2018届中考数学复习 专题25 等腰三角形、等边三角形试题(b卷,含解析)
- 格式:doc
- 大小:548.50 KB
- 文档页数:19
等腰三角形、等边三角形一、选择题 1. .(广东省广州市,13,3分)如图,△ABC 中,AB =AC ,BC =12cm ,点D 在AC 上,DC =4cm ,将线段DC 沿CB 方向平移7cm 得到线段EF ,点E ,F 分别落在边AB ,BC 上,则△EBF 的周长为 cm .【答案】13【逐步提示】利用平移的性质可以求得EF 与FC 的长,进而可得BF 的长;再根据等腰三角形的判定可得BE =EF ,这样求得了△EBF 的三边长,其和即为△EBF 的周长.【详细解答】解:根据平移的性质,将线段DC 沿着CB 的方向平移7cm 得到线段EF ,则EF =DC =4cm ,FC =7cm ,∠EFB =∠C .∵AB =AC ,∴∠B =∠C ,∴∠B =∠BFE ,∴BE =EF =4cm .又BF =BC -FC =12-7=5cm ,∴△EBF 的周长=4+4+5=13(cm ).故答案为13.【解后反思】图形平移后,对应线段平行(或在同一条直线上)且相等,这样往往存在平行四边形与全等三角形或等腰三角形,给我解决问题提供了重要途径. 【关键词】平移的性质;等腰三角形的判定2. ( 河北省,16,2分)如图,∠AOB =120°,OP 平分∠AOB ,且OP =2.若点M ,N 分别在OA ,OB 上,且△PMN 为等边三角形,则满足上述条件的△PMN 有( )A .1个B .2个C .3个D .3个以上【答案】D【逐步提示】先找出符合要求的特殊点,如点M 与点O 重合,点N 与点O 重合等,不难发现以上特殊情形都满足OM+ON=2,再研究一般情形下△PMN 是否为等边三角形,问题得解. 【详细解答】解:如图,在OA 上截取OC=OP=2,∵∠AOP =60°,∴△OCP 是等边三角形,∴CP=OP ,∠OCP=∠CPO=60°.在线段OC 任取一点M ,在OB 上截取ON ,使ON+OM=2,连接MN ,PM ,PN.∵MC+OM =2,∴CM=ON.在△MCP 和△NOP 中,∵CM=ON,∠MCP =∠NOP =60°,CP=OP ,∴△MCP ≌△NOP (SAS ),∴PM=PN ,∠MPC=∠NPO ,∴∠MPC+∠MPO=∠NPO+∠MPO ,即∠CPO =∠MPN,∴∠MPN =60°,∴△PMN 是等边三角形.故满足条件的△PMN 有无数个,答案为选项D.A B CE D F【解后反思】如图所示,本题是含有60°内角的菱形问题的变式,掌握其中等边三角形和全等三角形的判定有助于我们解决此题.【关键词】等边三角形的判定和性质;全等三角形的判定;存在性问题3.(湖南省怀化市,8,4分)等腰三角形的两边长分别为4cm和8cm,则它的周长为()A. 16cmB. 17cmC. 20cmD. 16cm或20cm【答案】C.【逐步提示】此题考查等腰三角形的定义和三角形三边的关系.题中给出了等腰三角形的两条边长,而没有明确其腰长或底边长,因此需要分腰为4cm长或腰为8cm长两种情况讨论等腰三角形的周长即可.【详细解答】解:若4cm的边长为腰,8cm的边长为底,4+4=8,由三角形三边的关系知,该等腰三角形不存在;若8cm的边长为腰,4cm的边长为底,则等腰三角形的周长为20cm,故选择C.【解后反思】此题考查等腰三角形的定义和三角形三边的关系,解此题的关键是能根据题意,考虑到需要分类讨论等腰三角形的周长.此题的易错点是审题不认真,忽略分类讨论.【关键词】等腰三角形的定义;三角形三边的关系4.(湖南湘西,14,4分)一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是A.13cm B .14cm C. 13 cm或14cm D.以上都不对【答案】C【逐步提示】本题考查了三角形的三边关系及等腰三角形的性质,解题的关键是应用三角形三边关系定理讨论.分4cm为等腰三角形的腰和5cm为等腰三角形的腰,先判断符合不符合三边关系,再求出周长.【详细解答】解:①当等腰三角形的腰为4,底为5时,等腰三角形的周长为2×4+5=13;②当等腰三角形的腰为5,底为4时,等腰三角形的周长为2×5+4=14,∴这个等腰三角形的周长是13 cm或14cm,故选择C . 【解后反思】在解有关等腰三角形边长问题时,通常要进行讨论,注意分类讨论后一定要运用三边关系检验,所求的结果若能够组成三角形后,才能继续进行有关的计算.【关键词】三角形三边的关系;等腰三角形的性质5.(山东滨州6,3分)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE 的度数为()A.50° B.51° C.51.5° D.52.5°【答案】D .【逐步提示】先根据AC =CD ,∠A =50°,计算出∠ADC 的度数,再由CD =BD ,可知∠B=∠BCD ,从而求出∠B 的度数,BD =BE ,∠BDE =∠BED ,求出∠BDE 的度数,最后根据∠ADC +∠CDE +∠BDE =180°,计算出∠CDE 的度数. 【详细解答】解:∵AC =CD ,∴∠ADC=∠A =50°,又∵CD =BD ,∴∠B=∠BCD ,∠ADC=∠B+∠BCD ,∴∠B=25°,∵BD =BE ,∠BDE =∠BED=77.5°,∠ADC +∠CDE +∠BDE =180°,∴∠CDE =52.5°. 【解后反思】根据“等腰三角形两底角相等”得到角的度数,再根据三角形的一个外角等于和它不相邻的2个内角的度数之和.【关键词】等腰三角形 三角形的外角和定理6.(江苏省扬州市,8,3分)如图,矩形纸片ABCD 中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是 ( )A .6B .3C .2.5D .2(第8题)BC【答案】C【逐步提示】本题考查了操作活动中的估算和大小比较,解题的关键是合理构造等腰直角三角形,使得剩余部分面积的最小,此时每次都要考虑以最大边做斜边才使得剪去的等腰直角三角形面积最大.【详细解答】解:如图所示,剩余三角形的面积为24—1442创—12—1332创=2.5,故选择C .【解后反思】本题属于数学实验的简单类的问题,在构造等腰直角三角形时,学生可能会构造出如图所示的方法,剩余三角形的面积为24—1442创—12创—12创,错选答案B .【关键词】 三角形;等腰三角形与直角三角形;等腰三角形的性质;勾股定理;四边形;特殊的平行四边形;矩形的性质;面积最小化;化归思想二、填空题1. ( 甘肃省武威市、白银市、定西市、平凉市、酒泉市、临夏州、张掖市等9市,17,4分)将一张矩形纸片折叠成如图所示的图形,若AB =6cm ,则AC =_____________cm .第17题图 【答案】6【逐步提示】本题考查轴对称变换的性质,解题的关键是画出折叠之前的矩形纸片,画出折叠之前的矩形纸片之后,一目了然,通过角度之间代换得到△ABC 是等腰三角形,得解.【详细解答】解:由折叠得∠1=∠2,再由矩形纸片对边平行得到∠1=∠3,从而得到∠2=∠3,所以△ABC 是等腰三角形且AB =AC =6cm ,故答案为6.【解后反思】折叠也就是翻折或轴对称,它连同平移、旋转一样是全等变换,即不改变图形的形状和大小,所以看到折叠就要想到全等,进一步得到对应角相等、对应边相等为进一步解题提供条件. 【关键词】 折叠;矩形的性质;等腰三角形的判定;2. ( 河北省,19,4分)如图,已知∠AOB =7°,一条光线从点A 出发后射向OB 边.若光线与OB 边垂直,则光线沿原路返回到点A ,此时∠A =90°-7°=83°.当∠A <83°时,光线射到OB 边上的点A 1后,经OB 反射到线段AO 上的点A 2,易知∠1=∠2.若A 1A 2⊥AO ,光线又会沿A 2→A 1→A 原路返回到点A ,此时∠A =_____°. ……若光线从点A发出后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值=_______°.【答案】76 6 【逐步提示】本题属于规律探究题,对于(1)先在Rt△A1A2O中根据三角形内角和定理求出∠2的度数,由此得到∠1和∠AA1A2的度数,再在△AA1A2中根据三角形内角和定理求出∠A的度数;(2)由(1)可知当光线垂直于OA时光线会沿原路返回,画出符合题意的图形,分别求出有公共顶点的光线夹角的度数,从而找出夹角变化的规律,问题可解.【详细解答】解:(1)∵A1A2⊥AO,∴∠A1A2A=∠A1A2O=90°.在Rt△A1A2O中,∠O=7°,∴∠2=90°-7°=83°,∴∠1=83°,∴∠AA1A2=180°-2×83°=14°.在Rt△AA1A2中,∴∠A=90°-14°=76°.(2)如图,当A n-1A n ⊥OA时,易求得∠A n A n-1A n-2=14°=1×14°,∠A n-1A n-2A n-3=28°=2×14°,∠A n-2A n-3A n-4=42°=3×14°,……,由此可知当∠A1AC=12×14°=168°时,∠A1AO=12×(180°-168°)=6°,且此时∠A1AO最小.【解后反思】对于规律探究题,解决问题的一般思路是从特殊情形中发现一般规律,进而应用一般规律求解. 【关键词】规律探究题3.(湖北省黄冈市,12,3分)如图,⊙O是ΔABC的外接圆,∠AOB=700,AB=AC,则∠ABC= 。
等腰三角形、等边三角形一、选择题 1. (山东临沂,12,3分)如图,将等边△ABC 绕点C 顺时针旋转120°得到△EDC ,连接AD ,BD.则下列结论:①AC=AD ;②BD ⊥AC ;③四边形ACED 是菱形.其中正确的个数是( ) (A )0 (B )1 (C )2 (D )3【答案】D【逐步提示】本题考查等边三角形的判定与性质,菱形的判定与性质,先由等边三角形的性质得出∠ACB=∠DCE=60°,AC=CD ,从而得出△ACD 是等边三角形,得出①正确;再判断四边形ABCD 是菱形,得出②正确;然后根据①结论得出四边形ACED 是菱形,得出③正确.【详细解答】解:∵△ABC、△EDC 是等边三角形,∴∠ACB=∠DCE=60°,AC=CD ,∴∠ACD=180°-∠ACB-∠DCE=60°,∴△ACD 是等边三角形,∴AD=AC,故①正确;由①可得AD=BC=AB=CD ,∴四边形ABCD 是菱形,∴BD⊥AC,故②正确; 由①可得AD=AC=CE=DE ,故四边形ACED 是菱形,即③正确. 综上可得①②③正确,共3个.故选D .【解后反思】解答本题需掌握以下知识:(1)等边三角形的性质:等边三角形的三个内角都相等,并且每一个内角都等于60°;(2)等边三角形的判定:三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形; (3)菱形的判定:①一组邻边相等的平行四边形是菱形;②对角线互相垂直的四边形是菱形;③四条边都相等的四边形是菱形;(4)菱形的性质:①菱形是四条边都相等;②菱形的对角线互相垂直且平分;③菱形的每一条对角线平分一组对角.【关键词】 等边三角形的判定;等边三角形的性质;菱形的判定;菱形的性质2.( 山东泰安,18,3分)如图,在△PAB 中,PA =PB ,M 、N 、K 分别是边PA 、PB 、AB 上的点,且AM =BK ,BN=AK ,若∠MKN =44°,则∠P 的度数为( )A .44°B .66°C .88°D .92° 【答案】DPNBMKA第18题图【逐步提示】本题考查了等腰三角形的性质、全等三角形的判定与性质,解题的关键是解题的关键是熟练掌握全等三角形的判定方法.通过题中所给的条件AM =BK ,BN =AK ,以及由PA =PB ,可证∠A =∠B 所以△AKM ≌△BNK ,得到对应角相等,再利用外角等于不相邻的两个内角和,便可求出∠A 与∠MKN 相等,最后由三角形的内角和求出∠P 的度数.【详细解答】解:∵PA =PB ,∴∠A =∠B . 又∵AM =BK ,BN =AK ,∴△AKM ≌△BNK (SAS ),∴∠AMK =∠BKN ,∵∠MKN +∠BKN =∠A +∠AMK ,∴∠A =∠MKN ,∵∠MKN =44°,∴∠A =44°,∴∠P =180°-2∠A =180°-2×44°=92°故答案为D .【解后反思】本题主要考查全等三角形的判定,判断三角形全等的方法有SSS 、SAS 、AAS 、ASA ,解题时可根据题目已有条件,选择便捷可行的判定方法.【关键词】等腰三角形的性质 ;三角形的外角;三角形全等的判定. 3.4. (四川达州,9,3分)如图,在△ABC 中,BF 平分∠ABC ,AF ⊥BF 于点F ,D 为AB 的中点,连接D F 并延长交AC 于点E.若AB=10,BC=16,则线段EF 的长为 A.2 B.3 C.4D.5第9题图 【答案】B【逐步提示】本题主要考查了直角三角形的性质、等腰三角形的性质和判定、相似三角形的性质和判定.解题的关键是根据边角关系得到DE ∥BC ,从而得到△ADE ∽△ABC.解题思路是:由直角三角形斜边上的中线等于斜边的一半及D 是AB 的中点,可得DF =DB =5,则∠DBF =∠DFB ,又BF 平分∠ABC ,则∠DFB =∠CBF ,则DE ∥BC ,易得△ADE ∽△ABC ,根据相似三角形对应边成比例求得DE ,则EF 可求.【详细解答】解:∵AF ⊥BF ,D 是AB 的中点,∴DF =DB =5,∴∠DBF =∠DFB ,又∵BF 平分∠ABC ,∴∠CBF =∠DBF ,∴∠DFB =∠CBF ,∴DE ∥BC ,∴∠ADE =∠ABC ,∠AED =∠ACB ,∴△ADE ∽△ABC ,∴AD AB =DE BC ,∴12=DE16,∴DE =8.∴EF =DE -DF =8-5=3.故选择B .【解后反思】1.直角三角形中,斜边上的中线等于斜边的一半.2.在等腰三角形中,注意用“等边对等角”完成边角关系的转化.【关键词】直角三角形斜边上的中线与斜边的关系;等腰三角形的性质和判定;相似三角形的性质和判定 5. ( 四川省绵阳市,7,3分)如图,平行四边形ABCD 的周长是26cm ,对角线AC 与BD 交于点O ,AC ⊥AB ,E是BC 中点,△AOD 的周长比△AOB 的周长多3cm ,则AE 的长度为 ···· ( )A .3cmB .4cmC .5mD .8cm【答案】B .【逐步提示】本题考查了平行四边形的性质.由□ABCD 的周长是26cm ,得到□ABCD 两邻边的和,即为AD +AB =13;由△AOD 的周长比△AOB 的周长多3cm ,得到□ABCD 两邻边的差,即AD -AB =3.联立方程组解得BC =8.最后利用“直角三角形斜边上的中线等于斜边的一半”求得AE 长.CDEABO【详细解答】解:因为四边形ABCD是平行四边形,所以AD=BC.因为□ABCD的周长是26cm,所以AD=BC 且AB+BC=13①.因为△AOD的周长比△AOB的周长多3cm,所以AD-AB=3,即BC-AB=3②.①+②,得2BC=16,所以BC=8.因为AC⊥AB,所以∠BAC=90°,又因为E是BC中点,所以AE=12BC=12×8=4.,故选择B.【解后反思】(1)在直角三角形中出现斜边中点时,一般利用“直角三角形斜边上的中线等于斜边的一半”求斜边上的中线长.(2)平行四边形的性质:对边平行且相等,对角相等,邻角互补,对角线互相平分.6.(四川南充,7,3分)如图,在RtΔABC,∠A=30°,BC=1,点D,E分别直角边BC,AC的中点,则DE的长为()EDBC AA.1 B.2 C.3D.1+3【答案】A【逐步提示】本题考查了三角形中位线定理和直角三角形的性质,解题的关键是能根据30°所对的直角边等于斜边的一半推出斜边的长.由“30度角所对的直角边等于斜边的一半”求得AB=2BC=2.然后根据三角形中位线定理求得DE=12AB.【详细解答】解:如∵在Rt△ABC中,∠C=90°,∠A=30°,∴AB=2BC=2.又∵点D、E分别是AC、BC的中点,∴DE是△ACB的中位线,∴DE=12AB=1.故选择A.【解后反思】遇到条件是中点计算线段的长,常考虑三角形的中位线定理;遇锐角有30°的直角三角形常考虑直角三角形的性质:30度角所对的直角边等于斜边的一半.【关键词】三角形中位线定理7.(四川省宜宾市,5,3分)如图,在△ABC中,∠C=900,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为()A.10B.22C.3D.25【答案】A【逐步提示】要求两点B 、D 的距离,连接BD ,从图上发现BD 是三角形BDE 的一边,且三角形BDE 是直角三角形,DE=BC=3,如能求出BE 长,则BD 可用勾股定理求出,BE=AB-AE ,AB 是直角三角形ABC 的斜边可求,AE=AC=4,所以问题可解.【详细解答】解:连接BD.因为 ∠C=900,AC=4,BC=3,所以AB=5342222=+=+BC AC ,AE=AC=4,所以BE=1,又DE=3,∠DEA=∠C=900,所以BD=109122=+=+BE DE ,故选A.【解后反思】解此类题,要紧扣旋转不改变图形的形状和大小,由此可得出一些线段及角的值,象本题中的AE=AC=4,BC=DE=3,∠DEA=∠C=900,都是解题过程中不可缺少的条件. 【关键词】 旋转;图形旋转的特性;勾股定理;二、填空题 1. (浙江金华,16,4分)由6根钢管首尾顺次铰接而成六边形钢架ABCDEF ,相邻两钢管可以转动.已知各钢管的长度为AB =DE =1米,BC=CD=EF=FA =2米.(铰接点长度忽略不计)(1)转动钢管得到三角形钢架,如图1,则点A ,E 之间的距离是 米.(2)转动钢管得到如图2所示的六边形钢架,有∠A =∠B =∠C =∠D =120°,现用三根钢条连接顶点使该钢架不能活动,则所用三根钢条总长度的最小值是 米.【答案】(1)83;(2)37 【逐步提示】(1)连接AE ,根据线段间的比例关系得到AE ∥BD.再由△FAE ∽△FBD ,通过相似三角形的性质求得AE 的长.(2)固定多边形的形状需要通过连接对角线将多边形转化为多个三角形来达到目的,为此需要求得多边形对角线的长度.根据图形特征构造出多个等边三角形,根据图形条件求得相关对角线的长度,通过比较对角线的长度得到三根钢条总长度的最小值.【解析】(1)连接AE ,因为AF :AB=FE :ED=2:1,所以AE ∥BD.所以△FAE ∽△FBD ,所以AF :FB=AE :BD ,即2:3=AE :4,解得AE=83. (2)作直线AF ,ED ,BC ,三直线相交于点H ,N ,M ,因为∠A =∠B =∠C =∠D =120°,AB =DE =1米,BC=CD=EF=FA =2米,所以△FEH ,△CDN 均为边长为2的等边三角形,△ABM 为边长1等边三角形,所以EF ∥BC ,AB ∥DE ,AF ∥CD ,连接AE ,则△AEH 为直角三角形,所以AE =23,AD >AE =23;连接CF ,由平行线分线段成比例可得CF ∥DE ,所以△MCF 为边长3的等边三角形,所以CF=3;连接AC ,作AG ⊥MN 于点G ,由已知条件可得AG=32,GC=52,由勾股定理得7,同理可得7,则所用三根钢条总长度的最小值是7.(第16题图1) (第16题图2)DE A FBCEAF【解后反思】固定多边形的形状需要将多边形通过连对角线的方式将多边形转化为多个三角形,根据图形的特征利用相关知识求得相关线段的长度. 【关键词】三角形的稳定性;最小值3. ( 四川省绵阳市,14,3分)如图,AC ∥BD ,AB 与CD 相交于点O ,若AO =AC ,∠A =48°,∠D =________.【答案】66°.【逐步提示】本题考查了等腰三角形的性质和平行线的性质.由AO =AC ,∠A =48°得∠C =66°.由AC ∥BD 得∠D =∠C =66°.【详细解答】解:因为AO =AC ,所以∠C =∠AOC =1802A ︒-∠=180482︒-︒=66°.因为AC ∥BD ,所以∠D =∠C =66°,故答案为66°.【解后反思】(1)在等腰三角形中,顶角与底角中知道任一个的度数,就可求出另一个的度数.(2)平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补. 【关键词】等腰三角形的性质;平行线的性质.三、解答题1. (山东菏泽,23,10分)如图,△ACB 和△DCE 均为等腰三角形,点A ,D ,E 在同一直线上,连接BE . (1)如图1,若∠CAB =∠CBA =∠CDE =∠CED =50°, ① 求证:AD =BE ; ② 求∠AEB 的度数.(2)如图2,若∠ACB =∠DCE =120°,CM 为△DCE 中DE 边上的高,BN 为△ABE 中AE 边上的高,试证明:AE =23CM +332BN . CDABO【逐步提示】(1)①等腰三角形△ACB 和△DCE 的底角相等,则它们的顶角相等,故得∠ACD =∠BCE ,于是易证△ACD ≌△BCE ,则有AD =BE ;②由①中△ACD ≌△BCE ,得∠CAD =∠CBE ,于是∠EAB 与∠ABE 之和等于等腰△ACB 的两底角之和,从而易求∠AEB 的度数;(2)显然AE =DE +AD =DE +BE ,则在等腰△DCE 中用高CM 表示DE 的长,在Rt △BEN 中用BN 表示BE 的长,结论即可获证. 【详细解答】解:(1)①证明:∵△ACB 和△DCE 均为等腰三角形,∴AC =BC ,CD =CE .∵∠CAB =∠CBA =∠CDE =∠CED ,∴∠ACB =∠DCE ,∴∠ACD =∠BCE ,∴△ACD ≌△BCE (SAS),∴AD =BE . ②解:由①得△ACD ≌△BCE ,∴∠CAD =∠CBE .在△ABE 中,∠AEB =180°―∠EAB ―∠ABE =180°―∠EAB ―∠ABC -∠CBE =180°―∠EAB ―∠ABC -∠CAD =180°―∠CAB -∠ABC =180°-50°-50°=80°.(2)证明:在等腰△DCE 中,∵CD =CE ,∠DCE =120°,CM ⊥DE ,∴∠DCM =21∠DCE =60°,DM =EM . 在Rt △CDM 中,DM =CM ·tan ∠DCM = CM ·tan60°=3CM ,∴DE =23CM .由(1)中②,得∠AEB =180°―∠CAB -∠ABC =180°―(180°-120°)=120°,∴∠BEN =60°. 在Rt △BEN 中,sin ∠BEN =BE BN,∴BE =BN ÷sin60°=332BN .由(1)中①知AD =BE ,∴AD =332BN . ∴AE =DE +AD =23CM +332BN ,即AE =23CM +332BN . 【解后反思】(1)含有特殊角的等腰三角形,往往通过作底边上的高转化为解直角三角形的问题.(2)在解决几何综合题中,相等角与线段的等量转换往往是沟通解证思路的“桥梁”,起着关键作用.【关键词】等腰三角形的性质;全等三角形的判定与性质;三角形内角和定理;解直角三角形;直角三角形的性质 2. (山东威海,24,11) (11分)如图,在△ABC 和△BCD 中,∠BAC=∠BCD=90°,AB=AC ,CB=CD.延长CA 至点E ,使AE=AC ;延长CB 至点F ,使BF=BC.连接AD ,AF ,DF ,EF.延长DB 交EF 于点N. (1)求证:AD=AF ; (2)求证:BD=EF ;(3)试判断四边形ABNE 的形状,并说明理由.ABCDE图1ACDMEN图2【逐步提示】(1)根据条件可得△ABF≌△ACD,则AD=AF;(2)根据条件可得△AEF≌△ABD,则BD=EF;(3)根据条件可得四边形ABNE的形状为矩形,再由AE=AB,可得矩形ABNE为正方形。
等腰三角形一、选择题1.(2018•ft东枣庄•3 分)如图是由 8 个全等的矩形组成的大正方形,线段 AB 的端点都在小矩形的顶点上,如果点 P 是某个小矩形的顶点,连接 PA、PB,那么使△ABP 为等腰直角三角形的点 P 的个数是()A.2 个 B.3 个 C.4 个 D.5 个【分析】根据等腰直角三角形的判定即可得到结论.【解答】解:如图所示,使△ABP 为等腰直角三角形的点 P 的个数是 3,故选:B.【点评】本题考查了等腰直角三角形的判定,正确的找出符合条件的点 P 是解题的关键. 2 (2018•ft东枣庄•3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF 平分∠CAB,交CD 于点E,交CB 于点F.若AC=3,AB=5,则CE 的长为()A.B.C.D.【分析】根据三角形的内角和定理得出∠CAF+∠C FA=90°,∠FAD+∠AE D=90°,根据角平分线和对顶角相等得出∠CE F=∠CFE,即可得出 EC=FC,再利用相似三角形的判定与性质得出答案.【解答】解:过点F 作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴=,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴=,∵FC=FG,∴=,解得:FC=,即CE 的长为.故选:A.【点评】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出∠C EF=∠CF E.3.(2018•ft东淄博•4 分)如图,P 为等边三角形 ABC 内的一点,且 P 到三个顶点 A,B,C的距离分别为3,4,5,则△ABC的面积为()A. B.D.【考点】R2:旋转的性质;KK:等边三角形的性质;KS:勾股定理的逆定理.【分析】将△BPC绕点B 逆时针旋转60°得△BEA,根据旋转的性质得BE=BP=4,AE=PC=5,∠PBE=60°,则△BPE 为等边三角形,得到 PE=PB=4,∠BPE=60°,在△AEP 中,AE=5,延长 BP,作AF⊥BP 于点 FAP=3,PE=4,根据勾股定理的逆定理可得到△APE 为直角三角形,且∠APE=90°,即可得到∠APB的度数,在直角△APF中利用三角函数求得 AF 和 PF 的长,则在直角△ABF 中利用勾股定理求得 AB 的长,进而求得三角形 ABC 的面积.【解答】解:∵△ABC为等边三角形,∴BA=BC,可将△BPC绕点B 逆时针旋转60°得△BEA,连EP,且延长BP,作AF⊥BP于点F.如图,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE为等边三角形,∴PE=PB=4,∠BPE=60°,在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+PA2,∴△APE为直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.∴∠APF=30°,∴在直角△APF AP=,PF=AP=.∴在直角△ABF)2+()2=25+12 .则△ABC •AB2=•(25+12 .故选:A.【点评】本题考查了等边三角形的判定与性质、勾股定理的逆定理以及旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.4.(2018•江苏扬州•3 分)如图,点 A 在线段 BD 上,在 BD 的同侧做等腰Rt△ABC 和等腰Rt△ADE,CD 与BE、AE 分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是()A.①②③ B.① C.①② D.②③【分析】(1)由等腰Rt△ABC 和等腰Rt△ADE 三边份数关系可证;(2)通过等积式倒推可知,证明△PAM∽△EMD即可;(3)2CB2 转化为A C2,证明△ACP∽△MCA,问题可证.【解答】解:由已知:AC=AB,AD=AE∴∵∠BAC=∠EAD∴∠BAE=∠CAD∴△BAE∽△CAD所以①正确∵△BAE∽△CAD∴∠BEA=∠CDA∵∠PME=∠AMD∴△PME∽△AMD∴∴MP•MD=MA•ME所以②正确∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A 四点共圆∴∠APD=∠EAD=90°∵∠CAE=180°﹣∠BAC﹣∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵AC=AB∴2CB2=CP•CM所以③正确故选:A.【点评】本题考查了相似三角形的性质和判断.在等积式和比例式的证明中应注意应用倒推的方法寻找相似三角形进行证明,进而得到答案.5.(2018·湖南省常德·3 分)如图,已知BD 是△A BC 的角平分线,ED 是BC 的垂直平分线,∠BAC=90°,AD=3,则CE 的长为()A.6 B.5 C.4 D.3【分析】根据线段垂直平分线的性质得到DB=DC,根据角平分线的定义、三角形内角和定理求出∠C=∠DBC=∠A BD=30°,根据直角三角形的性质解答.【解答】解:∵ED是BC 的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CE=CD×cos∠C=3,故选:D.【点评】本题考查的是线段垂直平分线的性质、直角三角形的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.6. (2018·台湾·分)如图,锐角三角形 ABC 中,BC>AB>AC,甲、乙两人想找一点 P,使得∠BPC与∠A互补,其作法分别如下:(甲)以A 为圆心,AC 长为半径画弧交AB 于P 点,则P 即为所求;(乙)作过 B 点且与AB 垂直的直线l,作过C 点且与 AC 垂直的直线,交l 于 P 点,则 P 即为所求对于甲、乙两人的作法,下列叙述何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确【分析】甲:根据作图可得 AC=AP,利用等边对等角得:∠APC=∠ACP,由平角的定义可知:∠BPC+∠APC=180°,根据等量代换可作判断;乙:根据四边形的内角和可得:∠BPC+∠A=180°.【解答】解:甲:如图1,∵AC=AP,∴∠APC=∠ACP,∵∠BPC+∠APC=180°∴∠BPC+∠ACP=180°,∴甲错误;乙:如图2,∵AB⊥PB,AC⊥PC,∴∠ABP=∠ACP=90°,∴∠BPC+∠A=180°,∴乙正确,故选:D.【点评】本题考查了垂线的定义、四边形的内角和定理、等腰三角形的性质,正确的理解题意是解题的关键.7.(2018•湖北荆门•3 分)如图,等腰Rt△ABC 中,斜边AB 的长为2,O 为AB 的中点,P 为AC 边上的动点,OQ⊥OP交BC 于点Q,M 为PQ 的中点,当点P 从点A 运动到点 C 时,点M所经过的路线长为()A.B.C.1 D.2【分析】连接 OC,作PE⊥AB 于 E,MH⊥AB 于 H,QF⊥AB 于 F,如图,利用等腰直角三角形的性质得,∠A=∠B=45°,OC⊥AB,OC=OA=OB=1,∠OCB=45°,再证明Rt△AOP≌△COQ得到AP=CQ,接着利用△APE和△BFQ都为等腰直角三角形得到AP=CQ,QF=BQ,所以BC=1,然后证明MH 为梯形PEFQ 的中位线得到,即可判定点M 到AB 的距离为,从而得到点 M 的运动路线为△ABC 的中位线,最后利用三角形中位线性质得到点 M 所经过的路线长.【解答】解:连接OC,作PE⊥AB于E,MH⊥AB于H,QF⊥AB于F,如图,∵△ACB为到等腰直角三角形,∴AC=BC=AB= ,∠A=∠B=45°,∵O为AB 的中点,∴OC⊥AB,OC 平分∠ACB,OC=OA=OB=1,∴∠OCB=45°,∵∠POQ=90°,∠COA=90°,∴∠AOP=∠COQ,在Rt△AOP和△COQ中,∴Rt△AOP≌△COQ,∴AP=CQ,易得△APE和△BFQ都为等腰直角三角形,∴PE=AP=CQ,QF=BQ,∴PE+QF=(CQ+BQ)=BC=×=1,∵M点为PQ 的中点,∴MH为梯形PEFQ 的中位线,∴MH=(PE+QF)=,即点M到AB ,而 CO=1,∴点M 的运动路线为△ABC的中位线,∴当点P 从点A 运动到点C 时,点M AB=1.故选:C.【点评】本题考查了轨迹:通过计算确定动点在运动过程中不变的量,从而得到运动的轨迹.也考查了等腰直角三角形的性质.8.(2018•河北•3分)已知:如图 4,点P在线段AB外,且PA =PB.求证:点P在线段AB的垂直平分线上.在证明该结论时,需添加辅助线,则作法不.正确的是()A.作∠APB的平分线PC交AB于点CB.过点P作PC ⊥AB于点C且AC =BCC.取AB中点C,连接PCD.过点P作PC ⊥AB,垂足为C9.(2018 四川省绵阳市)如图,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ACB 的顶点 A 在△ECD 的斜边 DE 上,若 AE= ,AD= ,则两个三角形重叠部分的面积为()A.B.C.D.【答案】D【考点】三角形的面积,全等三角形的判定与性质,勾股定理,相似三角形的判定与性质,等腰直角三角形【解析】【解答】解:连接BD,作C H⊥DE,∵△ACB和△ECD都是等腰直角三角形,∴∠ACB=∠ECD=90°,∠ADC=∠C AB=45°,即∠A CD+∠DCB=∠A CD+∠A CE=90°,∴∠DCB=∠ACE,在△DCB和△ECA中,,∴△DCB≌△ECA,∴DB=EA=,∠CDB=∠E=45°,∴∠CDB+∠ADC=∠ADB=90°,在Rt△ABD中,∴AB= =2 ,在Rt△ABC中,∴2AC2=AB2=8,∴AC=BC=2,在Rt△ECD中,∴2CD2=DE2= ,∴CD=CE=+1,∵∠ACO=∠DCA,∠CAO=∠CDA,∴△CAO∽△CDA,∴:= = =4-2 ,又∵= CE = DE·CH,∴CH== ,∴= AD·CH=×× = ,∴=(4-2 )×=3- .即两个三角形重叠部分的面积为3- .故答案为:D.【分析】解:连接 BD,作CH⊥DE,根据等腰直角三角形的性质可得∠ACB=∠ECD=90°,∠ADC=∠CAB=45°,再由同角的余角相等可得∠DCB=∠ACE;由 SAS 得△DCB≌△ECA,根据全等三角形的性质知 DB=EA= ,∠CDB=∠E=45°,从而得∠ADB=90°,在Rt△ABD中,根据勾股定理得AB=2 ,同理可得AC=BC=2,CD=CE= +1;由相似三角形的判定得△CAO∽△CDA,根据相似三角形的性质:面积比等于相似比的平方从而得出两个三角形重叠部分的面积.二.填空题1.(2018 四川省泸州市 3 分)如图,等腰△A BC 的底边 BC=20,面积为 120,点 F 在边BC上,且 BF=3FC,EG 是腰 AC 的垂直平分线,若点 D 在 EG 上运动,则△CDF 周长的最小值为 18 .【分析】如图作A H⊥BC 于H,连接AD.由EG 垂直平分线段AC,推出DA=DC,推出DF+DC=AD+DF,可得当A、D、F 共线时,DF+DC 的值最小,最小值就是线段AF 的长;【解答】解:如图作AH⊥BC于H,连接AD.∵EG垂直平分线段AC,∴DA=DC,∴DF+DC=AD+DF,∴当A、D、F 共线时,DF+DC 的值最小,最小值就是线段AF 的长,∵•BC•AH=120,∴AH=12,∵AB=AC,AH⊥BC,∴BH=CH=10,∵BF=3FC,∴CF=FH=5,∴AF===13,∴DF+DC的最小值为13.∴△CDF 周长的最小值为 13+5=18;故答案为18.【点评】本题考查轴对称﹣最短问题、线段的垂直平分线的性质、等腰三角形的性质等知识,解题的关键是学会利用轴对称,解决最短问题,属于中考常考题型.2.(2018•广西桂林•3 分)如图,在Δ ABC 中,∠A=36°,AB=AC,BD 平分∠ABC,则图中等腰三角形的个数是【答案】3详解:∵AB=AC,∴△ABC是等腰三角形.∵∠A=36°,∴∠C=∠ABC=72°.BD 平分∠ABC交AC 于D,∴∠ABD=∠DBC=36°,∵∠A=∠ABD=36°,∴△ABD是等腰三角形.∠BDC=∠A+∠ABD=36°+36°=72°=∠C,∴△BDC是等腰三角形.∴共有3 个等腰三角形.故答案为:3.点睛:本题考查了等腰三角形的判定与性质及三角形内角和定理;求得角的度数是正确解答本题的关键.3.(2018·新疆生产建设兵团·5分)如图,△ABC是⊙O的内接正三角形,⊙O的半径为2,则图中阴影部的面积是.【分析】根据等边三角形性质及圆周角定理可得扇形对应的圆心角度数,再根据扇形面积公式计算即可.【解答】解:∵△ABC是等边三角形,∴∠C=60°,根据圆周角定理可得∠AOB=2∠C=120°,∴阴影部分的面积是=π,故答案为:【点评】本题主要考查扇形面积的计算和圆周角定理,根据等边三角形性质和圆周角定理求得圆心角度数是解题的关键.4.(2018·四川宜宾·3分)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆O 的半径为1,若用圆O 的外切正六边形的面积来近似估计圆O 的面积,则S= 2 .(结果保留根号)【考点】MM:正多边形和圆;1O:数学常识.【分析】根据正多边形的定义可得出△ABO 为等边三角形,根据等边三角形的性质结合 OM 的长度可求出AB 的长度,再利用三角形的面积公式即可求出S 的值.【解答】解:依照题意画出图象,如图所示.∵六边形ABCDEF 为正六边形,∴△ABO为等边三角形,∵⊙O的半径为1,∴OM=1,∴BM=AM=,∴AB=,∴S=6S△ABO=6× × ×1=2 ., ,故答案为:2.【点评】本题考查了正多边形和圆、三角形的面积以及数学常识,根据等边三角形的性质求出正六边形的边长是解题的关键.5. (2018·天津·3 分)如图,在边长为 4 中,,分别为的中点 于点,为的中点,连接,则的长为.【答案】【解析】分析:连接 DE ,根据题意可得 Δ DEG 是直角三角形,然后根据勾股定理即可求解 DG 的长. 详解:连接 DE ,∵D、E 分别是 AB 、BC 的中点, ∴DE∥AC,DE=AC∵Δ ABC 是等边三角形,且 BC=4 ∴∠DEB=60°,DE=2 ∵EF⊥AC,∠C=60°,EC=2 ∴∠FEC=30°,EF=∴∠DEG=180°-60°-30°=90°∵G是EF 的中点,∴EG=.在RtΔ DEG 中,DG=故答案为:.点睛:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.6.(2018·湖北省武汉· 3 分)如图.在△A BC 中,∠ACB=60°,AC=1,D 是边AB 的中点,E 是边BC 上一点.若DE 平分△ABC的周长,则DE 的长是.【分析】延长 BC 至 M,使 CM=CA,连接 AM,作CN⊥AM 于 N,根据题意得到 ME=EB,根据三角形中位线定理得到AM,根据等腰三角形的性质求出∠ACN,根据正弦的概念求出 AN,计算即可.【解答】解:延长BC 至M,使CM=CA,连接AM,作CN⊥AM于N,∵DE平分△ABC的周长,∴ME=EB,又AD=DB,∴DE=AM,DE∥AM,∵∠ACB=60°,∴∠ACM=120°,∵CM=CA,∴∠ACN=60°,AN=MN,∴AN=A C•s in∠ACN=,∴AM=,∴DE=,故答案为:.【点评】本题考查的是三角形中位线定理、等腰三角形的性质、解直角三角形,掌握三角形中位线定理、正确作出辅助性是解题的关键.7.(2018•北京•2 分) 右图所示的网格是正方形网格,∠BAC∠DAE .(填“ >”,“ =”或“ <”) 【答案】>【解析】如下图所示,△AFG 是等腰直角三角形,∴ ∠FAG = ∠BAC = 45︒,∴ ∠BAC >∠DAE .另:此题也可直接测量得到结果.【考点】等腰直角三角形8. (2018•江苏盐城•3 分)如图,在直角 中,,,,、分别为边 、上的两个动点,若要使 是等腰三角形且是直角三角形,则.16.【答案】 或G EBD FCAEBDCA【考点】等腰三角形的判定与性质,相似三角形的判定与性质【解析】【解答】解:当△BPQ 是直角三角形时,有两种情况:∠B PQ=90 度,∠BQP=90 度。
等腰三角形、等边三角形一、知识回顾1、等腰三角形:有两条边相等的三角形是等腰三角形。
2、等腰三角形的性质性质1:等腰三角形的两个底角相等(简写成“等边对等角”)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
3、等边三角形三条边都相等的三角形叫做等边三角形,也叫做正三角形。
4、等边三角形的性质等边三角形的三个内角都相等,•并且每一个内角都等于60°二、典型例题例1:(2010•江津区)如图,△ABC中,已知AB=AC=x,BC=6,则腰长x的取值范围是()A.0<x<3 B.x>3 C.3<x<6 D.x>6分析:根据三角形的三边关系定理来确定腰长x的取值范围.解答:若△ABC是等腰三角形,需满足的条件是:6-x<x<6+x,解得x>3;故选B.例2:有两边相等的三角形的两边长为3cm,7cm,则它的周长为()A.15cm B.17cm C.13cm D.17cm或13cm分析:分情况考虑:相等的两边是3cm时或相等的两边是7cm时.根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,判断能否组成三角形后,再进一步计算其周长.解答:当相等的两边是3cm时,此时3+3<7,不能组成三角形,应舍去;当相等的两边是7cm时,此时能够组成三角形,则其周长是7+7+3=17(cm).故选B.例3:(2010•宁波)如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别为∠ABC,∠ACB的角平分线,则图中等腰三角形共有()A.5个B.6个 C.7个D.8个分析:由已知条件,根据等腰三角形的性质和判定,角的平分线的性质,三角形内角和等于180°得到各个角的度数,应用度数进行判断,答案可得.解答:设CE与BD的交点为点O,∵AB=AC,∠A=36°,∴∠ABC=∠ACB,再根据三角形内角和定理知,∠ABC=∠ACB=(180°-36°)/2 =72°,∵BD是∠ABC的角的平分线,∴∠ABD=∠DBC=1/2 ∠ABC=36°=∠A,∴AD=BD,同理,∠A=∠ACE=∠BCE=36°,AE=CE,∵∠DBC=36°,∠ACD=72°,根据三角形内角和定理知,∠BDC=180°-72°-36°=72°∴BD=BC,同理CE=BC,∵∠BOC=180°-36°-36°=108°,∴∠ODC=∠DOC=∠OEB=∠EOB=72°,∴△ABC,△ADB,△AEC,△BEO,△COD,△BCE,△BDC,△BOC都是等腰三角形,共8个.故选D.例4:已知:如图,△ABD和△ACE均为等边三角形,且∠DAB=∠CAE=60°,那么△ADC≌△AEB的根据是()A.边边边 B.边角边 C.角边角 D.角角边分析:根据判定方法寻找条件判断.解答:∵△ABD和△ACE均为等边三角形,∴DA=BA,AC=AE,∠DAB+∠BAC=∠CAE+∠BAC.∴△ADC≌△AEB.(SAS)故选B.例5:如图,在△ABC中,D、E在BC上,且BD=DE=AD=AE=EC,则∠BAC的度数是()A.30°B.45° C.120°D.15°分析:根据直角三角形的判定得△ABE是直角三角形,再根据等腰三角形的性质、三角形的内角和定理求解.解答:设∠B=x∵BD=AD则∠B=∠BAD=x,∠ADE=2x,∵AD=AE∴∠AED=∠ADE=2x,∵AE=EC,∠AED=∠EAC+∠C∴∠EAC=∠C=x又BD=DE=AD,由直角三角形斜边的中线等于斜边的一半,知∠BAE=90°,则∠B+∠AED=x+2x=90°得x=30°∴∠BAC=180°-2x=120°故选C.例6:已知△ABC≌△DEF,若∠A=60°,∠F=90°,DE=6cm,则AC=()A.3cm B.4cm C.5cm D.6cm分析:由△ABC≌△DEF,∠F=90°,DE=6cm,根据全等三角形的性质,即可求得∠C=90°,AB=6cm,又由∠A=60°,根据三角形内角和定理,即可求得∠B=30°,然后根据在直角三角形中,30°角所对的直角边等于斜边的一半,即可求得AC的长.解答:∵△ABC≌△DEF,∠F=90°,DE=6cm,∴∠C=∠F=90°,AB=DE=6cm,∵∠A=60°,∴∠B=30°,∴AC=1/2 AB=3cm.故选A.例7:如图,已知EA⊥AB,BC∥EA,EA=AB=2BC,D为AB的中点,那么下列式子不能成立的是()A.DE=AC B.DE⊥AC C.∠CAB=30°D.∠EAF=∠ADF分析:已知EA=AB=2BC,且D是AB中点,那么AD=BC,进而可证得△AED、△BAC全等,可根据这个条件进行判断.解答:∵EA=AB=2BC,AB=2AD,∴AD=BC;又∵EA⊥AB,BC∥EA,即∠EAD=∠B=90°,∴Rt△EAD≌Rt△ABC,∴DE=AC;又∠EAF、∠ADF同为∠FAD的余角,∴∠EAF=∠ADE;故A、B、D的结论都正确;Rt△CAB中,AB=2BC,显然sin∠CAB≠1/2 ,所以∠CAB≠30°,因此C的结论是错误的;故选C.三、解题经验我们要牢牢记住等腰三角形的性质和判定,在以后的几何题目中经常考到。
天津市河北区普通中学2018届初三数学中考复习 等腰三角形专题复习练习1.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为( C ) A .50° B .80° C .50°或80° D .40°或65°2.如图,在△ABC 中,D 为BC 的中点,AD ⊥BC ,E 为AD 上一点,∠ABC =60°,∠ECD =40°,则∠ABE =( C )A .10°B .15°C .20°D .25°3.如图,△ABC 中,D 为AB 上一点,E 为BC 上一点,且AC =CD =BD =BE ,∠A =50°,则∠CDE 的度数为( D )A .50°B .51°C .51.5°D .52.5°4.如图,在△PAB 中,PA =PB ,M ,N ,K 分别是PA ,PB ,AB 上的点,且AM =BK ,BN =AK ,若∠MKN =44°,则∠P 的度数为( D )A .44°B .66°C .88°D .92°5.如图,△ABC 中,AB =4,AC =3,AD ,AE 分别是其角平分线和中线,过点C 作CG ⊥AD 于点F ,交AB 于点G ,连接EF ,则线段EF 的长为( A )A.12 B .1 C.72D .7 6.如图,在△ABC 中,AB =AC ,D ,E 两点分别在AC ,BC 上,BD 是∠ABC 的平分线,DE ∥AB ,若BE =5 cm ,CE =3 cm ,则△CDE 的周长是( B )A.15 cm B.13 cm C.11 cm D.9 cm7. 如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连接PQ,BM,下面结论:①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形;④MB平分∠AMC.其中结论正确的有( D )A.1个 B.2个 C.3个 D.4个8.已知等腰三角形的一边长为9,另一边长为方程x2-8x+15=0的根,则该等腰三角形的周长为__19或21或23__.9.如图,在△ABC中,AB=1.8,BC=3.9,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为__2.1__.10.如图,在△ABC中,AH⊥BC于点H,∠C=35°,且AB+BH=HC,则∠B度数为__70°__..11.如图,在△ABC中,AB=AC,D,E是△ABC内的两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=6 cm,DE=2 cm,则BC=__8__cm.12.在平面直角坐标系xOy中,已知点A(2,3),在坐标轴上找一点P,使得△AOP是等腰三角形,则这样的点P共有__8__个.13.如图,点P为等边△ABC的边AB上一点,Q为BC延长线上一点,AP=CQ,PQ交AC于点D.(1)求证:DP =DQ ;(2)过P 作PE ⊥AC 于E ,若BC =4,求DE 的长.解:(1)过点P 作PM ∥BC ,则∠DPM =∠Q ,∵△ABC 为等边三角形,∴△APM 是等边三角形, ∴AP =PM ,又∵AP =CQ ,∴PM =CQ , 可证△DPM ≌△DQC (AAS), ∴DP =DQ(2)∵△DPM ≌△DQC ,∴DM =DC , ∵PE ⊥AC ,△APM 是等边三角形,∴AE =EM ,∴DE =DM +EM =12AC ,∵等边三角形ABC 的边BC =4,∴AC =4,∴DE =12×4=214.如图,∠BOC =9°,点A 在OB 上,且OA =1,按下列要求画图:以A 为圆心,1为半径向右画弧交OC 于点A 1,得第1条线段AA 1; 再以A 1为圆心,1为半径向右画弧交OB 于点A 2,得第2条线段A 1A 2; 再以A 2为圆心,1为半径向右画弧交OC 于点A 3,得第3条线段A 2A 3;…这样画下去,直到得第n 条线段,之后就不能再画出符合要求的线段了,则n =__9__.15.如图,△ABC 中,AB =AC ,∠BAC =54°,∠BAC 的平分线与AB 的垂直平分线交于点O ,将∠C 沿EF(E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,则∠O EC 为__108__度.16.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD=90°,D 为AB 边上一点.(1)求证:△ACE≌△BCD; (2)求证:2CD 2=AD 2+DB 2.解:(1)∵△ABC 和△ECD 都是等腰直角三角形,∴AC =BC ,CD =CE ,∵∠ACB =∠DCE=90°,∴∠ACE +∠ACD=∠BCD+∠ACD, ∴∠ACE =∠BCD,在△ACE 和△BCD 中,⎩⎪⎨⎪⎧AC =BC ,∠ACE =∠BCD,CE =CD ,∴△ACE ≌△BCD(SAS )(2)∵△ACB 是等腰直角三角形, ∴∠B =∠BAC=45°. ∵△ACE ≌△BCD , ∴∠CAE =∠B=45°,∴∠DAE =∠CAE+∠BAC=45°+45°=90°, ∴AD 2+AE 2=DE 2.由(1)知AE =DB ,又DE 2=CD 2+CE 2=2CD 2 ∴AD 2+DB 2=DE 2,即2CD 2=AD 2+DB 2。
一、选择题1..(2018·攀枝花,4,3分)如图2,等腰直角三角形的顶点A ,C 分别在直线a ,b 上,若a ∥b ,∠1=30°,则∠2的度数为( )A .30°B .15°C .10°D .20°4.B ,解析:等腰直角三角形中的锐角∠B =45°.过点B 作BD ∥a (点D 在点B 的右边),则∠ABD =∠1=30°,且BD ∥b .∴∠2=∠DBC =∠ABC -∠ABD =45°-30°=15°.故选B .2.(2018·枣庄市,10,3)如图是由8个全等的小矩形组成的大正方形,线段AB 的端点都在小矩形的顶点上,如果点P 是某个小矩形的顶点,连接P A ,PB ,那么使△ABP 为等腰直角三角形的点P 的个数是 ( )A . 2个B .3个C .4个D .5个答案:B ,解析:如下图,设每个小矩形的长与宽分别为x 、y ,则有2x =x +2y ,从而x =2y .因为线段AB 是1×2的矩形对角线,所以根据网格作垂线可知,过点B 与AB 垂直且相等的线段有BP 1和BP 2,过点A 与AB 垂直且相等的线段有BP 3,且P 1、P 2,P 3都在顶点上,因此满足题意的点P 共有3个,故选择B .P 2P 3P 1AB3.(2018·扬州市,7,3分) 在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,CE 平分∠ACD 交AB 于E ,则下列结论一定成立的是( ) A .BC =EC B .EC =BE C .BC =BE D .AE =EC21E D CBAC ,解析:∵∠B +∠BCD =∠B +∠A =90°,∴∠BCD =∠A ;∵CE 平分∠ACD ,∴∠1=∠2; ∵∠CEB =∠A +∠1,∠BCE =∠BCD +∠2,∴∠CEB =∠BCE ,∴BC =BE .故选C .E D CBA第7题图a b ACB12图26.(2018江苏宿迁,6,3分)若实数m ,n 满足等式042=-+-n m ,且m ,n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是A .12B .10C .8D .6答案:B ,解析:根据042=-+-n m 得m=2,n=4,再根据等腰三角形三边关系定理得:三角形三边长分别为4,4,2,故选B .7. (2018·山东淄博,11,4分)如图,在Rt △ABC 中,CM 平分∠ACB 交AB 与点M ,过点M 作MN ∥BC 交AC 于点N ,且AN 平分∠AMC .若AN =1,则BC 的长为( ) A .4 B .6 C .43 D .8N MA BC答案:B 解析:∵MN ∥BC ,∴∠AMN =∠NMC =∠NCM =∠BCM . 又∠A =90°,∴∠AMN =∠B =30°. ∴∠MN =2AN =2=NC . ∴BC =2AC =6.8. (2018·山东淄博,12,4分)如图,P 为等边三角形ABC 内的一点,且P 到三个顶点A ,B ,C 的距离分别为3,4,5,则△ABC 的面积为( )A .9+2543B .9+2523C .18+253D .18+2523AB CP答案:A 解析:∵三角形ABC 是等边三角形,∴AB =AC ,∠BAC =60°. 如图,将△ABP 绕顶点A 逆时针旋转60°到△ACP ′处.则△ACP ′≌△ABP .∴P A =P ′A =3,PB =P ′C =4,∠BAP =∠CAP ′.∴∠P ′AP =∠P AC +∠CAP ′=∠P AC +∠BAP =∠BAC =60°. ∴△P AP ′是等边三角形. ∴PP ′=P ′A =3.在△PP ′C 中,PP '2+P ′C 2=9+15=25=PC 2.∴△PP ′C 是直角三角形.∴∠PP ′C =90°. 类似地,可分别旋转△ACP ,△BCP .由此可得:△ABC 的面积=3221131[(345)+343)]2222⨯++⨯⨯⨯⨯=25394+.9.(2018·娄底市,10,3分)如图(2),往竖直放置的在A 处由短软管连接的粗细均匀细管组成的“U ”形装置中注入一定量的水,水面高度为6cm ,现将右边细管绕A 处顺时针方向旋转60︒到AB 位置,则AB 中水柱的长度约为( ) A .4cm B .63cm C .8cm D .12cm图(2)C ,解析:如图,构造Rt △ACD ,设AD=xcm ,因为∠ACD=30︒,AC=2AD=2xcm .则x+2x=12,解得x=4,所以AC=2x=810.(2018·黄冈市,4,3分)如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC 、AC 于点D和E ,∠B =60°,∠C =25°,则∠BAD 为( ) A .50° B .70° C .75° D .80°DEABCB ,解析:∵DE 垂直平分AC ,∴AD =CD ,∴∠DAC =∠C =25°,∴∠ADB =∠DAC +∠C =25°+25°=50°,在△ABD 中,∠BAD =180°-∠B -∠BAD =180-60°-50°=70°.故选B .11.(2018·荆门,11,3分)如图,等腰Rt △ABC 中,斜边AB 的长为2,O 为AB 的中点,P 为AC 边上的动点,OQ ⊥OP 交BC 于点Q ,M 为PQ 的中点,当点P 从点A 运动到点C 时,点M 所经过的路线长为( )A .24πB .22π C .1 D .211.C 解析:设AC ,BC 的中点分别为E ,F ,连接EF ,OC ,MO ,MC .∵点M 是Rt △OPQ 和Rt △CPQ 的斜边PQ 的中点,∴MO =MC .∴点M 在OC 的垂直平分线上.∵点E ,F 在OC 的垂直平分线上,∴点M 在中位线EF 上.可见点M 运动的路径是线段EF ,路线长=12AB =1.故选C .二、填空题 1.(2018·泸州,16,3分)如图5,等腰△ABC 的底边BC =20,面积为120,点F 在边BC 上,且BF =3FC ,QP M BC O A 图3FEQPMB CO A 第11题图EG 是腰AC 的垂直平分线,若点D 在EG 上运动,则△CDF 周长的最小值为 .GFEDCBA答案:18,解析:∵BC =20,BF =3FC ,∴BF =34×20=15,FC =14×20=5.∵△CDF 周长=CD +DF +FC =CD +DF +5,∴当CD +DF 最小时,△CDF 的周长有最小值.连接AD .∵EG 是AC 的垂直平分线,∴AD =CD ,∴CD +DF =AD +DF .根据“两点之间,线段最短”可知当点A ,D ,F 在同一条直线上时,AD +DF 的最小值为AF .过点A 作AH ⊥BC 于H ,∵BC =20,△ABC 的面积为120,∴AH =2120=1220⨯.∵AB =AC ,∴BH =CH =12BC =10,∴HF =15-10=5.在Rt △AHF 中,根据勾股定理,得AF =225+12=13,即CD +DF 的最小值为13,∴△CDF 周长的最小值为13+5=18.2.(2018·成都,11,4分)等腰三角形的一个底角为50°,则它的顶角的度数为 .80° 解析:三角形是等腰三角形,一个底角为50°,∴另一个底角也为50°,根据三角形内角定理可得它的顶角为180°-50°-50°=80°.3..(2018•无锡市,18,2)如图,已知∠XOY =60°,点A 在边OX 上,OA =2,过点A 作AC ⊥OY 于点C ,以AC 为一边在∠XOY 内作等边三角形ABC ,点P 是△ABC 围成的区域(包括各边)内的一点,过点P 作PD //OY 交OX 于点D ,作PE //OX 交OY 于点E ,设OD =a ,OE =b ,则a +2b 的取值范围是 . 答案:2(25)a b +≤≤,解析:如图①过P 作PH ⊥OY 交于点H ,∵PE //OX ,∠XOY =60°,∴∠PEH =∠XOY =60°,∠EPH =30°,∴EH =1122EP a =,∴a +2b =12()2()22a b EH EO OH +=+=,∵点P 是△ABC 围成的区域(包括各边)内的任意一点,∴当P 在AC 边上时,H 与C 重合(见图②),此时min 1OH OC ==,min (2)2a b +=;当P 在点B 时(见图③),max 35122OH =+=,max (2)5a b +=,∴2(25)ab +≤≤4.(2018·娄底市,16,3分)如图(6),△ABC 中,AB=AC ,AD ⊥BC 于D 点,DE ⊥AB 于点E ,BF ⊥AC 于点F ,DE=3cm ,则BF= cm .FEDCBA图(6)答案6,解析:在△ABC 中,AB=AC ,AD ⊥BC ,所以AD 平分∠BAC ,又DE ⊥AB ,过D 作DG ⊥AC 于G ,则DG=DE=3cm ,再根据等腰三角形三线合一的性质,知D 是BC 边中点,由此可得BF=2DG=6 cmGF EDCBA5.(2018·天津市,17,3分) 如图,在边长为4的等边△ABC 中,D ,E 分别为AB ,BC 的中点,EF ⊥AC 于点F ,G 为EF 的中点,连接DG ,则DG 的长为 .答案,192 解析:如图,连接DE .∵D ,E 分别为AB ,BC 的中点,∴CE =12BC =12×4=2,DE 是△ABC 的中位线,∴DE ∥AC ,DE =12AC =12×4=2,∴∠DEB =∠C =60°.∵EF ⊥AC ,∴∠EFC =90°,∠FEC =180°-90°-60°=30,∴∠DFG =180°﹣∠DEB ﹣∠FEC =180°-60°-30°=90°.在Rt △EFC 中, EF =CE ·tanC =2×3=32.∵G 是EF 的中点,∴EG =32.在Rt △DEG 中,根据勾股定理,得DG =2222319=2=22DE EG ⎛⎫++ ⎪ ⎪⎝⎭.三、解答题 1..(2018滨州,25,13分)已知,在△ABC 中,∠A =90°,AB =AC ,点D 为BC 的中点. (1)如图①,若点E 、F 分别为AB 、AC 上的点,且DE ⊥DF ,求证:BE =AF ;(2)若点E 、F 分别为AB 、CA 延长线上的点,且DE ⊥DF ,那么BE =AF 吗?请利用图②说明理由.图②图①ADFE ADBCCB第25题图思路分析:(1)利用等腰直角三星的性质,连接AD ,构造△BDE 和△ADF ,通过ASA 证明全等即可得出结论;(2)类比(1),通过连接AD ,仍然可以构造△BDE 和△ADF ,通过ASA 证明全等得出结论. 解答过程:(1)如图①,连接AD ,∵∠BDA =∠EDF =90°∴∠BDE +∠EDA =∠EDA +∠ADF ∴∠BDE =∠ADF 又∵D 为BC 中点,△ABC 是等腰直角三角形∴BD =AD ,∠B =∠DAC =45° ∴△BDE ≌△ADF (ASA )∴BE =AF .答案图①FEADCB答案图②FADBCE第25题答图(2)如图②,连接AD ,∵∠BDA =∠EDF =90°∴∠BDE +∠BDF =∠BDF +∠ADF∴∠BDE =∠ADF 又∵D 为BC 中点,△ABC 是等腰直角三角形∴BD =AD ,∠B =∠DAC =45° ∴∠EBD =∠F AD =180°-45°=135°∴△BDE ≌△ADF (ASA )∴BE =AF 2.(2018·嘉兴市,19,6) 已知:在△ABC 中,AB =AC ,D 为AC 的中点,DE ⊥AB ,DF ⊥BC ,垂足分别为点E 、F ,且DE =DF . 求证:△ABC 是等边三角形.FEDA BC思路分析:通过证明Rt △ADE ≌Rt △CDF ,得到∠A =∠C ,从而得到AB =BC ,从而AB =AC =BC . 证明:∵AB =AC . ∴∠B =∠C .∵ DE ⊥AB ,DF ⊥BC . ∴∠DEA =∠DFC =Rt ∠. ∵D 为AC 的中点. ∴DA =DC . 又∵DE =DF .∴Rt △ADE ≌Rt △CDF (HL ). ∴∠A =∠C .∴∠A =∠B =∠C . ∴△ABC 是等边三角形.3(2018·绍兴,22,12分)数学课上,张老师举了下面的例题:例1 等腰三角形ABC 中,∠A =110°,求∠B 的度数.(答案:35°)例2 等腰三角形ABC 中,∠A =40°,求∠B 的度数.(答案:40°或70°或100°) 张老师启发同学们进行变式,小敏编了如下一题: 变式 等腰三角形ABC 中,∠A =80°,求∠B 的度数. (1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A 的度数不同,得到∠B 的度数的个数也可能不同.如果在等腰三角形ABC 中,设∠A =x °,当∠B 有三个不同的度数时,请你探索x 的取值范围.思路分析:已知等腰三角形的一个角,求另一个角,需要分类讨论.对等腰三角形进行讨论时,最好以 底角或底边为依据进行分类,这样便于做到既不重复,也不遗漏.因此第(1)问分三种情形:“∠A 为顶角,∠B 为顶角,∠C 为顶角”进行计算即可.第(2)问先以∠A 为钝角、直角、锐角进行分类,当∠A 为锐时,再以“∠A 为顶角,∠B 为顶角,∠C 为顶角”进行探索,最后还要注意应注意排除特殊情况——等边三角形的情形.解答过程:解:(1)当∠A 为顶角时,∠B =2180A∠-︒=50°;当∠B 为顶角时,∠B =180°-2∠A =20°;当∠C 为顶角时,∠B =∠A =80°.综上,∠B =20°或50°或80°. (2)①当90≤x <180时,∠A 只能为顶角,故∠B 的度数只有一个;②当0<x <90时,∠A 可能为顶角,也可能为底角.当∠A 为顶角时,∠B =︒-)2180(x;当∠B 为顶 角时,∠B =(180-2x ) °;当∠C 为顶角时,∠B =∠A =x °.当2180x -=180-2x 时,x =60;当2180x-=x时,x =60;当180-2x =x 时,x =60.综上,∠B 有三个不同的度数时, x 的取值范围是0<x <90且x =60.。
精选文档2018 年中考数学真题汇编 : 三角形 ( 填空 +选择 =50 题)一、选择题1.(2018 山东滨州 )在直角三角形中,若勾为3,股为 4,则弦为()A. 5B. 6C. 7D. 8【答案】 A2.(2018 江苏宿迁 )如图,点 D 在△ABC 的边 AB 的延伸线上, DE∥BC,若∠A=35 °,∠C=24 °,则∠D 的度数是()。
A.24 °B. 59 °C. 60D. 69 °【答案】 B3. 一艘在南北航线上的丈量船,于 A 点处测得海岛 B 在点 A 的南偏东 30 °方向,持续向南航行30 海里抵达 C 点时,测得海岛 B 在 C 点的北偏东 15 °方向,那么海岛 B 离此航线的近来距离是(结果保留小数点后两位)(参照数据:)()A. 4.64 海里B. 5.49 海里C. 6.12 海里 D. 6.21 海里【答案】 B4. 若实数 m 、 n 知足,且m、n恰巧是等腰△ ABC的两条边的边长,则△ ABC的周长是()。
A.12B.10C.8D. 6【答案】 B5.在中,,于,均分交于,则以下结论一定建立的是()A. B. C. D. 【答案】 C6. 将一副直角三角板按如下图的地点搁置,使含30 °角的三角板的一条直角边和含45 °角的三角板的一条直角边放在同一条直线上,则∠α的度数是()。
A.45 °B.60°C.75°D.85°【答案】 C7. 在平面直角坐标系中,过点(1,2 )作直线 l,若直线 l 与两坐标轴围成的三角形面积为4,则知足条件的直线l 的条数是()。
A.5B.4C.3D.2【答案】 C8. 如图,在平面直角坐标系中,的极点在第一象限,点,的坐标分别为、,,,直线交轴于点,若与对于点成中心对称,则点的坐标为()A. B. C. D. 【答案】 A9.如图,在 ABCD 中, CD=2AD ,BE⊥ AD 于点 E,F 为 DC 的中点,连结 EF、 BF,以下结论:①∠ABC=2 ∠ABF;② EF=BF;③ S 四边形DEBC=2S △EFB∠DEF,此中正确结论的个数共有()。
等腰三角形一、选择题1.(2018•山东枣庄•3分)如图是由8个全等的矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接PA、PB,那么使△ABP为等腰直角三角形的点P的个数是()A.2个B.3个C.4个D.5个【分析】根据等腰直角三角形的判定即可得到结论.【解答】解:如图所示,使△ABP为等腰直角三角形的点P的个数是3,故选:B.【点评】本题考查了等腰直角三角形的判定,正确的找出符合条件的点P是解题的关键.2 (2018•山东枣庄•3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为()A.B.C.D.【分析】根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案.【解答】解:过点F作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴=,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴=,∵FC=FG,∴=,解得:FC=,即CE的长为.故选:A.【点评】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出∠CEF=∠CFE.3. (2018•山东淄博•4分)如图,P为等边三角形ABC内的一点,且P到三个顶点A,B,C 的距离分别为3,4,5,则△ABC的面积为()A.B.C.D.【考点】R2:旋转的性质;KK:等边三角形的性质;KS:勾股定理的逆定理.【分析】将△BPC绕点B逆时针旋转60°得△BEA,根据旋转的性质得BE=BP=4,AE=PC=5,∠PBE=60°,则△BPE为等边三角形,得到PE=PB=4,∠BPE=60°,在△AEP中,AE=5,延长BP,作AF⊥BP于点FAP=3,PE=4,根据勾股定理的逆定理可得到△APE为直角三角形,且∠APE=90°,即可得到∠APB的度数,在直角△APF中利用三角函数求得AF和PF的长,则在直角△ABF中利用勾股定理求得AB的长,进而求得三角形ABC的面积.【解答】解:∵△ABC为等边三角形,∴BA=BC,可将△BPC绕点B逆时针旋转60°得△BEA,连EP,且延长BP,作AF⊥BP于点F.如图,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE为等边三角形,∴PE=PB=4,∠BPE=60°,在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+PA2,∴△APE为直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.∴∠APF=30°,∴在直角△APF中,AF=AP=,PF=AP=.∴在直角△ABF中,AB2=BF2+AF2=(4+)2+()2=25+12.则△ABC的面积是•AB2=•(25+12)=.故选:A.【点评】本题考查了等边三角形的判定与性质、勾股定理的逆定理以及旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.4. (2018•江苏扬州•3分)如图,点A在线段BD上,在BD的同侧做等腰Rt△ABC和等腰Rt△ADE,CD与BE、AE分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是()A.①②③B.①C.①② D.②③【分析】(1)由等腰Rt△ABC和等腰Rt△ADE三边份数关系可证;(2)通过等积式倒推可知,证明△PAM∽△EMD即可;(3)2CB2转化为AC2,证明△ACP∽△MCA,问题可证.【解答】解:由已知:AC=AB,AD=AE∴∵∠BAC=∠EAD∴∠BAE=∠CAD∴△BAE∽△CAD所以①正确∵△BAE∽△CAD∴∠BEA=∠CDA∵∠PME=∠AMD∴△PME∽△AMD∴∴MP•MD=MA•ME所以②正确∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A四点共圆∴∠APD=∠EAD=90°∵∠CAE=180°﹣∠BAC﹣∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵AC=AB∴2CB2=CP•CM所以③正确故选:A.【点评】本题考查了相似三角形的性质和判断.在等积式和比例式的证明中应注意应用倒推的方法寻找相似三角形进行证明,进而得到答案.5.(2018·湖南省常德·3分)如图,已知BD是△ABC的角平分线,ED是BC的垂直平分线,∠BAC=90°,AD=3,则CE的长为()A.6 B.5 C.4 D.3【分析】根据线段垂直平分线的性质得到DB=DC,根据角平分线的定义、三角形内角和定理求出∠C=∠DBC=∠ABD=30°,根据直角三角形的性质解答.【解答】解:∵ED是BC的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CE=CD×cos∠C=3,故选:D.【点评】本题考查的是线段垂直平分线的性质、直角三角形的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.6. (2018·台湾·分)如图,锐角三角形ABC中,BC>AB>AC,甲、乙两人想找一点P,使得∠BPC与∠A互补,其作法分别如下:(甲)以A为圆心,AC长为半径画弧交AB于P点,则P即为所求;(乙)作过B点且与AB垂直的直线l,作过C点且与AC垂直的直线,交l于P点,则P即为所求对于甲、乙两人的作法,下列叙述何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确【分析】甲:根据作图可得AC=AP,利用等边对等角得:∠APC=∠ACP,由平角的定义可知:∠BPC+∠APC=180°,根据等量代换可作判断;乙:根据四边形的内角和可得:∠BPC+∠A=180°.【解答】解:甲:如图1,∵AC=AP,∴∠APC=∠ACP,∵∠BPC+∠APC=180°∴∠BPC+∠ACP=180°,∴甲错误;乙:如图2,∵AB⊥PB,AC⊥PC,∴∠ABP=∠ACP=90°,∴∠BPC+∠A=180°,∴乙正确,故选:D.【点评】本题考查了垂线的定义、四边形的内角和定理、等腰三角形的性质,正确的理解题意是解题的关键.7.(2018•湖北荆门•3分)如图,等腰Rt△ABC中,斜边AB的长为2,O为AB的中点,P 为AC边上的动点,OQ⊥OP交BC于点Q,M为PQ的中点,当点P从点A运动到点C时,点M 所经过的路线长为()A.B.C.1 D.2【分析】连接OC,作PE⊥AB于E,MH⊥AB于H,QF⊥AB于F,如图,利用等腰直角三角形的性质得AC=BC=,∠A=∠B=45°,OC⊥AB,OC=OA=OB=1,∠OCB=45°,再证明Rt△AOP ≌△COQ得到AP=CQ,接着利用△APE和△BFQ都为等腰直角三角形得到PE=AP=CQ,QF=BQ,所以PE+QF=BC=1,然后证明MH为梯形PEFQ的中位线得到MH=,即可判定点M到AB的距离为,从而得到点M的运动路线为△ABC的中位线,最后利用三角形中位线性质得到点M所经过的路线长.【解答】解:连接OC,作PE⊥AB于E,MH⊥AB于H,QF⊥AB于F,如图,∵△ACB为到等腰直角三角形,∴AC=BC=AB=,∠A=∠B=45°,∵O为AB的中点,∴OC⊥AB,OC平分∠ACB,OC=OA=OB=1,∴∠OCB=45°,∵∠POQ=90°,∠COA=90°,∴∠AOP=∠COQ,在Rt△AOP和△COQ中,∴Rt△AOP≌△COQ,∴AP=CQ,易得△APE和△BFQ都为等腰直角三角形,∴PE=AP=CQ ,QF=BQ , ∴PE+QF=(CQ+BQ )=BC=×=1, ∵M 点为PQ 的中点,∴MH 为梯形PEFQ 的中位线,∴MH=(PE+QF )=,即点M 到AB 的距离为,而CO=1,∴点M 的运动路线为△ABC 的中位线,∴当点P 从点A 运动到点C 时,点M 所经过的路线长=AB=1.故选:C .【点评】本题考查了轨迹:通过计算确定动点在运动过程中不变的量,从而得到运动的轨迹.也考查了等腰直角三角形的性质.8. (2018•河北•3分)已知:如图4,点P 在线段AB 外,且PA PB =.求证:点P 在线段AB 的垂直平分线上.在证明该结论时,需添加辅助线,则作法不.正确的是( )A .作APB ∠的平分线PC 交AB 于点CB .过点P 作PC AB ⊥于点C 且AC BC =C.取AB 中点C ,连接PCD .过点P 作PC AB ⊥,垂足为C9. (2018四川省绵阳市)如图,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ACB 的顶点A在△ECD的斜边DE上,若AE= ,AD= ,则两个三角形重叠部分的面积为()A.B.C.D.【答案】D【考点】三角形的面积,全等三角形的判定与性质,勾股定理,相似三角形的判定与性质,等腰直角三角形【解析】【解答】解:连接BD,作CH⊥DE,∵△ACB和△ECD都是等腰直角三角形,∴∠ACB=∠ECD=90°,∠ADC=∠CAB=45°,即∠ACD+∠DCB=∠ACD+∠ACE=90°,∴∠DCB=∠ACE,在△DCB和△ECA中,,∴△DCB≌△ECA,∴DB=EA= ,∠CDB=∠E=45°,∴∠CDB+∠ADC=∠ADB=90°,在Rt△ABD中,∴AB= =2 ,在Rt△ABC中,∴2AC2=AB2=8,∴AC=BC=2,在Rt△ECD中,∴2CD2=DE2= ,∴CD=CE= +1,∵∠ACO=∠DCA,∠CAO=∠CDA,∴△CAO∽△CDA,∴:= = =4-2 ,又∵= CE = DE·CH,∴CH= = ,∴= AD·CH= × × = ,∴=(4-2 )× =3- .即两个三角形重叠部分的面积为3- .故答案为:D.【分析】解:连接BD,作CH⊥DE,根据等腰直角三角形的性质可得∠ACB=∠ECD=90°,∠ADC=∠CAB=45°,再由同角的余角相等可得∠DCB=∠ACE;由SAS得△DCB≌△ECA,根据全等三角形的性质知DB=EA= ,∠CDB=∠E=45°,从而得∠ADB=90°,在Rt△ABD中,根据勾股定理得AB=2 ,同理可得AC=BC=2,CD=CE= +1;由相似三角形的判定得△CAO∽△CDA,根据相似三角形的性质:面积比等于相似比的平方从而得出两个三角形重叠部分的面积. 二.填空题1.(2018四川省泸州市3分)如图,等腰△ABC的底边BC=20,面积为120,点F在边BC 上,且BF=3FC,EG是腰AC的垂直平分线,若点D在EG上运动,则△CDF周长的最小值为18 .【分析】如图作AH⊥BC于H,连接AD.由EG垂直平分线段AC,推出DA=DC,推出DF+DC=AD+DF,可得当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长;【解答】解:如图作AH⊥BC于H,连接AD.∵EG垂直平分线段AC,∴DA=DC,∴DF+DC=AD+DF,∴当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长,∵•BC•AH=120,∴AH=12,∵AB=AC,AH⊥BC,∴BH=CH=10,∵BF=3FC,∴CF=FH=5,∴AF===13,∴DF+DC的最小值为13.∴△CDF周长的最小值为13+5=18;故答案为18.【点评】本题考查轴对称﹣最短问题、线段的垂直平分线的性质、等腰三角形的性质等知识,解题的关键是学会利用轴对称,解决最短问题,属于中考常考题型.2. (2018•广西桂林•3分)如图,在ΔABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是__________【答案】3详解:∵AB=AC,∴△ABC是等腰三角形.∵∠A=36°,∴∠C=∠ABC=72°.BD平分∠ABC交AC于D,∴∠ABD=∠DBC=36°,∵∠A=∠ABD=36°,∴△ABD是等腰三角形.∠BDC=∠A+∠ABD=36°+36°=72°=∠C,∴△BDC是等腰三角形.∴共有3个等腰三角形.故答案为:3.点睛:本题考查了等腰三角形的判定与性质及三角形内角和定理;求得角的度数是正确解答本题的关键.3. (2018·新疆生产建设兵团·5分)如图,△ABC是⊙O的内接正三角形,⊙O的半径为2,则图中阴影部的面积是.【分析】根据等边三角形性质及圆周角定理可得扇形对应的圆心角度数,再根据扇形面积公式计算即可.【解答】解:∵△ABC是等边三角形,∴∠C=60°,根据圆周角定理可得∠AOB=2∠C=120°,∴阴影部分的面积是=π,故答案为:【点评】本题主要考查扇形面积的计算和圆周角定理,根据等边三角形性质和圆周角定理求得圆心角度数是解题的关键.4. (2018·四川宜宾·3分)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆O的半径为1,若用圆O的外切正六边形的面积来近似估计圆O的面积,则S= 2.(结果保留根号)【考点】MM:正多边形和圆;1O:数学常识.【分析】根据正多边形的定义可得出△ABO为等边三角形,根据等边三角形的性质结合OM 的长度可求出AB的长度,再利用三角形的面积公式即可求出S的值.【解答】解:依照题意画出图象,如图所示.∵六边形ABCDEF为正六边形,∴△ABO为等边三角形,∵⊙O的半径为1,∴OM=1,∴BM=AM=,∴AB=,∴S=6S△ABO=6×××1=2.故答案为:2.【点评】本题考查了正多边形和圆、三角形的面积以及数学常识,根据等边三角形的性质求出正六边形的边长是解题的关键.5. (2018·天津·3分)如图,在边长为4的等边中,,分别为,的中点,于点,为的中点,连接,则的长为__________.【答案】【解析】分析:连接DE,根据题意可得ΔDEG是直角三角形,然后根据勾股定理即可求解DG的长.详解:连接DE,∵D、E分别是AB、BC的中点,∴DE∥AC,DE=AC∵ΔABC是等边三角形,且BC=4∴∠DEB=60°,DE=2∵EF⊥AC,∠C=60°,EC=2∴∠FEC=30°,EF=∴∠DEG=180°-60°-30°=90°∵G是EF的中点,∴EG=.在RtΔDEG中,DG=故答案为:.点睛:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.6.(2018·湖北省武汉· 3分)如图.在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.若DE平分△ABC的周长,则DE的长是.【分析】延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,根据题意得到ME=EB,根据三角形中位线定理得到DE=AM,根据等腰三角形的性质求出∠ACN,根据正弦的概念求出AN,计算即可.【解答】解:延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,∵DE平分△ABC的周长,∴ME=EB,又AD=DB,∴DE=AM,DE∥AM,∵∠ACB=60°,∴∠ACM=120°,∵CM=CA,∴∠ACN=60°,AN=MN,∴AN=AC•sin∠ACN=,∴AM=,∴DE=,ED CBA故答案为:.【点评】本题考查的是三角形中位线定理、等腰三角形的性质、解直角三角形,掌握三角形中位线定理、正确作出辅助性是解题的关键.7.(2018•北京•2分) 右图所示的网格是正方形网格,BAC ∠________DAE ∠.(填“>”,“=”或“<”) 【答案】>【解析】如下图所示,G FABCD EAFG △是等腰直角三角形,∴45FAG BAC ∠=∠=︒,∴BAC DAE ∠>∠.另:此题也可直接测量得到结果.【考点】等腰直角三角形8. (2018•江苏盐城•3分)如图,在直角中,,,,、分别为边、上的两个动点,若要使是等腰三角形且是直角三角形,则________.16.【答案】或【考点】等腰三角形的判定与性质,相似三角形的判定与性质【解析】【解答】解:当△BPQ是直角三角形时,有两种情况:∠BPQ=90度,∠BQP=90度。
专题25 三角形聚焦考点☆温习理解一、三角形1、三角形中的主要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。
(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。
(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
2、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。
③证明线段不等关系。
3、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。
推论:①直角三角形的两个锐角互余。
②三角形的一个外角等于和它不相邻的来两个内角的和。
③三角形的一个外角大于任何一个和它不相邻的内角。
注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。
二、全等三角形1、三角形全等的判定三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。
直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)2.全等三角形的性质:三、等腰三角形1、等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论1:等腰三角形顶角平分线平分底边并且垂直于底边。
即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。
推论2:等边三角形的各个角都相等,并且每个角都等于60°。
等腰三角形、等边三角形一、选择题 1. .(广东省广州市,13,3分)如图,△ABC 中,AB =AC ,BC =12cm ,点D 在AC 上,DC =4cm ,将线段DC 沿CB 方向平移7cm 得到线段EF ,点E ,F 分别落在边AB ,BC 上,则△EBF 的周长为 cm .【答案】13【逐步提示】利用平移的性质可以求得EF 与FC 的长,进而可得BF 的长;再根据等腰三角形的判定可得BE =EF ,这样求得了△EBF 的三边长,其和即为△EBF 的周长.【详细解答】解:根据平移的性质,将线段DC 沿着CB 的方向平移7cm 得到线段EF ,则EF =DC =4cm ,FC =7cm ,∠EFB =∠C .∵AB =AC ,∴∠B =∠C ,∴∠B =∠BFE ,∴BE =EF =4cm .又BF =BC -FC =12-7=5cm ,∴△EBF 的周长=4+4+5=13(cm ).故答案为13.【解后反思】图形平移后,对应线段平行(或在同一条直线上)且相等,这样往往存在平行四边形与全等三角形或等腰三角形,给我解决问题提供了重要途径. 【关键词】平移的性质;等腰三角形的判定2. ( 河北省,16,2分)如图,∠AOB =120°,OP 平分∠AOB ,且OP =2.若点M ,N 分别在OA ,OB 上,且△PMN 为等边三角形,则满足上述条件的△PMN 有( )A .1个B .2个C .3个D .3个以上【答案】D【逐步提示】先找出符合要求的特殊点,如点M 与点O 重合,点N 与点O 重合等,不难发现以上特殊情形都满足OM+ON=2,再研究一般情形下△PMN 是否为等边三角形,问题得解. 【详细解答】解:如图,在OA 上截取OC=OP=2,∵∠AOP =60°,∴△OCP 是等边三角形,∴CP=OP ,∠OCP=∠CPO=60°.在线段OC 任取一点M ,在OB 上截取ON ,使ON+OM=2,连接MN ,PM ,PN.∵MC+OM =2,∴CM=ON.在△MCP 和△NOP 中,∵CM=ON,∠MCP =∠NOP =60°,CP=OP ,∴△MCP ≌△NOP (SAS ),∴PM=PN ,∠MPC=∠NPO ,∴∠MPC+∠MPO=∠NPO+∠MPO ,即∠CPO =∠MPN,∴∠MPN =60°,∴△PMN 是等边三角形.故满足条件的△PMN 有无数个,答案为选项D.A B CE D F【解后反思】如图所示,本题是含有60°内角的菱形问题的变式,掌握其中等边三角形和全等三角形的判定有助于我们解决此题.【关键词】等边三角形的判定和性质;全等三角形的判定;存在性问题3.(湖南省怀化市,8,4分)等腰三角形的两边长分别为4cm和8cm,则它的周长为()A. 16cmB. 17cmC. 20cmD. 16cm或20cm【答案】C.【逐步提示】此题考查等腰三角形的定义和三角形三边的关系.题中给出了等腰三角形的两条边长,而没有明确其腰长或底边长,因此需要分腰为4cm长或腰为8cm长两种情况讨论等腰三角形的周长即可.【详细解答】解:若4cm的边长为腰,8cm的边长为底,4+4=8,由三角形三边的关系知,该等腰三角形不存在;若8cm的边长为腰,4cm的边长为底,则等腰三角形的周长为20cm,故选择C.【解后反思】此题考查等腰三角形的定义和三角形三边的关系,解此题的关键是能根据题意,考虑到需要分类讨论等腰三角形的周长.此题的易错点是审题不认真,忽略分类讨论.【关键词】等腰三角形的定义;三角形三边的关系4.(湖南湘西,14,4分)一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是A.13cm B .14cm C. 13 cm或14cm D.以上都不对【答案】C【逐步提示】本题考查了三角形的三边关系及等腰三角形的性质,解题的关键是应用三角形三边关系定理讨论.分4cm为等腰三角形的腰和5cm为等腰三角形的腰,先判断符合不符合三边关系,再求出周长.【详细解答】解:①当等腰三角形的腰为4,底为5时,等腰三角形的周长为2×4+5=13;②当等腰三角形的腰为5,底为4时,等腰三角形的周长为2×5+4=14,∴这个等腰三角形的周长是13 cm或14cm,故选择C . 【解后反思】在解有关等腰三角形边长问题时,通常要进行讨论,注意分类讨论后一定要运用三边关系检验,所求的结果若能够组成三角形后,才能继续进行有关的计算.【关键词】三角形三边的关系;等腰三角形的性质5.(山东滨州6,3分)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE 的度数为()A.50° B.51° C.51.5° D.52.5°【答案】D.【逐步提示】先根据AC=CD,∠A=50°,计算出∠ADC的度数,再由CD=BD,可知∠B=∠BCD,从而求出∠B的度数,BD=BE,∠BDE=∠BED,求出∠BDE的度数,最后根据∠ADC +∠CDE +∠BDE =180°,计算出∠CDE的度数.【详细解答】解:∵AC=CD,∴∠ADC=∠A=50°,又∵CD=BD,∴∠B=∠BCD,∠ADC=∠B+∠BCD,∴∠B=25°,∵BD=BE,∠BDE=∠BED=77.5°,∠ADC +∠CDE +∠BDE =180°,∴∠CDE=52.5°.【解后反思】根据“等腰三角形两底角相等”得到角的度数,再根据三角形的一个外角等于和它不相邻的2个内角的度数之和.【关键词】等腰三角形 三角形的外角和定理6.(江苏省扬州市,8,3分)如图,矩形纸片ABCD 中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是 ( )A .6B .3C .2.5D .2(第8题)BC【答案】C【逐步提示】本题考查了操作活动中的估算和大小比较,解题的关键是合理构造等腰直角三角形,使得剩余部分面积的最小,此时每次都要考虑以最大边做斜边才使得剪去的等腰直角三角形面积最大.【详细解答】解:如图所示,剩余三角形的面积为24—1442创—12—1332创=2.5,故选择C .【解后反思】本题属于数学实验的简单类的问题,在构造等腰直角三角形时,学生可能会构造出如图所示的方法,剩余三角形的面积为24—1442创—12创—12创,错选答案B .【关键词】 三角形;等腰三角形与直角三角形;等腰三角形的性质;勾股定理;四边形;特殊的平行四边形;矩形的性质;面积最小化;化归思想二、填空题1. ( 甘肃省武威市、白银市、定西市、平凉市、酒泉市、临夏州、张掖市等9市,17,4分)将一张矩形纸片折叠成如图所示的图形,若AB =6cm ,则AC =_____________cm .第17题图【答案】6【逐步提示】本题考查轴对称变换的性质,解题的关键是画出折叠之前的矩形纸片,画出折叠之前的矩形纸片之后,一目了然,通过角度之间代换得到△ABC 是等腰三角形,得解.【详细解答】解:由折叠得∠1=∠2,再由矩形纸片对边平行得到∠1=∠3,从而得到∠2=∠3,所以△ABC 是等腰三角形且AB =AC =6cm ,故答案为6.【解后反思】折叠也就是翻折或轴对称,它连同平移、旋转一样是全等变换,即不改变图形的形状和大小,所以看到折叠就要想到全等,进一步得到对应角相等、对应边相等为进一步解题提供条件. 【关键词】 折叠;矩形的性质;等腰三角形的判定;2. ( 河北省,19,4分)如图,已知∠AOB =7°,一条光线从点A 出发后射向OB 边.若光线与OB 边垂直,则光线沿原路返回到点A ,此时∠A =90°-7°=83°.当∠A <83°时,光线射到OB 边上的点A 1后,经OB 反射到线段AO 上的点A 2,易知∠1=∠2.若A 1A 2⊥AO ,光线又会沿A 2→A 1→A 原路返回到点A ,此时∠A =_____°. ……若光线从点A 发出后,经若干次反射能沿原路返回到点A ,则锐角∠A 的最小值=_______°.【答案】76 6 【逐步提示】本题属于规律探究题,对于(1)先在Rt △A 1A 2O 中根据三角形内角和定理求出∠2的度数,由此得到∠1和∠AA 1A 2的度数,再在△AA 1A 2中根据三角形内角和定理求出∠A 的度数;(2)由(1)可知当光线垂直于OA 时光线会沿原路返回,画出符合题意的图形,分别求出有公共顶点的光线夹角的度数,从而找出夹角变化的规律,问题可解. 【详细解答】解:(1)∵A 1A 2⊥AO ,∴∠A 1A 2A=∠A 1A 2O=90°.在Rt △A 1A 2O 中,∠O=7°,∴∠2=90°-7°=83°,∴∠1=83°,∴∠AA 1A 2=180°-2×83°=14°.在Rt △AA 1A 2中,∴∠A=90°-14°=76°.(2)如图,当A n -1A n ⊥OA 时,易求得∠A n A n-1A n-2=14°=1×14°,∠A n-1A n-2A n-3=28°=2×14°,∠A n-2A n-3A n-4=42°=3×14°,……,由此可知当∠A 1AC=12×14°=168°时,∠A1AO=12×(180°-168°)=6°,且此时∠A 1AO 最小.【解后反思】对于规律探究题,解决问题的一般思路是从特殊情形中发现一般规律,进而应用一般规律求解. 【关键词】 规律探究题3. ( 湖北省黄冈市,12,3分)如图,⊙O 是ΔABC 的外接圆,∠AOB=700,AB=AC,则∠ABC= 。
【答案】350【逐步提示】本题考查了圆周角定理以及等腰三角形的性质,解题的关键是掌握“同弧所对的圆心角和圆周角之间的关系。
要求∠ABC 的度数,由条件AB=AC 知,转化为求∠ACB 的度数,而∠ACB 和∠AOB 分别是AB 所对的圆周角和圆心角,根据圆周角定理问题就可解决。
【详细解答】解:∵圆心角∠AOB=700,∴圆周角∠ACB=12∠AOB=350, 又∵AB=AC, ∴∠ABC=∠ACB=350. ,故答案为 350. 【解后反思】圆周角定理能有效地把圆心角与圆周角联系起来,即在同圆或等圆中圆周角的度数等于同弧或等弧所对的圆心角的一半.【关键词】圆周角定理;等腰三角形的性质。