常见器件损耗表
- 格式:xls
- 大小:26.00 KB
- 文档页数:1
基于Buck同步整流电路中功率MOSFETS管参数的优化 华晓辉1 林维明21 2)福州大学电气工程与自动化学院 福州 3500021)Email :hxh_1889@ 2) Email :weiming @摘 要 本文是分析BUCK 同步整流电路中开关管与整流管的损耗模型,以两支管的损耗最小为目标,并以输入电压IN V =5V ,输出电压OUT V =1.8V ,开关频率s f =5MHZ为例,用MATLAB 工具对其进行优化计算,得出该条件下器件物理参数。
关键词 SR-Buck, MOSFET 损耗模型 , MATLAB 优化1.引言MOSFET 现已成为高频开关变换器、微处理器与半导体存储器等先进集成电路(IC)中最主要的器件单元,它尺寸小、功耗低、并与数字电路的主流工艺兼容。
近年来,使用MOSFET 的模拟IC 逐渐已成为主流,改变了以往主要使用双极型器件的局面。
GENFET MOSFET 器件就采用了Genera l Semiconductor 公司的0.35um 深槽工艺制造出了每平方英寸含200M 单元,集成度提高了4倍,更加适合了移动电话机,笔记本电脑,PDA 以及其它的无线电产品的应用。
因此在高功率密度集成Buck 同步整流电路中,确定MOSFET 的损耗模型,优化电路中主开关管与同步整流管的最小损耗模型显得十分重要。
2.寄生参数随着器件尺寸的不断减小,电路模拟程序中的器件模型也越来越复杂,以保证模拟结果的精确度;然而电路的模拟精确度不仅与器件模型有关,还与给定的器件模型参数有关。
功率MOSFET 的常用等效模型如图1,其中dson R 为导通电阻,Cgs 及Cds 和Cgd 为MOSFET 的寄生电容[1],它们的值是非线性的与施加在MOSFET 上的栅极的电压有关。
为简化分析,在此的模型的优化过程中忽略了引线电感等,并使器件工作在线形放大区。
在图1中:Cgov W Cox L W Cgd Cgs ⋅+⋅⋅==2 (1)Cgs 、Cgd 分别是栅极与源极、栅极与漏极之间的电容,Cgov 是栅极与源极、漏极之间的重叠电容[2];图1 MOSFET 常用等效电路模型Cox =ox ox T /97.3ε 是每单位面积的氧化层的电容,其中o ε是真空介电 常数,ox T 为栅极氧化层的厚度,ox ε为栅极氧化层的介电常数。
压降乘上RMS电流就是损耗,然后用热阻来计算温升,在加上环境温度就是最终的结温,如果不超过datasheet给出的值就OK。
Ploss=0.9*3=2.7W 公式中0.9是VFRt=37℃/WRth=2℃/W不需要加散热器。
电源设计都要考虑效率与散热问题,此公式供大家参考:T=(P/Fm)^0.8 *539/AP : 损耗(热量);Fm: 散热面积;A :散热校正系数,与散热材料有关;T :温升.A的取值范围,要看你所用的散热材料,是用铜,铝还是铁,要查下它们的参数,导热系数,热阻.散热设计是一个比较复杂,也很头痛的事情,相互学习吧.希望有更多的人来参与,讨论.任何器件在工作时都有一定的损耗,大部分的损耗变成热量.小功率器件损耗小,无需散热装置.而大功率器件损耗大,若不采取散热措施,则管芯的温度可达到或超过允许的结温,器件将受到损坏.因此必须加散热装置,最常用的就是将功率器件安装在散热器上,利用散热器将热量散到周围空间,必要时再加上散热风扇,以一定的风速加强冷却散热.在某些大型设备的功率器件上还采用流动冷水冷却板,它有更好的散热效果. 散热计算就是在一定的工作条件下,通过计算来确定合适的散热措施及散热器.功率器件安装在散热器上.它的主要热流方向是由管芯传到器件的底部,经散热器将热量散到周围空间.采用什么方式散热以及散热片要多大,由以下条件决定:1、元件损耗2、元件散热环境3、元件最高允许温度如果要进行散热设计,上面的三个条件必须提供,然后才能进行估算.大部分TO-220三极管,一般中间那个脚是C,它又跟管子本身的金属片相连,也有不相连的.散热片与金属片那个脚相连,所以一些高压,绝缘不良的问题要主意啦,要留有一定的距离,或选好的绝缘材料.以7805为例说明问题.设I=350mA,Vin=12V,则耗散功率Pd=(12V-5V)*0.35A=2.45W按照TO-220封装的热阻θJA=54℃/W,温升是132℃,设室温25℃,那么将会达到7805的热保护点150℃,7805会断开输出.正确的设计方法是:首先确定最高的环境温度,比如60℃,查出7805的最高结温TJMAX=125℃,那么允许的温升是65℃.要求的热阻是65℃/2.45W=26℃/W.再查7805的热阻,TO-220封装的热阻θJA=54℃/W,均高于要求值,都不能使用,所以都必须加散热片,资料里讲到加散热片的时候,应该加上4℃/W的壳到散热片的热阻.计算散热片应该具有的热阻也很简单,与电阻的并联一样,即54//x=26,x=50℃/W.其实这个值非常大,只要是个散热片即可满足.国际化标准组织ISO规定:确定散热器的传热系数K值的实验,应在一个长( 4±0.2 )m×宽( 4±0.2 )m×高( 2.8±0.2 )m的封闭小室内,保证室温恒定下进行,散热器应无遮挡,敞开设置.散热器的传热系数是表示:当散热器内热媒平均温度与室内空气温度的差为1℃时,每㎡散热面积单位时间放出的热量.单位为W/㎡.℃.散热量单位为W.传热系数与散热量成正比.影响散热器传热系数的最主要因素是热媒平均温度与室内空气温度的温差△T,散热器的材质、几何尺寸、结构形式、表面喷涂、热媒温度、流量、室内空气温度、安装方式、片数等条件都会影响传热系数的大小.散热器性能检测标准工况(当△T=64.5℃时),即:热媒进口温度95℃,出口温度70℃,空气基准温度18℃.安规要求:对初/次级距离有三种方式:1.爬电距离达到要求.2.空间距离达到要求.3.采用绝缘材料:a.用大于0.4mm厚的绝缘材料.b.用能达到耐压要求的多层安规绝缘材料距离可小于0.4mm如变压器中用三层黄胶纸.散热器的计算:总热阻RQj-a=(Tjmax-Ta)/PdTjmax :芯组最大结温150℃Ta :环境温度85℃Pd : 芯组最大功耗Pd=输入功率-输出功率={24×0.75+(-24)×(-0.25)}-9.8×0.25×2=5.5℃/W总热阻由两部分构成,其一是管芯到环境的热阻RQj-a,其中包括结壳热阻RQj-C和管壳到环境的热阻RQC-a.其二是散热器热阻RQd-a,两者并联构成总热阻.管芯到环境的热阻经查手册知RQj-C=1.0 RQC-a=36 那么散热器热阻RQd-a应<6.4. 散热器热阻RQd-a=[(10/kd)1/2+650/A]C其中k:导热率铝为2.08d:散热器厚度cmA:散热器面积cm2C:修正因子取1按现有散热器考虑,d=1.0 A=17.6×7+17.6×1×13算得散热器热阻RQd-a=4.1℃/W,热量传递的三种基本方式:导热、对流和辐射.传热的基本计算公式为:Φ=ΚAΔt式中:Φ——热流量,W;Κ——总传热系数,W/(m2·℃);A ——传热面积,m2;Δt——热流体与冷流体之间的温差,℃.散热器材料的选择:常见金属材料的热传导系数:银429 W/mK铜410 W/mK金317 W/mK铝250 W/mK铁90 W/mK热传导系数的单位为W/mK,即截面积为1平方米的柱体沿轴向1米距离的温差为1开尔文(1K=1℃)时的热传导功率.5种不同铝合金热传导系数:AA1070型铝合金226 W/mKAA1050型铝合金209 W/mKAA6063型铝合金201 W/mKAA6061型铝合金155 W/mKADC12 型铝合金96 W/mK绝缘系统与温度的关系:insulation class Maximum Temperatureclass Y 194°F (90℃)class A 221°F (105℃)class E 248°F (120℃)class B 266°F (130℃)class F 311°F (155℃)class H 356°F (180℃)摄氏度,华氏度换算:摄氏度C=(华氏度-32)/1.8华氏度F= 32+摄氏度x1.8绝缘系统是指用于电气产品中兩个或數个绝缘材料的组合.基本绝缘:是指用于带电部分,提供防触电基本保护的绝缘.附加绝缘:是为了在基本绝缘失效后提供防触电保护,而在基本绝缘以外另外的单独绝缘.双重绝缘:是由基本绝缘和附加绝缘组合而成的绝缘.加强绝缘:是用于带电部分的一种单一绝缘系统,其防触电保护等级相当于双重绝缘.根据你提供的:热传导系数的单位为W/mK,即截面积为1平方米的柱体沿轴向1米距离的温差为1开尔文(1K=1℃)时的热传导功率.则:铝板的热传导能力就是:热功率(W}=250*铝板厚度{M)*铝板宽度(M)/铝板长度(M)/温差(℃)对不?做散热用,最好用6063、6061、6060等铝合金型材,便宜,散热好,但是不绝缘.传热的基本计算公式为:Φ=KAΔtΦ - 热流量,W;Κ - 总传热系数,W/(m2·℃);A - 传热面积,m2;Δt- 热流体与冷流体之间的温差,℃.导热基本定律—傅立叶定律:500) {this.resized=true; this.width=500; this.alt='这是一张缩略图,点击可放大。
常见器件损耗计算方法----开关电源电磁元件类输入滤波器 差模电感器以铜损为主,器件工作频率低,故磁损忽略哪些参数来自Datasheet/承认书?---常温24℃下直流电阻值R 0 Max哪些参数需要设计提供或实测提供?--常温24℃下直流电阻值R 0、输入有效电流值I RMS工作条件下的电阻值由于工作温度作用,需重新计算,最高工作温度定义为110℃,电阻值R 110为50.23424)50.234110(0110++=R R (234.5表示铜的K 值常数,铝的K 值常数是228.1)铜损为1102R I P RMS cu = (工作频率低,忽略趋肤效应;对称绕制,忽略邻近效应)共模电感器以铜损为主,由于噪声的Vt 值小,故磁损忽略哪些参数来自Datasheet/承认书?---常温24℃下直流电阻值R 0 Max哪些参数需要设计提供或实测提供?--常温24℃下直流电阻值R 0、输入有效电流值I RMS工作条件下的电阻值由于工作温度作用,需重新计算,最高工作温度定义为110℃,电阻值R 110为50.23424)50.234110(0110++=R R (234.5表示铜的K 值常数,铝的K 值常数是228.1)铜损为1102R I P RMS cu = (工作频率低,忽略趋肤效应;对称绕制,忽略邻近效应)PFC 电路 PFC 电感器以铜损为主,磁损为副,磁芯磁导率/工作状态表现为增量磁导率,即在一定偏置磁场下叠加一振幅较小的交变磁场;磁芯损耗只能近似采用标准功耗测试的一定频率和工作磁密下的正弦波损耗进行计算;哪些参数来自Datasheet/承认书?---常温24℃下直流电阻值R 0 Max ,磁芯体积Ve 、电感量L哪些参数需要设计提供或实测提供?--常温24℃下直流电阻值R 0、输入有效电流值I RMS 、 最大电流峰值:低压输入时峰值处的纹波电流di 、工作频率f铜损计算:工作条件下的电阻值由于工作温度作用,需重新计算,最高工作温度定义为110℃,电阻值R 110为50.23424)50.234110(0110++=R R (234.5表示铜的K 值常数,铝的K 值常数是228.1)铜损为1102R I P RMS cu =附:若考虑趋肤效应的影响,按下式进行趋肤效应下的电阻计算 (圆铜线按直径,铜皮或扁平线按厚度):30038.00035.096.0x x R R dcac++= )20(00393.01-+=T fdx d 线径(inch) f 工作频率(Hz) T 工作温度(℃)磁损计算:工作时的工作磁密最大值:AeN LdidB Ae dB N Ldi ∙=→∙∙= L 是工作状态时的电感量,磁芯100℃下的损耗公式,也可通过查磁芯损耗图获得相同信息(损耗公式来自于此): 铁氧体类PC40相当材:d c Fe dB af P = P Fe 磁芯单位损耗mW/cm 3 dB 工作磁密kG f 工作频率kHz铁氧体类PC44相当材:d c Fe dB af P = P Fe 磁芯单位损耗mW/cm 3 dB 工作磁密kG f 工作频率kHz粉芯材料相当材:粉芯材料由于均匀气隙分布,我们认为损耗值与温度无关;FeSiAl 粉芯材料损耗公式--损耗与磁导率无关:46.10.2dB fP Fe = P Fe 磁芯单位损耗mW/cm 3 dB 工作磁密kG f 工作频率kHz附:参考损耗曲线图—推导损耗公式:查磁芯手册中对应磁芯的体积Ve ,计算功耗Ve P P Fe Core ∙= P core 磁芯损耗mW P Fe 磁芯单位损耗mW/cm 3 Ve 磁芯体积mm 3总损耗P Total 为Core Cu Total P P P +=DC~DC 电路 谐振电感器以磁损为主,铜损为副,不考虑邻近效应磁芯磁导率/工作状态表现为振幅磁导率,即交变磁场单向或双向振幅大的磁导率; 磁芯损耗只能近似采用标准功耗测试的一定频率和工作磁密下的正弦波损耗进行计算;哪些参数来自Datasheet/承认书?---常温24℃下直流电阻值R 0 Max ,磁芯体积Ve 、电感量L哪些参数需要设计提供或实测提供?--常温24℃下直流电阻值R 0、输入有效电流值I RMS 、 (最高)工作频率f铜损计算:工作条件下的电阻值由于工作温度作用,需重新计算,最高工作温度定义为110℃,电阻值R 110为50.23424)50.234110(0110++=R R (234.5表示铜的K 值常数,铝的K 值常数是228.1)铜损为1102R I P RMS cu =附:若考虑趋肤效应的影响,按下式进行趋肤效应下的电阻计算 (圆铜线按直径,铜皮或扁平线按厚度):30038.00035.096.0x x R R dcac++= )20(00393.01-+=T fdx d 线径(inch) f 工作频率(Hz) T 工作温度(℃)磁损计算:工作时的工作磁密最大值:AeN LdidB Ae dB N Ldi ∙=→∙∙= L 是工作状态时的电感量,由于谐振电感器的电感量要求基本不变化,与来料的承认书要求一致;di 取电感器输入有效电流值I RMS ;dB 是双向工作状态,故工作时的磁密取值为2Bm ,所以以下的磁芯损耗取值为Bm磁芯100℃下的损耗公式,也可通过查磁芯损耗图获得相同信息(损耗公式来自于此): 铁氧体类PC40相当材:dm c Fe B af P = P Fe 磁芯单位损耗mW/cm 3 dB 工作磁密kG f 工作频率kHz铁氧体类PC44相当材:d m c Fe B af P = P Fe 磁芯单位损耗mW/cm 3dB 工作磁密kG f 工作频率kHz粉芯材料相当材:粉芯材料由于均匀气隙分布,我们认为损耗值与温度无关; MMP –26材粉芯材质:55.225.1437.5dB f P Fe = P Fe 磁芯单位损耗mW/cm 3 dB 工作磁密kG f 工作频率kHzMMP –60材粉芯材质:24.241.1625.0dB f P Fe = P Fe 磁芯单位损耗mW/cm 3 dB 工作磁密kG f 工作频率kHz查磁芯手册中对应磁芯的体积Ve ,计算功耗Ve P P Fe Core ∙= P core 磁芯损耗mW P Fe 磁芯单位损耗mW/cm 3 Ve 磁芯体积mm 3总损耗P Total 为Core Cu Total P P P +=主变压器以磁损为主,铜损为副,考虑邻近效应磁芯磁导率/工作状态表现为振幅磁导率,即交变磁场单向或双向振幅大的磁导率; 磁芯损耗只能近似采用标准功耗测试的一定频率和工作磁密下的正弦波损耗进行计算; 由于方波的损耗要比正弦波损耗低10%,故损耗可降低10%;哪些参数来自Datasheet/承认书?---常温24℃下原副边直流电阻值R 0 Max ,磁芯体积Ve 哪些参数需要设计提供或实测提供?--常温24℃下原副边直流电阻值R 0、占空比Dmax 、(最高)工作频率f铜损计算:工作条件下的电阻值由于工作温度作用,需重新计算,最高工作温度定义为110℃,电阻值R 110为50.23424)50.234110(0110++=R R (234.5表示铜的K 值常数,铝的K 值常数是228.1)铜损为1102R I P RMS cu =附:若考虑趋肤效应的影响,按下式进行趋肤效应下的电阻计算 (圆铜线按直径,铜皮或扁平线按厚度):30038.00035.096.0x x R R dcac++= )20(00393.01-+=T fdx d 线径(inch) f 工作频率(Hz) T 工作温度(℃)邻近效应系数:为了简化计算,我们通过以下绕制方式进行系数增加损耗,条件为1. d/T=<1 (d/T 是导体直径与趋肤深度之比,d :导体直径(mm) T :趋肤深度(mm))2. 原边一次绕制完成层数<2层3. 副边一次绕制层数<3层S RMSS P RMSP cuTotal R I R I P 11021102+=磁损计算:通过法拉第定律,推导工作磁密dtdB NAe dt d NV ==φ双向磁化时的工作磁密为 Bm dB 2=NAeVTonBm 2=,移向全桥时,NAef VD Bm MAX 4=单向磁化时的工作磁密为NAeVTonBm dB ==磁芯100℃下的损耗公式,也可通过查磁芯损耗图获得相同信息(损耗公式来自于此): 铁氧体类PC40相当材:d m c Fe B af P = P Fe 磁芯单位损耗mW/cm 3dB 工作磁密kG f 工作频率kHz铁氧体类PC44相当材:dm c Fe B af P = P Fe 磁芯单位损耗mW/cm 3dB 工作磁密kG f 工作频率kHz查磁芯手册中对应磁芯的体积Ve ,计算功耗Ve P P Fe Core ∙= Core P 磁芯损耗mW P Fe 磁芯单位损耗mW/cm 3 ,Ve 磁芯体积mm 3总损耗P Total 为Core Cu Total P P P +=附:邻近效应分析对计算圆形截面导体中,由邻近效应引起的损耗为:cP Gr Id B w P ρ12814159.3422=P p :邻近效应损耗;w :磁场角速度;B :磁感应强度;l :导体长度;d :导体直径; Gr :邻近效应因子;P C :导体电阻率;邻近效应因子Gr 是无量纲因子,它的变化规律仅适合于圆形截面积导体。
回波损耗一.专业术语:插入损耗—Return Loss光反射测量计---Optical ReflectometerOR光回损---Optical Return LossORL二.回波损耗:当光传输在某一光器件中时,总有部分光被反射回来,光器件中回波主要由菲涅尔反射(由于折射率变化引起)、后向瑞利散射(杂质微粒引起)以及方向性等因素产生的。
它是指在光线连接处,后向反射光相对输入光的比率的分贝数。
回波损耗RL计算方法为:RL(dB)=-10lg(反射光功率/入射光功率)较高的反射光被回送到发光器件, 对发出激光产生噪音, 线宽, 频率方面的干扰, 最终造成发射光的不稳定, 进而产生系统误码, 回损较大时, 将严重影响传输系统的传输性能不匹配主要发生在连接器的地方,但也可能发生于电缆中特性阻抗发生变化的地方,所以施工的质量是提高回波损耗的关键。
回波损耗愈大愈好,以减少反射光对光源和系统的影响。
尽量将光纤端面加工成球面或斜球面是改进回波损耗的有效方法。
三.回损形成的原因高反射的形成原因–因光纤接口、法兰盘、光盘的SC/SC适配器、FC/SC适配器等器件的不洁、–接触不充分或过紧–尾纤被挤压等情况–尾纤的曲率半径过小–光接头接触点湿度过大,会使光纤接口处形成反射膜,从而导致反射过大–光接头,法兰盘的物理损伤–纤芯熔接不好三.回波损耗指标简介:回波损耗是数字电缆产品的一项重要指标,回波损耗合并了两种反射的影响,包括对标称阻抗(如:100Ω)的偏差以及结构影响,用于表征链路或信道的性能。
它是由于电缆长度上特性阻抗的不均匀性引起的,归根到底是由于电缆结构的不均匀性所引起的。
由于信号在电缆中的不同地点引起的反射,到达接收端的信号相当于在无线信道传播中的多径效应,从而引起信号的时间扩散和频率选择性衰落,时间扩散导致脉冲展宽,使接收端信号脉冲重叠而无法判决。
信号在电缆中的多次反射也导致信号功率的衰减,影响接收端的信噪比,导致误码率的增加,从而也限制传输速度。
铁损是磁滞损耗和涡流损耗之和,是个固定值,它约等于空载损耗,800KVA变压器空载损耗约1.2KW。
负载损耗是随负载的变化而变化,只能计算出大约值。
如果你还保留变压器的出厂检验报告,报告中有一个指标叫额定铜损(短路损耗),用这个额定铜损可以算出铜损。
铜损=(二次工作电流/二次额定电流)的平方*额定铜损(短路损耗)。
800KVA变压器额定铜损耗约8.9KW.计算方法:估算每小时平均用电量=52000KWH/30天/8小时=216.7KWH估算每小时平均电功率=216.7KWH/1H=216.7KW估算每小时平均电流=216.7KW/(1.732*380V*0.9)=366A计算额定电流=800KW/(1.732*400V)=1155A估算铜损=(366A/1155A)*(366A/1155A)*8.9KW(铜损)=0.89KW计算每小时铜损电度=0.89KW*H=0.89KWH(度)计算月铜损电度0.89KWH*8小时*30天=213.6KWH(度)估算每小时铁损电度数=1.2KW*1H=1.2KWH计算月铁损电度数=1.2KWH*8小时*30天=288KWH(度)月损耗合计=213.6KWH+288KWH=501.6KWH800KVA变压器月用电量是52000度左右,月电损量大约501度变压器损耗的计算方法:PZ=(S/SZ)2Pkn(1)式(1)中,S—变压器的实际负荷;SZ—变压器的额定容量;Pkn—变压器在额定电流下的短路损耗。
这样,单台变压器的总损耗为:P=P0+PZ=P0+(S/SZ)2Pkn(2)当两台变压器并列运行时,各变压器的负载分配与该变压器的额定容量成正比,与短路电压成反比,即:S=S1+S2(3)S1:S2=(Sn1/Uk1):(Sn2/Uk2)(4)式(4)中,S—总负荷;Uk—变压器的短路电压。
这时两台变压器并列运行的总损耗Pb为:Pb=P1+P2=PO1+PO2+(S1/Sn1)2Pkn1+(S2/Sn2)2Pkn2 (5)将(3)式代入为:Pb=PO1+PO2+[(Pkn1Uk22+Pkn2Uk12)/(Sn2Uk1+Sn1Uk2)2]S2(6)式(6)中,P的单位为kW,S的单位为MVA配电变压器保护主要有两个方法:1)采用熔断器作为保护熔断器是配电变压器最常见的一种短路故障保护设备,它具有经济、操作方便、适应性强等特点,被广泛应用于配电变压器一次侧作为保护和进行变压器投切操作用。
2011年2月电工技术学报Vol.26 No. 2 第26卷第2期TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY Feb. 2011大功率三电平变频器损耗计算及散热分析景巍谭国俊叶宗彬(中国矿业大学信息与电气工程学院徐州 221008)摘要准确计算功率器件损耗可优化变频器的散热设计。
功率器件的导通和开关特性对温度比较敏感,损耗计算必须考虑结温的影响。
本文分析了中点钳位式(NPC)三电平变频器功率器件导通和开关规律,在此基础上建立了一套实用的损耗计算方法。
通过热阻等效电路计算了功率器件的结温。
对一台1MVA NPC三电平变频器在逆变和整流两种典型工况下进行了试验分析,采用红外热成像仪对功率器件的温度进行测量,计算和测量结果误差率在5%以内,验证了损耗计算的准确性。
关键词:三电平变频器 IGBT模块损耗结温散热热阻中图分类号:TM464Losses Calculation and Heat Dissipation Analysis ofHigh-Power Three-Level ConvertersJing Wei Tan Guojun Ye Zongbin(China University of Mining and Technology Xuzhou 221008 China)Abstract Thermal design of the converter can be optimized if the power losses are precisely known. The device’s conduction and switching characteristics are very sensitive to the temperatures, so the influence of junction temperatures must be taken into consideration when calculating the power losses. In this paper, a practical loss calculation method is derived based on the analysis of the conduction and switching principles of the neutral point clamping three-level converters. Using thermal resistance equivalent circuit, the devices junction temperatures are acquired. An 1MVA NPC converter is tested in inverter and rectifier operating modes, and the infrared thermal imager is used to measure the devices temperatures. The error rates between measured and calculated temperatures are within 5% range and thus the validity of the loss calculation method is verified.Keywords:Three-level converter, IGBT module, loss, junction temperature, heat dissipation, thermal resistance1引言大功率变频器采用多电平技术可有效地降低变频器输出电压的谐波成分,改善其输出性能[1]。