初中物理m为摆球的质量单摆的周期公式
- 格式:ppt
- 大小:840.50 KB
- 文档页数:20
三一文库()/初中三年级〔初三物理知识点单摆周期公式推导〕公式推导M = - m * g * l * Sin x.其中m为质量,g是重力加速度,l是摆长,x是摆角。
我们希望得到摆角x的关于时间的函数,来描述单摆运动。
由力矩与角加速度的关系不难得到,M = J * β。
其中J = m * l^2是单摆的转动惯量,β = x''(摆角关于时间的2阶导数)是角加速度。
于是化简得到x'' * l = - g * Sin x.我们对上式适当地选择比例系数,就可以把常数l与g约去,再移项就得到化简了的运动方程x'' + Sin x = 0.第1页共5页因为单摆的运动方程(微分方程)是x'' + Sin x = 0 (1)而标准的简谐振动(如弹簧振子)则是x'' + x = 0 (2)相关解释我们知道(1)式是一个非线性微分方程,而(2)式是一个线性微分方程。
所以严格地说上面的(1)式描述的单摆的运动并不是简谐运动。
不过,在x比较小时,近似地有Sin x ≈ x。
(这里取的是弧度制。
即当x -> 0时有Sin x / x = o(1)。
)因而此时(1)式就变为(2)式,单摆的非线性的运动被线性地近似为简谐运动。
然后说一下为什么是10°。
由于Sin x ≈ x这个近似公式只在角度比较小的时候成立(这一个可以从正弦函数的在原点附近的图象近似看出),所以只有在小角度下(1)式化作(2)式才是合理的。
事实上5°≈0.087266弧度,Sin 5°≈0.087155,二者相差只有千分之一点几,是十分接近的。
在低精度的实验中,这种系统误差可以忽略不计(因为实验操作中的偶然误差就比它大)。
但如果换成25°,误差高达百分之三,就不宜再看成是简谐振动了。
由于正弦函数的性质,这个近似是角度越小,越精确,角度25。
单摆知识点公式总结一、单摆的基本知识点1. 单摆的定义单摆是由一个质点(称为挂点)和一根长度可忽略的细绳(或轻质横杆)组成的物体。
质点可以是实心球、铁球、小木块或其他形状的物体。
2. 单摆的运动规律单摆在无外力作用下,可以做匀速圆周运动。
当摆动幅度较小时,单摆的周期与摆长的平方根成正比。
3. 单摆的周期单摆的周期T与摆长L及重力加速度g有关,满足以下公式:T = 2π√(L/g)其中,T为周期,L为摆长,g为重力加速度(约等于9.8m/s^2),π为圆周率。
4. 单摆的频率单摆的频率f与周期T成反比关系,满足以下公式:f = 1/T5. 单摆的振幅单摆的振幅是指摆动过程中的最大角度。
当振幅较小时,单摆的周期与摆长的平方根成正比。
6. 单摆的能量转化单摆在振动过程中,动能和势能不断地进行转化。
当摆动到最高点或最低点时,动能为零,势能最大。
而在摆动过程中,动能最大时,势能为零。
单摆的总能量守恒。
7. 单摆的受力分析单摆在做简谐振动时,受到重力和张力的作用。
重力作用在摆绳上,向下,张力作用在质点上,与重力方向相反。
二、相关公式1. 单摆的周期公式T = 2π√(L/g)其中,T为周期,L为摆长,g为重力加速度。
2. 单摆的频率公式f = 1/T其中,f为频率,T为周期。
3. 单摆的摆长计算公式在实际应用中,有时需要根据给定的周期或频率来计算摆长。
可以通过以上公式,将周期T或频率f代入,求解摆长L的值。
4. 单摆的振幅与周期的关系当振幅较小时,单摆的周期与摆长的平方根成正比。
这一关系可以通过实验或推导得到。
5. 单摆的能量转化公式在单摆的摆动过程中,动能和势能不断地进行转化。
可以通过动能和势能的公式进行计算,以研究能量转化的规律。
6. 单摆的受力分析公式单摆在简谐振动时,受到重力和张力的作用。
可以通过受力分析和牛顿定律,得到单摆的运动规律和力学性质。
三、单摆的应用1. 单摆的实验通过搭建单摆实验装置,可以观察和研究单摆的运动规律和特性,了解单摆的周期、频率、摆长等参数。
影响单摆周期的因素
跟单摆的摆线长度和当地的重力加速度有关。
根据单摆的周期公式:T=2π√(L/g)。
其中,L为摆长,g为当地的重力加速度。
在摆角小于5°的条件下,单摆的摆长越大,当地的重力加速度越小,单摆的周期越大。
单摆周期公式
单摆是一种理想的物理模型,它由理想化的摆球和摆线组成。
摆线由质量不计、不可伸缩的细线提供;摆球密度较大,而且球的半径比摆线的长度小得多,这样才可以将摆球看做质点,由摆线和摆球构成单摆。
在满足偏角小于10°的条件下,单摆的周期为T=2π√(L/g)。
从公式中可看出,单摆周期与振幅和摆球质量无关.从受力角度分析,单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力,偏角越大,回复力越大,加速度越大,在相等时间内走过的弧长也越大,所以周期与振幅、质量无关,只与摆长l和重力加速度g有关.在有些振动系统中l不一定是绳长,g也不一定为9.8m/s²,因此出现了等效摆长和等效重力加速度的问题。
什么是单摆的周期
单摆从某一状态开始运动,第一次回到原状态的时间,一般是从平衡位置开始计时,这里所说的状态是指速度,加速度,恢复力都相同的状态.周期公式为T=2π*√L/g.。
单摆周期公式的推导一.简谐运动物体的运动学特征作简谐运动的物体要受到回复力的作用,而且这个回复力F 与物体相对于平衡位置的位移x 成正比,方向与位移x 相反,用公式表示可以写成kx F −=,其中k 是比例系数。
对于质量为m 的小球,假设t 时刻(位移是x )的加速度为a ,根据牛顿第二运动定律有:kx ma F −==,即xmka −=因此小球的加速度a 与它相对平衡位置的位移x 成正比,方向与位移x 相反。
因为x (或F )是变量,所以a 也是变量,小球作变加速运动。
把加速度a 写成22dt x d ,并把常数m k写成2ω得到x dtxd 222ω−=。
对此微分方程式,利用高等数学方法,可求得其解为)sin(ϕω+=t A x 。
这说明小球的位移x 是按正弦曲线的规律随着时间作周期性变化的,其变化的角速度为Tm k πω2==,从而得到作简谐运动物体的周期为kmT π2=。
二.单摆周期公式的推导单摆是一种理想化的模型,实际的摆只要悬挂小球的摆线不会伸缩,悬线的长度又比球的直径大很多,都可以认为是一个单摆。
当摆球静止在O 点时,摆球受到的重力G 和摆线的拉力T 平衡,如图1所示,这个O 点就是单摆的平衡位置。
让摆球偏离平衡位置,此时,摆球受到的重力G 和摆线的拉力T 就不再平衡。
在这两个力的作用下,摆球将在平衡位置O 附近来回往复运动。
当摆球运动到任一点P时,重力G 沿着圆弧切线方向的分力θsin 1mg G =提供给摆球作为来回振动的回复力θsin 1mg G F ==,当偏角θ很小﹝如θ<010﹞时,lx≈≈θθsin ,所以单摆受到的回复力x lmgF −=,式中的l 为摆长,x 是摆球偏离平衡位置的位移,负号表示回复力F 与位移x 的方向相反,由于m 、g 、L 都是确定的常数,所以lmg可以用常数k 来表示,于是上式可写成kx F −=。
因此,在偏角θ很小时,单摆受到的回复力与位移成正比,方向与位移方向相反,单摆作的是简谐运动。
单摆周期公式及影响单摆周期的因素研究摘要:结合理论知识,基础物理实验,构建线性数学模型。
对单摆运动进行分析。
其中,理论部分主要依据高等数学及数学物理方法的知识,对单摆运动周期公式进行论证;实验部分主要通过改变单摆摆线长度进行实验;观察、分析单摆运动规律。
从而验证单摆周期公式。
并对影响单摆周期的因素展开研究。
最后总结出影响单摆周期的因素。
关键词:数学模型 ; 单摆运动 ; 周期公式单摆运动问题是一个古老的问题,无论是中学物理还是大学物理,我们都在学习研究单摆。
作为一个重要的理想物理模型,单摆的运动周期规律和实验研究在生产生活中意义重大。
单摆问题是物理学中经典问题。
从阅读物理学史并可知道,早在 1583 年,十九岁的伽利略(1564—1642)在比萨教堂祈祷时注意到因被风吹而摆动的大灯,他利用自己的脉搏来测定大灯的摆动周期,发现了摆的等时性。
但现在这个故事的真实性受到怀疑 ,因为比萨大教堂所保留的许多相关历史文献都表明该吊灯是在伽利略二十三岁那年才首次安装的。
专家指出,伽利略是于1602 年注意到单摆运动的等时性,不过伽利略误认为在大摆动条件下等时性也成立,他说:“物体从直立圆环上任一点落到最低位置的时间相同。
”随后吉多彼得做实验发现这个结论与实验不符,伽利略解释说可能是由于摩擦力。
伽利略从实验中得出单摆周期与摆长的平方根成正比。
他还指出周期与摆球质量无关。
他说:“因此我取两个球,一个是铅的而另一个是软木的,前者比后者重 100 多倍,用两根等长细线把它们悬挂起来、把每一个球从铅直位置拉到旁边,我在同一时刻放开它们,它们就沿着以这些等长线为半径的圆周下落,穿过铅垂位置,并且沿同一路径返回。
”最早系统地研究单摆的是惠根斯(ChristiaanH uygens )。
由于当时实验技术条件的落后,重力加速度在惠根斯之前是很难精确测出来的,所以惠更斯不可能从实验中总结出或猜出单摆周期公式的系数π2。
事实上,反过来重力加速度是 1659 年惠更斯根据单摆周期公式首次精确测出来的。