初中八年级(初二)物理 摆球的质量单摆的周期公式 (2)
- 格式:ppt
- 大小:841.00 KB
- 文档页数:15
三一文库()/初中三年级〔初三物理知识点单摆周期公式推导〕公式推导M = - m * g * l * Sin x.其中m为质量,g是重力加速度,l是摆长,x是摆角。
我们希望得到摆角x的关于时间的函数,来描述单摆运动。
由力矩与角加速度的关系不难得到,M = J * β。
其中J = m * l^2是单摆的转动惯量,β = x''(摆角关于时间的2阶导数)是角加速度。
于是化简得到x'' * l = - g * Sin x.我们对上式适当地选择比例系数,就可以把常数l与g约去,再移项就得到化简了的运动方程x'' + Sin x = 0.第1页共5页因为单摆的运动方程(微分方程)是x'' + Sin x = 0 (1)而标准的简谐振动(如弹簧振子)则是x'' + x = 0 (2)相关解释我们知道(1)式是一个非线性微分方程,而(2)式是一个线性微分方程。
所以严格地说上面的(1)式描述的单摆的运动并不是简谐运动。
不过,在x比较小时,近似地有Sin x ≈ x。
(这里取的是弧度制。
即当x -> 0时有Sin x / x = o(1)。
)因而此时(1)式就变为(2)式,单摆的非线性的运动被线性地近似为简谐运动。
然后说一下为什么是10°。
由于Sin x ≈ x这个近似公式只在角度比较小的时候成立(这一个可以从正弦函数的在原点附近的图象近似看出),所以只有在小角度下(1)式化作(2)式才是合理的。
事实上5°≈0.087266弧度,Sin 5°≈0.087155,二者相差只有千分之一点几,是十分接近的。
在低精度的实验中,这种系统误差可以忽略不计(因为实验操作中的偶然误差就比它大)。
但如果换成25°,误差高达百分之三,就不宜再看成是简谐振动了。
由于正弦函数的性质,这个近似是角度越小,越精确,角度25。
单摆周期公式 T=2Π√L/g 和弹簧振子周期公式 T=2π√m/k的推导过程
1,弹簧振子周期公式 T=2π√m/k的推导过程。
弹簧振子的振动是简谐振动,回复力大小与位移成正比,方向相反。
f=-kx=ma (0)
2,物体运动的加速度:a=d(dx/dt)/dt. 故有:
-kx=ma=m[d(dx/dt)/dt]. 即
[d(dx/dt)/dt]+kx/m=0 (1)
3,我们知简谐振动的位移方程:x=Asin(wt) (2)
dx/dt=d(Asin(wt))/dt=wAcos(wt)
d(dx/dt)/dt=-wwAsin(wt)=-wwx (3)
4.式(1),(3)得:-wwx+kx/m =0 即 ww=k/m (4)
5.从(2)是看,x=Asin(wt)是正弦函数,
正弦函数的周期T=2π/w
W=2fπ=2π/T 把此代入(4)得:
(2π/T)^2=k/m 故得:
T=2π(m/k)^1/2.
这就是“弹簧振子周期公式 T=2π√m/k的推导过程”。
至于单摆周期公式,只是把第(0)式的回复力换成
f=-mgx/l=ma
l
f B
A
mg
摆长l,摆幅AB=x,
x/l=f/mg f=xmg/l 这就是回复力。
依次下来,到第(4)步的式(4)就是:
-wwx+kx/m= -wwx+xmg/l m= -wwx+xg/l=0
即 ww=g/l =(2π/T)^2
T=2π(l/g)^1/2 这就是“单摆周期公式 T=2Π√L/g的推导过程”。
单摆周期公式的推导一.简谐运动物体的运动学特征作简谐运动的物体要受到回复力的作用,而且这个回复力F 与物体相对于平衡位置的位移x 成正比,方向与位移x 相反,用公式表示可以写成kx F −=,其中k 是比例系数。
对于质量为m 的小球,假设t 时刻(位移是x )的加速度为a ,根据牛顿第二运动定律有:kx ma F −==,即xmka −=因此小球的加速度a 与它相对平衡位置的位移x 成正比,方向与位移x 相反。
因为x (或F )是变量,所以a 也是变量,小球作变加速运动。
把加速度a 写成22dt x d ,并把常数m k写成2ω得到x dtxd 222ω−=。
对此微分方程式,利用高等数学方法,可求得其解为)sin(ϕω+=t A x 。
这说明小球的位移x 是按正弦曲线的规律随着时间作周期性变化的,其变化的角速度为Tm k πω2==,从而得到作简谐运动物体的周期为kmT π2=。
二.单摆周期公式的推导单摆是一种理想化的模型,实际的摆只要悬挂小球的摆线不会伸缩,悬线的长度又比球的直径大很多,都可以认为是一个单摆。
当摆球静止在O 点时,摆球受到的重力G 和摆线的拉力T 平衡,如图1所示,这个O 点就是单摆的平衡位置。
让摆球偏离平衡位置,此时,摆球受到的重力G 和摆线的拉力T 就不再平衡。
在这两个力的作用下,摆球将在平衡位置O 附近来回往复运动。
当摆球运动到任一点P时,重力G 沿着圆弧切线方向的分力θsin 1mg G =提供给摆球作为来回振动的回复力θsin 1mg G F ==,当偏角θ很小﹝如θ<010﹞时,lx≈≈θθsin ,所以单摆受到的回复力x lmgF −=,式中的l 为摆长,x 是摆球偏离平衡位置的位移,负号表示回复力F 与位移x 的方向相反,由于m 、g 、L 都是确定的常数,所以lmg可以用常数k 来表示,于是上式可写成kx F −=。
因此,在偏角θ很小时,单摆受到的回复力与位移成正比,方向与位移方向相反,单摆作的是简谐运动。
用单摆的周期公式测重力加速度考点(1)摆长的测量:让单摆自由下垂,用米尺量出摆线长L /(读到0.1mm ),用游标卡尺量出摆球直径(读到0. 1mm )算出半径r ,则摆长L =L /+r(若摆长没有加小球的半径,则重力加速度的测量测量值变小)(2)开始摆动时需注意:摆角要小于10° (保证简谐运动,不形成圆锥摆,形成圆周摆后,测量值变大)(3)从摆球通过最低点时开始计时,测出单摆通过最低点n 次所用时间,算出周期1n t 2T -= (若摆动少计算一次,则周期变大,重力加速度的测量测量值变小)(4)改变摆长重做几次,计算每次实验得到的重力加速度,再求这些重力加速度的平均值。
(5)选取摆长约1米的不可伸长的细丝线;质量大体积小的小球。
(6)做T 2——L 图:①不加小球半径如图1;正常如图2;加了小球直径如图3(7)2121L L T T = 221121221)R R (M M g g T T == hR R h R R g g T T h h +=+==2)(验证机械能守恒定律1.原理:物体做自由落体运动,根据机械能守恒定律有:mgh=221mV 在实验误差范围内验证上式成立。
2.实验器材:打点计时器,纸带,重锤,毫米刻度尺,铁架台,烧瓶夹、低压交流电源(4_6V)3.实验条件:a .打点计时器应该竖直固定在铁架台上b .在手释放纸带的瞬间,打点计时器刚好打下一个点子,纸带上最初两点间的距离约为2毫米。
g L T θπcos 2=3.测量的量:a.从起始点到某一研究点之间的距离,就是重锤下落的高度h,则重力势能的减少量为mgh1;测多个点到起始点的高h1、h2、h3、h4(各点到起始点的距离要远一些好)b.不必测重锤的质量5.误差分析:由于重锤克服阻力作功,所以动能增加量略小于重力势能减少量6.易错点:a.选择纸带的条件:打点清淅;第1、2两点距离约为2毫米。
b.打点计时器应竖直固定,纸带应竖直。
单摆周期公式的推导一.简谐运动物体的运动学特征作简谐运动的物体要受到回复力的作用,而且这个回复力F 与物体相对于平衡位置的位移x 成正比,方向与位移x 相反,用公式表示可以写成kx F −=,其中k 是比例系数。
对于质量为m 的小球,假设t 时刻(位移是x )的加速度为a ,根据牛顿第二运动定律有:kx ma F −==,即xmka −=因此小球的加速度a 与它相对平衡位置的位移x 成正比,方向与位移x 相反。
因为x (或F )是变量,所以a 也是变量,小球作变加速运动。
把加速度a 写成22dt x d ,并把常数m k写成2ω得到x dtxd 222ω−=。
对此微分方程式,利用高等数学方法,可求得其解为)sin(ϕω+=t A x 。
这说明小球的位移x 是按正弦曲线的规律随着时间作周期性变化的,其变化的角速度为Tm k πω2==,从而得到作简谐运动物体的周期为kmT π2=。
二.单摆周期公式的推导单摆是一种理想化的模型,实际的摆只要悬挂小球的摆线不会伸缩,悬线的长度又比球的直径大很多,都可以认为是一个单摆。
当摆球静止在O 点时,摆球受到的重力G 和摆线的拉力T 平衡,如图1所示,这个O 点就是单摆的平衡位置。
让摆球偏离平衡位置,此时,摆球受到的重力G 和摆线的拉力T 就不再平衡。
在这两个力的作用下,摆球将在平衡位置O 附近来回往复运动。
当摆球运动到任一点P时,重力G 沿着圆弧切线方向的分力θsin 1mg G =提供给摆球作为来回振动的回复力θsin 1mg G F ==,当偏角θ很小﹝如θ<010﹞时,lx≈≈θθsin ,所以单摆受到的回复力x lmgF −=,式中的l 为摆长,x 是摆球偏离平衡位置的位移,负号表示回复力F 与位移x 的方向相反,由于m 、g 、L 都是确定的常数,所以lmg可以用常数k 来表示,于是上式可写成kx F −=。
因此,在偏角θ很小时,单摆受到的回复力与位移成正比,方向与位移方向相反,单摆作的是简谐运动。
单摆周期公式的推导一.简谐运动物体的运动学特征作简谐运动的物体要受到回复力的作用,而且这个回复力F 与物体相对于平衡位置的位移x 成正比,方向与位移x 相反,用公式表示可以写成kx F −=,其中k 是比例系数。
对于质量为m 的小球,假设t 时刻(位移是x )的加速度为a ,根据牛顿第二运动定律有:kx ma F −==,即xmka −=因此小球的加速度a 与它相对平衡位置的位移x 成正比,方向与位移x 相反。
因为x (或F )是变量,所以a 也是变量,小球作变加速运动。
把加速度a 写成22dt x d ,并把常数m k写成2ω得到x dtxd 222ω−=。
对此微分方程式,利用高等数学方法,可求得其解为)sin(ϕω+=t A x 。
这说明小球的位移x 是按正弦曲线的规律随着时间作周期性变化的,其变化的角速度为Tm k πω2==,从而得到作简谐运动物体的周期为kmT π2=。
二.单摆周期公式的推导单摆是一种理想化的模型,实际的摆只要悬挂小球的摆线不会伸缩,悬线的长度又比球的直径大很多,都可以认为是一个单摆。
当摆球静止在O 点时,摆球受到的重力G 和摆线的拉力T 平衡,如图1所示,这个O 点就是单摆的平衡位置。
让摆球偏离平衡位置,此时,摆球受到的重力G 和摆线的拉力T 就不再平衡。
在这两个力的作用下,摆球将在平衡位置O 附近来回往复运动。
当摆球运动到任一点P时,重力G 沿着圆弧切线方向的分力θsin 1mg G =提供给摆球作为来回振动的回复力θsin 1mg G F ==,当偏角θ很小﹝如θ<010﹞时,lx≈≈θθsin ,所以单摆受到的回复力x lmgF −=,式中的l 为摆长,x 是摆球偏离平衡位置的位移,负号表示回复力F 与位移x 的方向相反,由于m 、g 、L 都是确定的常数,所以lmg可以用常数k 来表示,于是上式可写成kx F −=。
因此,在偏角θ很小时,单摆受到的回复力与位移成正比,方向与位移方向相反,单摆作的是简谐运动。