计算化学半经验方法
- 格式:pptx
- 大小:1.33 MB
- 文档页数:46
对于复杂的大分子的计算,目前由于受到计算机条件的限制,从头算还有困难,故往往采用各种近似方法.在半经验方法的计算中,从电子结构的一些试验资料估计最难以计算的一些积分.当使用模型法计算分子电子结构时,不再从原始的完正Hamilton量出发,而是从最简单的模型Hamilton量出发.这种Hamiltom 量只是粗略地考虑了分子中相互作用,通常包含一些待定的参数.
半经验法引入的化简极大地简化了必须的计算工作量,并且可能计算一些更复杂分子的电子结构.这种计算所得到的资料带有定性的和半定量的特性.实际上,如果该方法用于一些它力所能及的问题.计算结果的精确度通常足以说明所研究分子的性质,肯定或否定某中物理化学假定.
尽管在半经验方法中依据试验值对一些计算所进行的参数化补偿了计算方案的不足.但是,却不能苛求半经验方法面面俱到,使分子的各种电子性质的计算都有同样好的结果.因此,通常保证分子的某些电子结构性质好的计算方案对于另外一些电子结构性质有可能导出不适当的结果.于是,对于每种半经验方法,可以因各类具体参数化方案的不同而变的多样化.
在相当大程度上,每类参数化都是局限于分子的一些性质或一定种类分子的计算.因此,半经验方法不是以描述分子的全部特性为基本内容,而是着眼于比较同系物的某些性质.当足以正确地引入参数时,可以得到复杂化合物电子结构的定性或定量的资料,同系物分子的某些特性的变化规律,以及建立他们同试验观测的物理与化学性质的联系,显然,这些问题都是现代化学关注的中心.。
计算化学学习指南计算化学学习基本要求:在学习了化学系列基础课程之后,通过本课程的学习,掌握化学中常用的数值计算方法,并能利用计算方法来解决化学中和部分工程实践中的实际问题,学习中坚持理论与实践相结合,才能更深刻的理解与运用理论,并在解决实际问题中,掌握理论和方法,培养学习能力、实践能力和创新能力。
计算化学学习的难点:学生学习计算化学时由于受原有化学、数学、计算机基础的制约,感到课程涉及知识面广,入门较慢。
尤其是对各种化学、化工知识的综合应用及编程需要有一个熟悉的过程。
计算化学的研究方法:传统意义上的计算化学要完成的任务一般包括以下几个方面:1.量子结构计算,分子从头计算(Schrodinger方程的精确解)、半经验计算(Schrodinger方程的估计解)和分子力学计算(根据分子参数计算),属于量子化学和结构化学范畴;2.物理化学参数的计算,包括反应焓、偶极矩、振动频率、反应自由能、反应速率等的理论计算,一般属于统计热力学范畴;3.化学过程模拟和化工过程计算等。
但是随着科学的发展,要界定计算化学的范围是很困难的,因为它是化学学科现代化过程中新的生长点,它与迅速崛起的高科技关系密切,深受当今计算机及其网络技术飞速发展的影响,正处在迅速发展和不断演变之中,研究的侧重点也因研究者及其所处的学术环境、原有基础和人员的知识背景而异。
在今后的一段时期内,计算机辅助结构解析、分子设计和合成路线设计将是计算化学的主题。
尽管实际上计算化学覆盖的面还要广得多,比较公认的研究领域至少有:1.化学数据挖掘(Data mining);2.化学结构与化学反应的计算机处理技术;3.计算机辅助分子设计;4.计算机辅助合成路线设计;5.计算机辅助化学过程综合与开发;6.化学中的人工智能方法等。
无论计算化学涉及的内容多么广泛,其核心依然是数值计算问题。
本课程主要学习利用用计算机解化学中的数值计算问题,一般包括以下几个步骤:1.对所要解决的问题进行分析,将化学问题转变为数学模型,选择所需的计算方法;问题分析是完成计算任务的基础,包括对问题所含物理化学意义的清楚认识。
计算化学5-半经验量子化学计算方法
且字数要求1500字以上。
半经验量子化学计算方法是指将理论计算中所使用的物理模型参数,
如原子核和电子结构模型,由实验定义的拟合参数改写,以改进理论计算
结果的方法。
在改写参数时,并不重新做精确的量子化学及密度泛函理论
计算。
而是将经验数据拟合后,用一组比较简单的系数来表示,从而节约
计算时间。
半经验量子化学计算方法一般分为两类:
1、基于解析模型(AM):AM是指根据经验数据构造出一种解析模型,用以表示原子核和电子结构模型参数。
其中,AM既可以是经典势模型(Classical potential models)形式,如Morse势模型,又可以是量子
势模型(Quantum potential models)的形式,如Boys势模型、
Hartree-Fock势模型等。
2、基于数据库(DDB):DDB是指根据经验数据构建一种具体的数据库,以存储各种原子核和电子结构模型参数。
与AM不同,DDB不构建具
体的模型,而是将所有原子核和电子结构模型参数都存储在数据库中,并
通过的方式获取这些参数,从而减少计算时间。
(完整版)化学毕业论文范文中文摘要:乙酰甲喹是一种广谱,高效,低毒的兽药,受到人们的广泛应用。
其在动物体内的主要代谢产物为和,这是一对同分异构体。
为了更加透彻的了解乙酰甲喹在动物体内的代谢作用情况,我们就要研究其主要代谢产物。
在合成1-单氧乙酰甲喹和4-单氧乙酰甲喹后,得到RF 值不同的两个代谢产物,由于其是同分异构体,难以区分。
本文就以为理论基础,利用根据Balandina (Tetrahedron Letters 45 (2004) 4003–4007)及Timmons (J. Org. Chem. 2008, 73, 9168–9170)等人的研究,应用化学软件计算1-单氧乙酰甲喹和4-单氧乙酰甲喹的核磁数据,并与实验值进行比较分析,得到区分这一对单氧乙酰甲喹的方法。
关键字:1-单氧乙酰甲喹4-单氧乙酰甲喹同分异构体计算化学Gaussian 03 核磁英文摘要:Mequindox is a broad spectrum, vivo and the major metabolite, which is a pair of isomers. For more thorough understanding of Mequindox metabolism in vivo situation, we will study the major metabolite. In the synthesis of 1 - desoxymaquindox and 4 - desoxymaquindox, got two different RF values of metabolites, because of its isomers is difficult to distinguish. In this paper, that the theoretical basis for the studies of Balandina (Tetrahedron Letters 45 (2004)) and Timmons (J. Org. Chem. 2008, 73,), application of chemical software to the calculate 1 - desoxymaquindox and 4 - desoxymaquindox NMR data, and compared with experimental data analysis, to assigned the approach that distinguish this couple of desoxymaquindoxes.目录中文摘要(Ⅰ)英文摘要(Ⅱ)目录……………………………………………………………Ⅲ前言 (1)1.乙酰甲喹药物用途1.1理化性质1.2抗菌作用及其机理1.3临床应用2.计算化学2.1计算化学的产生2.2计算化学的发展2.3 计算化学的现状2.4计算方法3.应用软件——Gaussian 033.1 Gaussian 03的应用3.2基组的选择4.核磁4.1NMR理论计算研究方法概述4.2化学位移概述4.3计算方法及细节5合成与计算5.1试剂与仪器5.2合成步骤5.3计算方法分析与结论参考文献 (115)致谢……………………………………………………………118 附录…………………………………………………………………前言1.乙酰甲喹药物用途1.1理化性质乙酰甲喹,化学名为3-甲基-2-乙酰基喹噁啉-N-1,4-二氧化物。
半经验分子轨道法半经验分子轨道(Semiempirical Molecular Orbital,简称SEMO)法是在原子轨道(atomic orbital, AO)和无穷维经验势(infinite-dimensional empirical potential, IDEMPOT)法基础上发展起来的一类数值分子力场方法,是一种广泛应用的理论计算化学方法。
SEMO法利用内在分子结构表述分子潜在能,这一表述也就是所谓的偶合参量(parametrized MO coefficients)。
该法通过建立分子能算局和能算局来模拟分子吸引力场效应,该过程通过基反应性理论(basis reaction theory)的形式来处理,从而有效地计算出原子之间的协同能(conjugate energy),即所谓的Koopmans条件。
偶合参量不仅仅只用于构建分子能算局,还能够有效的模拟能量。
实际上,它们可以用来提出分子中基态的能量影响程度,从而为其他分子计算方法提供了一种基础。
SEMO方法允许以简便而准确的方式来研究复杂的分子系统。
该方法也被用来模拟与分子特性有关的实验数据。
在微观考虑上,在分子中受之力一般限制在500 米的范围内,而SEMO方法几乎可以做到不到100 米的精度。
另外,这种方法可以以一定精度用元素来代替原子,以减少理论计算的复杂性。
此外,SEMO也使得分子运动变得更加有效,如偶极矩(dipole moment )和加权模型(weight matrix)可以得到更完美的描述。
SEMO方法的缺点也是比较明显的,比如对对多原子分子系统量子化学计算无法达到满意的精度;而格点法(grid method)和量子点函数(quantum dot)自然可以处理更复杂的问题,比如电荷的分布,以及能量差的机理。
综上所述,半经验分子轨道法(SEMO)以其有效的模拟能量,高效的计算过程,可以有效的模拟密度的分布,以及本征态的稳定能,成为当今理论化学中不可缺少的一部分。
化学计算的基本方法和技巧[考点点拨] 高考考试说明中明确要求:化学计算应占试卷总分的15%左右,与有机化学、元素化合物具有同等的比例。
化学计算涉及的面很广,知识点也很多,是化学基础知识的重要组成部分。
化学计算是从量的方面来理解物质及其变化规律,加深对化学基本概念和基本理论的理解,并获得化学计算的技能、技巧,同时借助于化学计算的形式培养分析、推理、综合归纳等逻辑思维能力及解决实际问题的能力。
(一)化学计算的高考要求:1、掌握有关相对原子质量、相对分子质量及确定化学式的计算;2、掌握有关物质的量的计算;3、掌握有关气体摩尔体积的计算;4、掌握有关物质溶解度的计算;5、掌握有关溶液浓度(溶液中溶质的质量分数和物质的量浓度)的计算;6、掌握有关溶液pH与氢离子浓度、氢氧根离子浓度的简单计算;7、掌握有关燃烧热的计算;8、掌握利用化学方程式的计算;9、以上化学基本概念和基本理论、常见元素的单质及其重要化合物、有机化学基础、化学实验等知识内容中,具有计算因素的各类问题的综合应用。
(二)化学计算在高考试题中的两大类题型:1、选择型计算题;2、综合型计算题.因为选择型计算题的命题意图是以考查考生的计算能力为主,强调基本概念和基本原理的灵活运用,通过合理的巧妙的方法,不需要经过复杂的计算过程。
选择型计算题常见的解题方法有概念解析法、原理解析法、巧解法(如十字交叉法、差量法、守恒法、极值法、估算法等)。
主要考查学生思维的敏捷性和发散性。
命题趋势,继续保持技巧性强、智能要求高的题型。
[智能整合]解题特点:“不要过程,只要结果,解题入口宽,方法多。
”解题时应运用题干给的条件,备选答案给出的提示,采用灵活的方法进行巧解妙算,实施速解策略,则可事半功倍。
解题方法:要注意从题干上抓信息,从备选答案中找启示,从定量关系上作判断,从限制条件中寻答案,从例题分析中学方法,要能自觉运用估算、极限法、守恒法、差值法、平均值法、十字交叉法等去巧解速算。
初中化学计算方法归纳总结学习化学是少不了计算的,所以化学有很多的计算方法,把化学的计算方法总结起来还是很有必要的。
以下是店铺分享给大家的初中化学计算方法归纳,希望可以帮到你!初中化学计算方法归纳守恒法利用反应体系中变化前后,某些物理量在始、终态时不发生变化的规律列式计算。
主要有:(1)质量守恒;(2)原子个数守恒;(3)电荷守恒;(4)电子守恒;(5)浓度守恒(如饱和溶液中);(6)体积守恒;(7)溶质守恒;(8)能量守恒。
差量法根据物质发生化学反应的方程式,找出反应物与生成物中某化学量从始态到终态的差量(标准差)和实际发生化学反应差值(实际差)进行计算。
主要有:(1)质量差;(2)气体体积差;(3)物质的量差;(4)溶解度差……实际计算中灵活选用不同的差量来建立计算式,会使计算过程简约化。
平均值法这是处理混合物中常用的一种方法。
当两种或两种以上的物质混合时,不论以何种比例混合,总存在某些方面的一个平均值,其平均值必定介于相关的最大值和最小值之间。
只要抓住这个特征,就可使计算过程简洁化。
主要有:(1)平均相对分子质量法;(2)平均体积法;(3)平均质量分数法;(4)平均分子组成法;(5)平均摩尔电子质量法;(6)平均密度法;(7)平均浓度法……关系式法对于多步反应体系,可找出起始物质和最终求解物质之间的定量关系,直接列出比例式进行计算,可避开繁琐的中间计算过程。
具体有:(1)多步反应关系法:对没有副反应的多步连续反应,可利用开始与最后某一元素来变建立关系式解题。
(2)循环反应关系法:可将几个循环反应加和,消去其中某些中间产物,建立一个总的化学方程式,据此总的化学方程式列关系式解题。
十字交叉法实际上是一种数学方法的演变,即为a1x1+a2x2=a 平×(x1+x2)的变式,也可以转化为线段法进行分析。
(1)浓度十字交叉法;(2)相对分子质量十字交叉法等。
极值法当两种或多种物质混合无法确定其成分及其含量时,可对数据推向极端进行计算或分析,假设混合物质量全部为其中的某一成分,虽然极端往往不可能存在,但能使问题单一化,起到了出奇制胜的效果。
初中化学计算方法总结1. 化学计算的基本概念化学计算是化学中非常重要的一部分,它涉及到化学方程式的平衡、摩尔计算、溶液浓度计算等内容,为学习和掌握化学知识提供了基础。
在初中阶段,我们需要掌握一些常见的化学计算方法。
2. 化学方程式的平衡计算化学方程式的平衡是化学反应中非常关键的一环,平衡的化学方程式可以通过化学计算方法得到。
一般来说,平衡的化学方程式应该满足质量守恒和电荷守恒两个原则。
通过平衡方程中物质的摩尔系数,可以得到化学方程式的平衡计算式。
例如,下面是氢气与氧气生成水的化学方程式:2H₂ + O₂ → 2H₂O经过平衡计算,可以得到氢气和氧气的摩尔系数分别为2和1,从而满足质量守恒和电荷守恒的原则。
3. 摩尔计算摩尔是化学中的重要概念,摩尔质量指的是物质的相对分子质量或原子量,单位是g/mol。
摩尔计算是通过已知物质的质量或物质的数量,计算其他物质的质量或物质的数量。
例如,如果已知硫酸钠(Na₂SO₄)的摩尔质量为142 g/mol,我们可以通过知道的质量计算出物质的摩尔数,公式如下:摩尔数 = 质量(g) / 摩尔质量(g/mol)4. 溶液浓度计算溶液浓度是描述溶液中溶质与溶剂的相对含量的参数,常用的浓度单位有摩尔浓度、质量浓度和体积浓度等。
在化学计算中,我们常常需要计算溶液的浓度。
例如,已知某个溶液中NaCl的质量为10 g,溶液的体积为100 mL,我们可以通过下面的公式计算出溶液的质量浓度:质量浓度(g/mL) = 质量(g) / 体积(mL)5. 其他常用的化学计算方法除了上述的基本计算方法外,还有一些常用的化学计算方法需要了解:•摩尔比计算:通过已知物质的摩尔数,计算其他物质的摩尔数的比例•溶质的溶解度计算:通过溶质的溶解度常数,计算溶液中溶质的量•配平氧化还原反应方程式:通过电子转移数目和电荷守恒原则,完成反应方程式的配平6. 总结初中化学计算方法是化学学习中非常重要的一部分,通过掌握这些基本的计算方法,可以更好地理解和应用化学知识。
计算化学(computational chemistry)是理论化学的一个分支。
计算化学的主要目标是利用有效的数学近似以及电脑程序计算分子的性质(例如总能量,偶极矩,四极矩,振动频率,反应活性等)并用以解释一些具体的化学问题。
计算化学这个名词有时也用来表示计算机科学与化学的交叉学科。
理论化学泛指采用数学方法来表述化学问题,而计算化学作为理论化学的一个分支,常特指那些可以用电脑程序实现的数学方法。
计算化学并不追求完美无缺或者分毫不差,因为只有很少的化学体系可以进行精确计算。
不过,几乎所有种类的化学问题都可以并且已经采用近似的算法来表述。
理论上讲,对任何分子都可以采用相当精确的理论方法进行计算。
很多计算软件中也已经包括了这些精确的方法,但由于这些方法的计算量随电子数的增加成指数或更快的速度增长,所以他们只能应用于很小的分子。
对更大的体系,往往需要采取其他一些更大程度近似的方法,以在计算量和结果的精确度之间寻求平衡。
研究领域计算机在化学中的应用。
又称计算机化学。
包括5 个主要研究领域:①化学中的数值计算。
即利用计算数学方法,对化学各专业的数学模型进行数值计算或方程求解,例如,量子化学和结构化学中的演绎计算、分析化学中的条件预测、化工过程中的各种应用计算等。
②化学模拟。
包括:数值模拟,如用曲线拟合法模拟实测工作曲线;过程模拟,根据某一复杂过程的测试数据,建立数学模型,预测反应效果;实验模拟,通过数学模型研究各种参数(如反应物浓度、温度、压力)对产量的影响,在屏幕上显示反应设备和反应现象的实体图形,或反应条件与反应结果的坐标图形。
③模式识别在化学中的应用。
最常用的方法是统计模式识别法,这是一种统计处理数据、按专业要求进行分类判别的方法,适于处理多因素的综合影响,例如,根据二元化合物的键参数(离子半径、元素电负性、原子的价径比等)对化合物进行分类,预报化合物的性质。
模式识别广泛用于最优化设计,根据物性数据设计新的功能材料。
化学反应模拟计算方法及其应用案例随着现代科技的不断发展,计算机技术在化学研究中的应用越来越广泛。
其中,化学反应模拟计算方法在理论研究与工程设计中发挥着重要作用。
本文将从模拟计算方法的理论基础、具体实现方法以及应用案例三个方面进行探讨,以期为读者介绍化学反应模拟计算方法的概念及其实际应用。
一、模拟计算方法的理论基础1.量子化学方法量子化学方法是理论计算化学中最重要的分支之一,它基于分子的波函数进行计算和分析。
这种方法可以计算分子的电子结构、反应动力学等特性,从而为化学反应的实验研究提供有力的支持。
此外,量子化学方法还可以针对不同分子以及化学反应条件进行有针对性的计算,加深对化学反应机理的理解。
2.分子动力学模拟方法分子动力学模拟方法基于牛顿力学原理及统计力学概念,通过对分子运动轨迹的模拟来研究分子的结构和动力学性质。
这种方法可以模拟分子的运动、振动、扭曲、转动等多种过程,为分子体系的能量、结构、热力学性质等提供了极为精确的计算。
分子动力学模拟方法现已被广泛应用于催化反应、材料科学等领域。
3.量子力学和分子动力学混合方法量子力学和分子动力学混合方法结合了量子化学和分子动力学的优点,可同时考虑分子的电子结构和动力学性质,为更深入地探究分子的性质和机理提供了一条可行的途径。
该方法利用量子化学计算与分子动力学模拟相结合,通过对分子体系在不同状态下的模拟,探索反应机理,解析反应动力学和热力学等性质。
二、模拟计算方法的具体实现方法化学反应的模拟计算方法包括两种:计算化学方法和分子动力学模拟方法。
1.计算化学方法计算化学方法主要针对分子结构和电子结构的计算。
常见的计算化学方法包括密度泛函理论、半经验分子轨道方法、摄动理论等。
(1)密度泛函理论密度泛函理论是计算化学中应用最广泛的一种理论方法,它是基于电子密度的概念,采用一些理论上的近似,寻求分子的基态能量和电荷密度分布。
密度泛函理论已被广泛用于计算分子的结构及其属性,如反应热、自由能、电子结构等。