变频器功率器件选型与损耗计算
- 格式:ppt
- 大小:670.50 KB
- 文档页数:66
3、电磁调速系统电磁调速系统由鼠笼异步电机、转差离合器、测速电机和控制装置组成,通过改变转差离合器的激磁电流来实现调速。
转差离合器的本身的损耗是由主动部分的风阻、磨擦损耗及从动部分的机械磨擦损所产生的。
如果考虑这些损耗与转差离合器的激磁功率相平衡,且忽略不计的话,转差离合器的输入、输出功率可由下式计算:电动机轴输出功率式中:T2—转差离合器的输出转矩n2 –-转差离合器的输出轴转速电动机的输出功率,即为转差离合器的输入功率。
对于恒转矩负载,T= T1 = T2=常数,所以,转差离合器的效率:电磁调速电机为鼠笼式电机,由于输入功率和转矩均保持不变,鼠笼式电机的功率保持不变。
损耗以有功的形式表达出来,损耗功率通过转差离合器涡流发热并由电枢上的风叶散发出去。
由损耗功率公式(10)可以清楚看到,电磁调速电机的转速越低,浪费能源越大,然而生产机械的转速通常不在最大转速下运行,变频调速是一种改变旋转磁场同步速度的方法,是不耗能的高效调速方式,因此改用变频调速的方式会有非常好的节能效果,节省的能量直接可用(10)式计算。
4、液力偶合器调速系统液力偶合器是通过控制工作腔内工作油液的动量矩变化,来传递电动机能量,电动机通过液力偶合器的输入轴拖动其主动工作轮,对工作油进行加速,被加速的工作油再带动液力偶合器的从动工作涡轮,把能量传递到输出轴和负载。
液力偶合器有调速型和限矩型之分,前者用于电气传动的调速,后者用于电机的起动,系统中的液力偶合器在电机起动时起缓冲作用。
由于液力偶合器的结构与电磁转差离合器类似,仿照电磁调速器效率的计算方法,可得:同样,用(12)式可计算将液力耦合器调速改造为变频调速后的节能量。
5、绕线式电机串电阻调速系统绕线式电机最常用改变转子电路的串接电阻的方法调速,随着转子串接电阻的增大,不但可以方便地改变电机的正向转速,在位能负载时,还可使电机反向旋转和改变电机的反向转速,因此这种调速方式在起重﹑冶金行业应用较多。
变频器中的IGBT模块损耗计算及散热系统设计一、本文概述随着电力电子技术的快速发展,变频器作为电能转换与控制的核心设备,在工业自动化、新能源发电、电动汽车等领域得到了广泛应用。
绝缘栅双极晶体管(IGBT)作为变频器的关键功率器件,其性能直接影响到变频器的效率和可靠性。
IGBT模块的损耗计算和散热系统设计是变频器设计中的重要环节,对于提高变频器性能、降低运行成本、延长设备寿命具有重要意义。
本文旨在探讨变频器中IGBT模块的损耗计算方法和散热系统设计原则。
我们将分析IGBT模块的工作原理和损耗产生机制,包括通态损耗、开关损耗等。
在此基础上,我们将介绍损耗计算的数学模型和计算方法,以及如何通过实验手段验证计算结果的准确性。
我们将重点讨论散热系统的设计原则和优化方法,包括散热器结构设计、散热风扇的选择与控制、散热系统的热仿真分析等。
本文将总结一些实际应用中的经验教训,提出针对IGBT模块损耗计算和散热系统设计的优化建议,为变频器设计工程师提供有益的参考。
通过本文的研究,我们期望能够为变频器设计中的IGBT模块损耗计算和散热系统设计提供理论支持和实践指导,推动变频器技术的持续发展和应用创新。
二、IGBT模块损耗计算绝缘栅双极晶体管(IGBT)是变频器中的关键元件,其性能直接影响变频器的效率和可靠性。
IGBT模块的损耗计算是散热系统设计的基础,对于确保变频器的稳定运行具有重要意义。
IGBT模块的损耗主要包括通态损耗和开关损耗两部分。
通态损耗是指IGBT在导通状态下,由于电流通过而产生的热量损耗。
开关损耗则发生在IGBT的开通和关断过程中,由于电压和电流的乘积在时间上的积分不为零,导致能量损失。
通态损耗的计算公式为:Pcond = Icoll * Vce(sat),其中Icoll 为集电极电流,Vce(sat)为饱和压降。
饱和压降是IGBT导通时电压降的一个重要参数,它与集电极电流、结温和门极电流等因素有关。
3、电磁调速系统电磁调速系统由鼠笼异步电机、转差离合器、测速电机和控制装置组成,通过改变转差离合器的激磁电流来实现调速。
转差离合器的本身的损耗是由主动部分的风阻、磨擦损耗及从动部分的机械磨擦损所产生的。
如果考虑这些损耗与转差离合器的激磁功率相平衡,且忽略不计的话,转差离合器的输入、输出功率可由下式计算:电动机轴输出功率式中:T2—转差离合器的输出转矩n2 –-转差离合器的输出轴转速电动机的输出功率,即为转差离合器的输入功率。
对于恒转矩负载,T= T1 = T2=常数,所以,转差离合器的效率:电磁调速电机为鼠笼式电机,由于输入功率和转矩均保持不变,鼠笼式电机的功率保持不变。
损耗以有功的形式表达出来,损耗功率通过转差离合器涡流发热并由电枢上的风叶散发出去。
由损耗功率公式(10)可以清楚看到,电磁调速电机的转速越低,浪费能源越大,然而生产机械的转速通常不在最大转速下运行,变频调速是一种改变旋转磁场同步速度的方法,是不耗能的高效调速方式,因此改用变频调速的方式会有非常好的节能效果,节省的能量直接可用(10)式计算。
4、液力偶合器调速系统液力偶合器是通过控制工作腔内工作油液的动量矩变化,来传递电动机能量,电动机通过液力偶合器的输入轴拖动其主动工作轮,对工作油进行加速,被加速的工作油再带动液力偶合器的从动工作涡轮,把能量传递到输出轴和负载。
液力偶合器有调速型和限矩型之分,前者用于电气传动的调速,后者用于电机的起动,系统中的液力偶合器在电机起动时起缓冲作用。
由于液力偶合器的结构与电磁转差离合器类似,仿照电磁调速器效率的计算方法,可得:同样,用(12)式可计算将液力耦合器调速改造为变频调速后的节能量。
5、绕线式电机串电阻调速系统绕线式电机最常用改变转子电路的串接电阻的方法调速,随着转子串接电阻的增大,不但可以方便地改变电机的正向转速,在位能负载时,还可使电机反向旋转和改变电机的反向转速,因此这种调速方式在起重﹑冶金行业应用较多。
IGBT损耗的计算步骤与方法什么是IGBT?IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极晶体管)是一种高性能半导体开关,常见于大功率电子器件中,如变频器、电机驱动器等。
IGBT相对于MOSFET具有较高的电流和电压承受能力,而且相对于BJT来说,具有更低的输入电流和较高的输入电阻,因此在大功率应用中更为常见。
IGBT损耗的计算在IGBT系统中,由于电源的转换和系统中开关器件的切换,导致了电力的不可避免损耗。
IGBT损耗主要包括开关损耗和导通损耗两部分。
而在IGBT汽车应用中,由于空间限制,功率密度较高,设备大小小,自然散热能力弱,IGBT系统损耗往往成为设计的关键因素。
所以,IGBT损耗的计算是高功率电路设计的重要内容之一。
IGBT的计算主要包含以下步骤:1.确定IGBT的工作状态在IGBT电路中,由于器件的导通与截止会引起电路工作状况的不同,因此损耗的计算也应该区分导通和截止两种状态。
通常,为了保证IGBT的最大导通效率,前者工作于正常区间,而后者运行于饱和区间。
2.确定开关频率和时序在实际应用中,IGBT的开关频率不是固定的。
在开关过程中,由于开关时间和停留时间存在差异,因此开关频率和开关时序对IGBT的损耗具有很大影响。
决定损耗的因素包括IGBT的最高频率、电磁噪音、损耗曲线等。
3.计算IGBT的导通损耗导通损耗通常是由IGBT导通时由于电源的电阻而产生的热量导致的。
在计算导通损耗时,需要以实际的经验模型为基础,进行大量的电流、电压和温度的测试,得出实际损耗值。
4.计算IGBT的开关损耗在IGBT的开关过程中,由于机械运动和位移电容等因素造成的开关损耗,这部分损耗无法避免且很难直接测量。
5.损耗计算与分析以上四个步骤的计算结果,根据IGBT应用环境、工作状态和电路等因素,综合计算获得系统总损耗。
通过对得到的数据进行深入的分析和评估,可以进一步判断设计是否合理,进行优化。
变频器容量计算和选择方法变频器的容量可从3个角度表述:额定电流、可用电动机功率和额定容量。
其中后两项是变频器生产厂家由本国或本公司生产的标准电动机给出,或随变频器输出电压而降低,都很难确切表达变频器的能力。
不管是哪一种表示方法,归根到底还是对变频器额定电流的选择,应结合实际情况根据电动机有可能向变频器吸取的电流来决定。
选择变频器时,只有变频器的额定电流是一个反映变频器负载能力的关键量。
负载电流不超过变频器额定电流是选择变频器容量的基本原则。
在确定变频器容量前应仔细了解生产工艺设备的情况及电动机参数,例如潜水电泵、绕线转子电动机的额定电流要大于普通笼型异步电动机额定电流,冶金工业常用的辊道电动机不仅额定电流大,同时它允许短时处于堵转工作状态,且辊道传动大多是多电动机传动。
应保证在无故障状态下负载总电流均不允许超过变频器的额定电流。
通常变频器的过载能力有两种:1) 1.2倍的额定电流,可持续1min。
2) 1.5倍的额定电流,可持续1min。
变频器的允许过电流与过载时间呈反时限的关系。
如1.2(1.5)倍的额定电流可持续1min;而1.8(2.0)倍的额定电流可持续0.5 min。
这就意味着不论任何时候变频器向电动机提供的电流要在1min(或0.5min)的时限允许范围内。
变频器的额定功率指的是它适用的4极交流异步电动机的功率,由于同容量电动机,其极数不同,电动机额定电流不同。
随着电动机极数的增多,电动机额定电流增大。
变频器的容量选择不能以电动机额定功率为依据。
同时,对于原来未采用变频器的改造项目,变频器的容量选择也不能以电动机额定电流为依据。
因为,电动机的容量选择要考虑最大负载、富裕系数、电动机规格等因素,往往电动机的容量富裕量较大,工业用电动机常常在50%~60%额定负载下运行。
若以电动机额定电流为依据来选择变频器的容量,留有富裕量太大,造成经济上的浪费,而可靠性并没有因此得到提高。
变频器与电动机的匹配主要还是电动机的额定电压及额定电流,如果电动机额定电流小于同功率的变频器的额定电流,一般来说用同等功率的就足够了,如果电动机额定电流大于同功率的变频器的额定电流,只好用大一级的变频器。
浅议大功率三电平变频器损耗计算及散热分析摘要:准确的算出大功率的三电平变频机的损耗,能够使变频机的散热系统得到优化。
变频器的导通和开关对温度的变化十分敏感,在进行大功率三电平变频器损耗计算的时候,一定要考虑温度变化所带来的影响。
本文重点介绍了大功率三电平变频器的导通和开关的变化方式,并且通过研究整理出了一套能够计算损耗的方法。
对一台大功率三电平变频器在逆变和整流这两种情况下进行了研究和讨论。
关键词:三电平变频器;损耗;计算大功率变频器由于采用了多变频技术,从而改善了输出性能,由于电平数量的增多,其相连的变频器的功率部件也会随之上升。
所以无论从哪一个方面看三电平变频器优势都十分明显。
变频器的数量增加,其变频器的功率部件也在不断的损耗,所以在过程中出现的散热问题,已经成为了大功率三电平变频器制作过程中,可能出现的核心问题。
1.NPC三电平变频器的开关状态问题NPC因为钳位二极管的原因,可以输出三种开关状态分别是P、O、N这三种状态。
其三种开关状态对应的开关序列和输出的电压可以参照表1所示。
从负载电流的流向能够看出,状态不同的情况下有两种不同电流通过,本文把电流流出变频器的方向看成正,流入变频器的方向是负[1]。
2.损耗计算方法VT1在同一个调制周期的内的导通损耗及开关损耗的计算方法:开关的频率比调制频率要高的时候,开关的损耗的计算方法可以用连续积分来表达,还能重新表达为:3.普遍的功率器件散热方式3.1空气中散热空气中散热是指不用任何外力来提高能量进行发热,而是不停的向周围环境散发热量,从而达到能够控制其温度的目的。
传热方式有对流、传导、辐射等等传播方式,自然对流是主要的传播方式。
对温度要求不高的耗电器件不需要其他的冷却器件,采用在空气中散热就可以[2]。
3.2风冷散热空气中散热的方式如果完全不起作用,就要借助其外力来加强空气流动,器件发出的热流传给了周围。
这种方式简单便捷,而且十分便宜,技术已经成熟,工作原理安全,是散热方式中最普遍的一种。
变频器损耗计算及散热分析作者:杨斌韩飞来源:《科技风》2017年第03期摘要:变频器的损耗计算和散热,是比较重要的两项内容,分析好损耗与散热,才能保证变频器的有效性,避免增加变频器的能耗。
本文主要结合变频器运行,探讨损耗计算与散热。
关键词:变频器;损耗计算;散热随着我国经济事业的发展,能耗以及能源价格等,也得到了明显的提升,直接增加了企业的消耗成本。
基于节能降耗的思想,变频器方面,提高了对损耗计算以及散热分析的重视度,一方面研制节能降耗型的变频器,另一方面提高维护变频器的性能,延长其在行业中的使用寿命,避免变频器运行中出现安全问题。
一、变频器的系统分析(一)环境设定变频器的机箱外部,如环境温度是35℃,而空气之间的换热系数,就要设计成5W/m2·K,絮流的气流状态,速度是0.5m/s,按照变频器的系统设计,求出环境设定的数值,其中求解过程中,箱体的体系是定义的10倍,迭代求解的次数是400。
(二)建立模型变频器的损耗计算与散热分析中,构建系统化的模型,包括变频器建模、散热器建模以及风扇建模,目的是利用建模实现变频器的准确研究[ 1 ]。
例如:变频器的系统建模,会根据实际变频器的参数,输入到模型中,如变频器的底面,选用铝或铜的材料,厚度是3mm,等,在建模后,变频器的一面,必须紧紧贴着散热器,散热器的建模中,选用的是肋片结构,每个肋片的间距是7mm,根部的厚度,保持在15mm,可使用的规格为675.6mm×652mm×73mm。
(三)划分网格变频器系统中,通过网格规划,研究散热器与热源的关系,可以使用粗糙网格的方式,规划好变频器系统中对应的网格,加强整体网格划分后的分布与控制情况,规避网格划分中潜在的误差,进而优化变频器的系统研究。
二、变频器的损耗计算变频器损耗计算时,需要建立相关的损耗模型,根据变频器的各个开关,构建复杂的数学模型,期间涉及到大规模的计算量[ 2 ]。
3、电磁调速系统电磁调速系统由鼠笼异步电机、转差离合器、测速电机和控制装置组成,通过改变转差离合器的激磁电流来实现调速。
转差离合器的本身的损耗是由主动部分的风阻、磨擦损耗及从动部分的机械磨擦损所产生的。
如果考虑这些损耗与转差离合器的激磁功率相平衡,且忽略不计的话,转差离合器的输入、输出功率可由下式计算:电动机轴输出功率式中:T2—转差离合器的输出转矩n2 –-转差离合器的输出轴转速电动机的输出功率,即为转差离合器的输入功率。
对于恒转矩负载,T= T1 = T2=常数,所以,转差离合器的效率:电磁调速电机为鼠笼式电机,由于输入功率和转矩均保持不变,鼠笼式电机的功率保持不变。
损耗以有功的形式表达出来,损耗功率通过转差离合器涡流发热并由电枢上的风叶散发出去。
由损耗功率公式(10)可以清楚看到,电磁调速电机的转速越低,浪费能源越大,然而生产机械的转速通常不在最大转速下运行,变频调速是一种改变旋转磁场同步速度的方法,是不耗能的高效调速方式,因此改用变频调速的方式会有非常好的节能效果,节省的能量直接可用(10)式计算。
4、液力偶合器调速系统液力偶合器是通过控制工作腔内工作油液的动量矩变化,来传递电动机能量,电动机通过液力偶合器的输入轴拖动其主动工作轮,对工作油进行加速,被加速的工作油再带动液力偶合器的从动工作涡轮,把能量传递到输出轴和负载。
液力偶合器有调速型和限矩型之分,前者用于电气传动的调速,后者用于电机的起动,系统中的液力偶合器在电机起动时起缓冲作用。
由于液力偶合器的结构与电磁转差离合器类似,仿照电磁调速器效率的计算方法,可得:同样,用(12)式可计算将液力耦合器调速改造为变频调速后的节能量。
5、绕线式电机串电阻调速系统绕线式电机最常用改变转子电路的串接电阻的方法调速,随着转子串接电阻的增大,不但可以方便地改变电机的正向转速,在位能负载时,还可使电机反向旋转和改变电机的反向转速,因此这种调速方式在起重﹑冶金行业应用较多。
3、电磁调速系统电磁调速系统由鼠笼异步电机、转差离合器、测速电机和控制装置组成,通过改变转差离合器的激磁电流来实现调速。
转差离合器的本身的损耗是由主动部分的风阻、磨擦损耗及从动部分的机械磨擦损所产生的。
如果考虑这些损耗与转差离合器的激磁功率相平衡,且忽略不计的话,转差离合器的输入、输出功率可由下式计算:电动机轴输出功率式中:T2—转差离合器的输出转矩n2 –-转差离合器的输出轴转速电动机的输出功率,即为转差离合器的输入功率。
对于恒转矩负载,T= T1 = T2=常数,所以,转差离合器的效率:电磁调速电机为鼠笼式电机,由于输入功率和转矩均保持不变,鼠笼式电机的功率保持不变。
损耗以有功的形式表达出来,损耗功率通过转差离合器涡流发热并由电枢上的风叶散发出去。
由损耗功率公式(10)可以清楚看到,电磁调速电机的转速越低,浪费能源越大,然而生产机械的转速通常不在最大转速下运行,变频调速是一种改变旋转磁场同步速度的方法,是不耗能的高效调速方式,因此改用变频调速的方式会有非常好的节能效果,节省的能量直接可用(10)式计算。
4、液力偶合器调速系统液力偶合器是通过控制工作腔工作油液的动量矩变化,来传递电动机能量,电动机通过液力偶合器的输入轴拖动其主动工作轮,对工作油进行加速,被加速的工作油再带动液力偶合器的从动工作涡轮,把能量传递到输出轴和负载。
液力偶合器有调速型和限矩型之分,前者用于电气传动的调速,后者用于电机的起动,系统中的液力偶合器在电机起动时起缓冲作用。
由于液力偶合器的结构与电磁转差离合器类似,仿照电磁调速器效率的计算方法,可得:同样,用(12)式可计算将液力耦合器调速改造为变频调速后的节能量。
5、绕线式电机串电阻调速系统绕线式电机最常用改变转子电路的串接电阻的方法调速,随着转子串接电阻的增大,不但可以方便地改变电机的正向转速,在位能负载时,还可使电机反向旋转和改变电机的反向转速,因此这种调速方式在起重﹑冶金行业应用较多。
3、电磁调速系统 电磁调速系统由鼠笼异步电机、转差离合器、测速电机和控制装置组成,通过改变转差离合器的激磁电流来实现调速。
转差离合器的本身的损耗是由主动部分的风阻、磨擦损耗及从动部分的机械磨擦损所产生的。
如果考虑这些损耗与转差离合器的激磁功率相平衡,且忽略不计的话,转差离合器的输入、输出功率可由下式计算: 电动机轴输出功率 式中:T2—转差离合器的输出转矩 n2 –-转差离合器的输出轴转速 电动机的输出功率,即为转差离合器的输入功率。
对于恒转矩负载,T= T1 = T2=常数,所以,转差离合器的效率: 电磁调速电机为鼠笼式电机,由于输入功率和转矩均保持不变,鼠笼式电机的功率保持不变。
损耗以有功的形式表达出来,损耗功率通过转差离合器涡流发热并由电枢上的风叶散发出去。
由损耗功率公式(10)可以清楚看到,电磁调速电机的转速越低,浪费能源越大,然而生产机械的转速通常不在最大转速下运行,变频调速是一种改变旋转磁场同步速度的方法,是不耗能的高效调速方式,因此改用变频调速的方式会有非常好的节能效果,节省的能量直接可用(10)式计算。
4、液力偶合器调速系统 液力偶合器是通过控制工作腔内工作油液的动量矩变化,来传递电动机能量,电动机通过液力偶合器的输入轴拖动其主动工作轮,对工作油进行加速,被加速的工作油再带动液力偶合器的从动工作涡轮,把能量传递到输出轴和负载。
液力偶合器有调速型和限矩型之分,前者用于电气传动的调速,后者用于电机的起动,系统中的液力偶合器在电机起动时起缓冲作用。
由于液力偶合器的结构与电磁转差离合器类似,仿照电磁调速器效率的计算方法,可得: 同样,用(12)式可计算将液力耦合器调速改造为变频调速后的节能量。
5、绕线式电机串电阻调速系统 绕线式电机最常用改变转子电路的串接电阻的方法调速,随着转子串接电阻的增大,不但可以方便地改变电机的正向转速,在位能负载时,还可使电机反向旋转和改变电机的反向转速,因此这种调速方式在起重﹑冶金行业应用较多。