来计算:ERP=P t L c G t(2)其中P t是发射天线的功率放大器(power amplifier)的输出口测到的功率;L c是连接功率放大器和发射天线的馈线上的损耗;G t是发射天线的增益。
在这里N被定义为热噪声,由下面的公式确定:N=kTW (3)其中k是玻尔兹曼(Boltzmann)常数(1.38×10-23 W/Hz/K或者-228.6 dBW/Hz/K);T是接收天线处的噪声温度;W是系统带宽。
以后还会遇到另一个类似的参数C/I,或者叫载波干扰比(carrier-to-interference radio)。
C/I和C/N的区别在于,C/I不但需要考虑热噪声的功率,还需要考虑来自其它来源的干扰功率,因此在移动通信系统中,C/I参数更有实际价值。
不过现在,我们只用C/N来表示链路质量。
从(1)式中可以看到,发射天线增益、接收天线增益、发射功率、接收端噪声温度对链路质量(link quality)有很大的影响。
这四个参数都可以被系统设计者所控制,因此设计者可以通过改变这些参数来优化系统的性能。
但是,(1)式中有一个参数是系统设计者无法控制的,就是传播损耗,或者叫路径损耗。
传播损耗就是信号在发射天线到接收天线的路径中经历的衰减2传播损耗(Propagation Loss)(1)式中传播损耗包含了信号从发射端旅行到接收端可能会经历的所有损失。
无线传播模型⏹ 微蜂窝的传播模型 1.Okumura 信号预测模型Okumura 和他的同事在东京附近的地方,测量宽频带信号通过一些固定的天线高度和变化的天线高度在各种无规律的地形和各种环境条件下传输后的信号强度。
然后他们得到了一组在一定频率范围内和距固定天线高度相关的信号强度变化曲线。
从得到的曲线能够较精确的分析出在市区和郊区根据距离变化的无线信号的中值场强。
他们给出了适应郊区无线环境的曲线的修正因子,使得曲线可以适应固定天线高度和移动天线高度的信号传播强度变化,此外对于各种不同的地形和植被也加入了修正因子。
试验在200, 435, 922, 1,320, 1,430和1,920 MHz 的频率进行,并借此大量的数据推断和以内插值的方法得出在频率100和3,000 MHz 之间的传播特性。
他们成功的制作了一个标准的传播模型,但是一旦传输曲线是有效的,则他们很难找到合适的公式和具体的地点来适合Okumura 曲线。
2.Hata 模型和修正的Hata 公式Hata[3] 将Okumura’s 测量的结果用一个比较简单的公式表达出来: Loss = A + B log(d )。
这里A 和B 分别代表频率和天线高度,d 代表到天线的距离。
公式包括了高度和地形的修正因子。
公式受限的频率范围为100~1,500 MHz, 距离为1~20 km, 天线高度的范围为30~200 m, 车载天线高度的范围为1~10 m 。
对于中值路径损耗,下列公式被ITU-T[2]采用作为基本的计算公式。
L p = 69.55+ 26.16log f c -13.82log(H b ) + [44.9-6.55log(H b )]log(d ) + a x (H m ) 其中: f c : frequency(MHz): 100 ~ 3000(MHz)h b: 基站有效天线的高度 (m) : 30 ~ 300(m)h m : 车载天线的高度(m) : 1 ~ 10(m) d : 距离: 1 ~ 100(Km)在上述公式种, a(h m ) 作为车载天线高度的修正因子。
【专业知识】无线信号的传输的简单模型信源(发射机)信道信宿(接收机)空中接口的信道是开放的,很容易引入干扰。
无线电波的传播速率、无线电波的传播速率、频率无线电波是电磁波,在真空中的传播速度是每秒30万千米。
无线电波的波长波长=无线电波的速率/无线电波的频率。
800M电波的波长:约37.5CM1900M电波的波长:约15.8CM.无线传播概述传播特性直接关系到通信设备的能力、天线高度的确定、通信距离的计算、以及为实现优质可靠的通信所必须采用的技术措施等一系列系统设计问题。
移动通信系统的无线信道环境比固定无线通信的信道环境更复杂,必须根据移动通信的特点按照不同的传播环境和地理特征进行分析和仿真。
电波的各种传播方式表面波传播电波是紧靠着地面传播的,地面的性质,地貌,地物等的情况都会影响电波的传播。
一方面使电波发生变化和引起电波的吸收。
另一方面由于地球表面是球型,使沿它传播的电波发生绕射。
外层空间传播电磁波由地面发出,经低空大气层和电离层而到达外层空间的传播,如卫星传播、宇宙探测等均属于这种远距离传播。
宇宙空间近似于真空状态,传输特性比较稳定。
电波的各种传播方式天波传播籍此电离层的反射作用,电波在地面与电离层之间来回反射传播至较远的地方。
我们把经过电离层反射到地面的电波叫作天波。
散射传播当天线辐射出去的电波,投射到那些不均匀体的时候,类似于光的散射和反射现象,电波发生散射或反射,一部分能量传播到接收点,这种传播称为散射传播。
移动通信电波的三种基本传播方式在移动通信中,影响传播的三种最基本的机制为反射、绕射和散射。
(接收功率或它的反面,路径损耗)是基于反射、散射和绕射的大尺度传播模型预测的最重要的参数。
这三种传播机制也描述了小尺度衰弱和多径传播。
移动通信电波的三种基本传播方式-移动通信电波的三种基本传播方式-反射当电磁波遇到比波长大得多的物体时发生反射,反射发生于地球表面、建筑物和墙壁表面。
反射波和传输波的电场强度取决于费涅尔Fresnel)反射系数G.反射系数为材料的函数,并与极性、入射角和频率有关。
WIFI信号传播模型的建立与应用一、概述随着无线技术的发展,WIFI已经成为了近年来最为流行的无线网络技术。
WIFI信号的传播模型是研究WIFI信号在空间中的传输过程,并确定信号强度、衰减、传播距离等参数的方法。
建立WIFI信号传播模型可以有助于了解WIFI信号传输的特点,预测WIFI信号传输范围,优化WIFI网络设施等。
本文将着重介绍WIFI信号传播模型的建立方法和应用场景。
二、WIFI信号传播模型的分类WIFI信号传播模型可以分为两类:统计模型和物理模型。
1.统计模型统计模型基于大量的实验数据,采用经验法则或统计方法来描述WIFI信号在传输过程中的特性,如信号强度、衰减率等。
其中比较常见的统计模型有Path Loss模型、Log Normal Shadowing模型、Rayleigh Fading模型等。
Path Loss模型用于描述信号随着距离的增加而衰减的情况。
它采用线性或非线性函数来近似表示信号强度和距离之间的关系。
Path Loss模型广泛应用于室内环境和城市环境下的WIFI网络。
Log Normal Shadowing模型则考虑到了信号传输过程中的随机因素,如建筑物的遮挡、信道干扰等。
它采用高斯分布函数来描述信号衰减和噪声影响,适用于不同的室内和室外环境。
Rayleigh Fading模型则主要研究WIFI信道中的多径衰减和散射效应,是一种物理随机模型。
Rayleigh Fading模型可以有效地解释信号在空气、树林等非常规环境中的传输特性。
2.物理模型物理模型是基于电磁波传输的物理机制和数学方程来建立WIFI信号传输模型的。
物理模型需要以物理原理为基础,考虑更多的因素如天线、信道环境、噪声等,从而比统计模型更加准确。
物理模型具有良好的适应性和可扩展性,因此被广泛应用于更加复杂的场景中,如无线传感器网络、室内定位等。
常见的物理模型有Free Space Path Loss模型、Two-ray模型、Ricean Fading模型等。
无线电传输模型简介无线电传输模型简介翻译&整理:Lyra参考资料:《爱立信:无线电波传输指南》无线电波在空间的传输受限于作用距离之外,很大程度上还取决于传输环境。
研究显示,不同的传输环境(如:城区、郊区、农村等),无线电波的传输效果不尽相同。
下面简要描述常用的无线电传输信道模型。
1) 自由空间传输模型该模型假设发射天线和接收天线相隔很远,且周围没有其他物体,则传输损耗为:4[]20log bf d L dB πλ??=? ???,(m)(m)d λ距离,单位、波长,单位上式可以改写为:32.420log 20log bf L d f =++,[],[]d km f MHz2) 平坦大地传输模型考虑地面绝对平坦,且b m h h d λ<<,20log 4b bf b m d L L h h λπ??=+,其中(m)(m)b m h h 基站天线高度,、移动站天线高度,该模型适于简单估计传输路径中无阻隔,且距离不大的传输损耗。
3) 双斜线模型图 1双斜线模型实际测量显示,信号强度与距离(对数)有上图所示关系:在靠近基站附近,斜率接近自由空间衰减模型,20dB/十倍距离;从某个距离brk d 开始,斜率开始接近平坦大地衰减模型,40dB/十倍距离。
brk d =其中,b m b m h h h h ∑=-?=- 4) Egli 模型信号衰减程度和信号频率相关,在考虑“地形因子”的情况下,衰减为:()40log 20log 20log 40b b m f L d h h ??=-+,[]f MHz该模型适用于40MHz 以上的情况,且模型精度较低,仅在没有更多地形信息可利用的情况下可使用该模型。
5) Okumura-Hata 模型上述模型都只是简单的模型,只能用于链路损耗的粗测。
实际经验告诉我们:● 路径损耗随着距离和频率升高而增加;● 路径损耗随着基站天线和移动站天线升高而降低;● 路径损耗受小区类型、衍射、天气、一年中的时间、障碍物类型等影响。
通信系统中的无线信号传播模型与特点无线通信是指通过无线电波或红外线等无线电磁波来实现信息传输的通信方式。
现如今,无线通信系统已经广泛应用于无线电、移动通信、卫星通信、无线局域网等多个领域。
无线信号传播模型与特点对于确保通信质量和提高通信效率非常重要。
一、信号传播模型无线信号传播模型是描述无线信号在空间传播过程中衰减和传播路径的模型。
常用的信号传播模型主要包括自由空间传播模型、自由路径传播模型和多径传播模型。
1. 自由空间传播模型:自由空间传播模型是最简单的无线信号传播模型,它假设空间中没有障碍物,信号在传播过程中不会受到衰减。
该模型适用于空旷的地区,如在广场上使用遥控器控制无人机。
2. 自由路径传播模型:自由路径传播模型考虑到了地面、建筑物等直射路径上的障碍物对信号传播的影响。
一般采用二维平面模型或三维平面模型来描述信号的传播路径。
该模型可以应用于城市中高楼大厦之间的通信。
3. 多径传播模型:多径传播模型认为信号在传播过程中会经历多条传播路径,包括直射路径、反射路径和散射路径。
反射路径是信号经过建筑物等物体表面反射,并到达接收点。
散射路径是信号在随机散射体表面发生散射后到达接收点。
该模型可以应用于室内无线通信和城市中街道间的通信。
二、信号传播特点无线信号传播具有独特的特点,了解这些特点对于设计和优化无线通信系统非常重要。
1. 多径效应:多径效应是指信号在传播过程中经历了多条路径,导致接收信号中出现多个分量。
这些分量之间存在相位差和时间延迟,会造成信号的频谱扩展和码间干扰。
在调制解调、信道估计和误码控制等方面需要针对多径效应进行处理。
2. 反射和折射:无线信号在传播过程中会经过建筑物、树木等物体的表面,发生反射和折射。
这会导致信号的强度、相位和传播路径的改变。
因此,在设计信号传播模型时需要考虑建筑物和其他物体对信号传播的影响。
3. 阻塞效应:阻塞效应是指由于障碍物的存在,信号不能直接到达接收点。
这会导致信号衰减、散射和影子区等问题。
无线信号传播模型简介
1概述
无线电波信道要成为稳定而高速的通信系统的媒介要面临很多严峻的挑战。
它不仅容易受到噪声、干扰、阻塞(blockage)和多径的影响,而且由于用户的移动,这些信道阻碍因素随时间而随机变化。
在这里,由于路径损耗和信号阻塞,我们试图找出接收信号强度随距离而变化的规律。
路径损耗(path loss)——被定义成接收功率和发射功率之差——是发射机的辐射和信道传播效应引起的功率损耗引起的。
路径损耗模型假设在相同的发射——接收距离下,路径损耗是相同的。
信号阻塞(signal blockage)是接收机和发射机之间吸收功率的障碍物引起的。
路径损耗引起的变化只有距离改变很大(100—1000米)时才明显;而信号阻塞(signal blockage)引起的变化对距离要敏感得多,变化的尺度与障碍物体的尺寸成比例(室外环境是10-100米,室内环境要小一些)。
由于路径损耗和信号阻塞引起的变化都是在较大的距离变化下才比较明显,它们有时候被称为大尺度传播效应。
而由于大量多径信号分量相互之间的相加(constructive)干涉和相消(destructive)干涉引起的信号强度变化在很短的距离下——接近信号的波长——就很明显,因此这种改变被称为小尺度传播效应。
下图是综合了路径损耗、阻塞和多径三种效应后,接收功率和发射功率的比值随距离而变化的假设图。
在简单介绍了信号模型后,我们先从最简单的信号传播模型讲起——自由空间损耗。
两点之间既没有衰减又没有反射的信号传播遵循自由空间传播规律。
接着我们介绍射线追踪(ray tracing)传播模型。
这些模型都是用来近似模拟可以由麦克斯韦方程组严格计算的电磁波传播模型。
当信号的多径分量比较少时,这些模型的准确度很高。
射线追踪(ray tracing)传播模型受信号传播所在区域的
几何形状和导电特性的影响很大。
我们还列出了一些更简化的、参数更少的、主要应用于实际网络的工程分析和无需复杂计算的网络设计的通用传播模型。
当多径分量比较多,或者不清楚信号传播所在区域的几何形状和导电特性时,则需要使用统计型多径模型。
2移动无线传播介绍
电磁波在现实环境中传播,期间它们会墙、地势、建筑和其它物体被发射、散射和衍射(diffract)。
这种传播的最终细节可以通过解Maxwell方程组——利用能够表示这些障碍物的边界条件——而获得。
这需要计算这些大型复杂结构的雷达散射截面(Radar Cross Section,RCS)。
由于这种计算十分困难,而且很多时候必要的参数也无法获得,因此人们开发出了一些无需求助Maxwell方程组就能够描述信号传播特征的近似方法
最常用的近似方法是射线追踪ray-tracing技术。
这种方法通过将电磁波的波阵面表示为简单粒子来近似电磁波的传播特征:这个模式能够确定波阵面上发生反射和折射,但是忽略了麦克斯韦方程组能够预测的更复杂的散射现象。
最简单的射线追踪方法是双路径模型,当发射机和接收机之间有一条直达路径和一条反射路径时,它能够精确地描述信号的传播。
典型的反射路径是在地面上发生反弹,因此在描述高速公路、水面和乡村道路的传播情况时,双路径模型是一个很好的近似方法。
通过增加更多的反射波(反射波还可能被散射和衍射),接下来我们考虑更复杂的模型。
很多传播场景无法用射线追踪模型准确描述。
这种情况下通常使用基于经验测量的分析模型,比如Okumura模型、Hata模型、COST231 Extendtion to Hata模型、Walfisch/Bertoni模型、Piecewise linear模型、室内衰减模型,等等。
无线信道复杂多变往往使得获得确定的信道模型非常困难。
这时,统计模型常常被使用。
由信号路径上的障碍物(如建筑和其它物体)引起的衰减以统计的方式被特征化。
统计模型也被用于描绘大量多径分量的相加干涉和相消干涉的特征。
当传播在很大程度上依赖无线环境的几何及导电特性时——比如室内环境,统计模型往往因为过于粗糙而不能提供有用信息。
不同的室内环境——敞开式厂房、隔间办公室或金属机器商店——的传播特性相差很大。
在这些环境中,需要使用计算机辅助的模型工具来预测信号传播特征。
3信号模型
我们关注的信号是UHF频段(300MHz—3GHz)到SHF频段(3GHz—30GHz)的信号。
大多数陆地移动通信系统使用UHF频段;而卫星系统通常工作在SHF 频段,因为SHF频段的信号能够接近无损地穿透电离层。
发射信号的模型公式是:
其中,u(t)是一个基带复数信号(a complex baseband signal),其同相分量(in-phase
component)是,而正交分量(quadrature component)是
,且u(t)的带宽是B,功率是P u。
设调制信号s(t)载频是fc;Φ0是这个载频的任意初始相位。
我们假设B«fc,因此被发射的信号s(t)的功率P t=P u/2。
除了收到的信号的相位是任意的之外,接收信号还受到多普勒频移的影响——对每个接收信号分量的影响等于vcos(θ/λ),其中θ是信号分量的入射角,v是接收器的移动速度,λ=c/fc是信号波长。
在自由空间模型和射线追踪ray-tracing模型中,我们会忽略多普勒效应,因为对于城市交通工具均速(60mph)和信号频率(大约1 GHz)来说,多普勒频移小于70Hz。
但是在计算统计衰落模型时,多普勒效应是不可忽视的。
注:在信号处理时,经常会对一个信号进行正交处理,即分解为正交分量和同相分量,这两部分由于存在正交性,因而可以构成一个类似复平面的二维空间。
现在我们假设基带信号u(t)是实数,因此u(t)= ,而=0。
于是
我们做的这个假设不会失去普遍性,因为路径损耗对同相分量和正交分量有同样的影响。
在研究统计衰落模型时,我们会使用完整的基带复数信号,因为统计衰落对同相分量和正交分量的影响不一样。
4自由空间损耗
考虑一个在自由空间中从发射端到接收端的信号,其中接收端到发射端的距离是d。
因为这发射端和接收端之间没有障碍物,信号沿着直达路径行进且没有发生反射,这个信号常常被称为LOS(Line-Of-sight)信号或者直达路径信号。
接收信号由自由空间传播损耗公式决定:
其中s(t)是发射信号(send),r(t)是接收信号(receive),√G l是发射天线的场辐
射方向图(field radiation pattern)与接收天线的场辐射方向图(field radiation pattern)在LOS方向的乘积(G l是增益?对于nondirectional天线,G l=1)。
由于处于接收天线的有效面积(effective area)内,接收信号与信号波长成正比例。
设sending信号s(t)的功率是Pt,receiving信号的功率是Pr,则由2.3式得知,接收信号功率和发射信号功率的比例是:
P r P t =[
√G lλ
4πd
]
2
(2.4)
这样,接收信号功率的衰减和发射端与接收端之间的距离的平方成正比。
以后我们还会看到其它的信号传播模型,其信号接收功率更快地随距离而衰减。
接收信号功率还与信号波长的平方成正比,因此当载波频率提高时,接收功率会下降。
自由空间路径损耗公式通常写成dB的形式,即
5射线追踪(Ray Tracing)模型
在一个典型的市区或室内环境中,从一个固定源发射出来的无线信号会在环境中碰到多个物体,产生发射信号的反射复制信号、衍射复制信号、散射复制信号等(如下图所示)。
这些发射信号的额外复制品——也被称为多径信号分量——与接收器接收到的LOS信号相比,可能有功率上的衰减,可能有时间的延迟,可能有相位和/或频率上的偏移。
多径信号和发射信号在接收器端叠加在一起,经常使得接收信号相对发射信号出现严重的扭曲。
在射线追踪模型中,我们假设存在有限数量的反射物,并且这些反射物的位置和导电特性已知。
前面说过,借助恰当的边界条件,我们能够通过求解麦克斯
韦方程组解出多径传播的细节。
然而,计算的复杂性让这个解决方法失去实用性,无法成为一个通用模型。
而射线追踪模型用简单例子来代表电磁波的波阵面,从而对信号传播进行了简化。
这样,波阵面上的反射、折射和衍射效果就由复杂的麦克斯韦波方程简化为简单的几何方程。
当接收器离开最近的散射体的距离大大超过波长,并且所有散射体相对波长足够大、散射体相当平滑时,射线追踪模型的近似误差非常小。
将射线追踪模型和经验测试数据比较后显示,它能够在乡村区域、发射器和接收器都接近地面的城市道路,及附加适当衍射系数的室内环境准确模拟接收信号的功率。
不过,射线追踪模型不能准确捕捉除接收功率变化之外的其它传播效应,比如多径信号的时延扩展(delay spread)。