核电子学实验组(16学时)实验指示书(2017春)
- 格式:doc
- 大小:1.00 MB
- 文档页数:25
《核电子学》实验讲义核技术教研室2015年版实验安排一、分组安排2个班共80人,分5组(A、B、C、D、E),每组16人。
共四个实验(1、2、3、4)。
例如,下面的A1代表第1组学生做第1个实验,B1代表第2组学生做第1个实验。
二、时间安排注意:1、实验按学校规定进行,必须上交预习报告和实验报告;三、实验地点地学楼:A307目录核电子学实验基础 (1)实验注意事项 (7)实验1 闪烁探测器的调试 (9)实验2 线性放大器 (14)实验3 单道脉冲幅度分析器 (19)实验4 A/D转换电路 (24)核电子学实验基础一、数字示波器的使用1、示波器前面板和用户界面核电子实验室使用的是RIGOLDS5102CA型数字示波器,该示波器的外形见图1。
图1 RIGOL DS5102CA数字示波器(1) 界面认识示波器面板上包括旋钮和功能按键。
旋钮的功能与其他示波器类似。
显示屏右侧的一列5个灰色按键为菜单操作键(自上而下定义为1号至5号)。
通过它们可以设置当前菜单的不同选项。
其它按键(包括彩色按键)为功能键,通过它们可以进入不同的功能菜单或直接获得特定的功能应用。
图2 DS5102CA面板操作操作说明(2) 探头补偿在首次将探头与任一输入通道连接时,需要进行此项调节,使得探头与输入通道相配。
未经补偿或补偿偏差的探头会导致测量误差或错误。
若需调整探头补偿,请按如下步骤:①将探头菜单中的衰减系数和探头上开关设定为一样的值,都为1X或10X,通常都设为10X,并用探头将通道1和探头补偿器相连。
打开通道1,然后按设置;②检查所显示波形的形状;图3 补偿过渡图4 正确补偿图5 补偿不足③如必要,用非金属质地的改锥调整探头上的可变电容,直到屏幕显示的波形如图4所示的“补偿正确”。
2、仪器检查在使用仪器前,通常通过自检信号对仪器做一次快速功能检查,以核实本仪器运行正常。
具体步骤如下:(1) 接通电源,打开示波器开关,仪器执行所有自检项目,并确认自检;(2) 用示波器探头将信号接入通道1(CH1),将探头上的开关设定为10X,并用探头线将通道1与探头补偿器相连;(3) 探头设置与示波器中同比例的衰减系数(默认通常设定10X),从而使得测量结果正确反映被测信号的电平;(4) 按住1kHz,峰峰值约3V)。
习题解答第一章绪论1、核信息的获取与处理主要包括哪些方面的?①时间测量。
核信息出现的时间间隔是测定核粒子的寿命或飞行速度的基本参数,目前直接测量核信息出现的时间间隔已达到皮秒级。
②核辐射强度测量。
核辐射强度是指单位时间内核信息出现的概率,对于低辐射强度的测量,要求测量仪器具有低的噪声本底,否则核信息将淹没于噪声之中而无法测量。
对于高辐射强度的测量,由于核信息十分密集,如果信号在测量仪器中堆积,有可能使一部分信号丢失而测量不到,因此要求仪器具有良好的抗信号堆积性能。
对于待测核信息的辐射强度变化范围很大的情况(如核试验物理诊断中信号强度变化范围可达105倍),如测量仪器的量程设置太小,高辐射强度的信号可能饱和;反之,如量程设置太大,低辐射强度的信号又测不到,因此对于这种场合的测量则要求测量仪器量程可自动变换。
③能谱测量。
辐射能谱上的特征是核能级跃迁及核同位素差异的重要标志,核能谱也是核辐射的基本测量内容。
精确的能谱测量要求仪器工作稳定、能量分辨力达到几个电子伏特,并具有抑制计数速率引起的峰位和能量分辨力变化等性能。
④位置测量。
基本粒子的径迹及空间位置的精确测定是判别基本粒子的种类及其主要参数的重要手段。
目前空间定位的精度可达到微米级。
⑤波形测量。
核信息波形的变化往往反映了某些核反应过程的变化,因此核信息波形的测量是研究核爆炸反应过程的重要手段,而该波形的测量往往是单次且快速(纳秒至皮秒级)的。
⑥图像测量。
核辐射信息的二维空间图像测量是近年来发展起来的新技术。
辐射图像的测量方法可分为两类:第一种是利用辐射源进行透视以摄取被测物体的图像;第二种是利用被测目标体的自身辐射(如裂变反应产生的辐射)以反映目标体本身的图像。
图像测量利用计算机对摄取的图像信息进行处理与重建,以便更准确地反映实际和提高清晰度。
CT技术就是这种处理方法的代表。
2、抗辐射加固主要涉及哪些方面?抗辐射加固的研究重点最初是寻找能减弱核辐射效应的屏蔽材料,后来在电路上采取某些抗辐射加固措施,然后逐渐将研究重点转向对器件的抗辐射加固。
目录绪论第一章核电子学系统中的信号与噪声 (1)1核辐射探测器及其输出信号 (1)一、核辐射探测器的要求和特点 (1)二、核辐射探测器的主要类别和输出信号 (2)三、核辐射探测器的基本性能(指标) (5)四、核辐射探测器的输出电路 (8)五、核辐射探测器输出信号的数学模拟 (10)2核电子学中的噪声 (11)一、噪声对核测量的影响 (11)二、噪声的分类和噪声源 (13)3核电子学中的信号与噪声分析基础 (16)一、时域和频域分析 (1)6二、核电子学中常见的基本电路分析基础 (17)三、核随机信号通过线性网络 (20)4核电子学测量系统概述 (25)一、系统的基本组成······························································································································2 5二、核电子学常用的信号处理系统 (26)三、核电子学信号处理单元插件标准化 (28)习题与思考题 (29)【附录】常用的几项N I M标准 (30)第二章前置放大器...............................................................................................................34 1概述. (34)一、前置放大器的作用 (34)二、前置放大器的分类 (35)2电荷灵敏前置放大器 (37)一、电荷灵敏前置放大器的主要特性 (37)二、电荷灵敏前置放大器的基本电路和实例分析 (42)三、电荷灵敏前置放大器的噪声分析和抑制措施 (44)四、电荷灵敏前置放大器的进一步改进 (48)五、电荷灵敏前置放大器噪声的实验测量 (50)3电压(灵敏)前置放大器 (53)4电流灵敏前置放大器 (54)习题与思考题 (56)第三章放大器 (58)1概述 (58)一、放大器在核测量系统中的作用 (58)二、谱仪放大器的框图介绍 (59)三、放大器的基本参量及测量方法 (60)四、其它类型的一些放大器 (66)2谱仪放大器的放大节 (67)一、放大节的结构 (67)二、分立元件构成的放大节电路 (69)三、集成运算放大器构成的放大节电路 (73)3谱仪放大器中的滤波成形 (75)一、滤波成形电路在谱仪放大器中的作用 (75)二、最佳滤波器的讨论 (76)三、滤波成形电路的信息畸变 (79)四、无源滤波成形电路 (84)五、有源滤波成形电路 (95)六、时变滤波成形电路 (99)4通用谱仪放大器 (10)1一、基线恢复器····································································································································10 2二、通用谱仪放大器介绍 (107)5高能量分辨率高计数率谱仪放大器 (111)一、堆积拒绝方法·······························································································································11 1二、单元电路功能介绍 (112)三、堆积拒绝电路·······························································································································11 3四、死时间校正和允许最高计数率 (115)6快放大器 (117)一、概述 (117)二、快放大器的放大节电路 (118)7弱电流放大器 (121)。
第一章1.1 核电子学与一般电子学的不同在哪里?以核探测器输出信号的特点来说明。
在核辐射测量中,最基本的特点是它的统计特性、非周期性、非等值性,核电子学分析这种信号,经处理得到有用的信息。
1.4 当探测器输出等效电流源/0()t o i t I e τ-=时,求此电流脉冲在探测器输出回路上的输出波形并讨论R 0C 0<<τ的情况。
V 0(s) = I 0(s)·[R 0∥(1/sc)]= I 0[1/(s+1/τ)]·[R 0(1/sc 0)/( R 0+(1/sc 0)) =( I 0/ c 0)·{1/[(s+1/τ) (s+1/ R 0 c 0)]}∴当R 0 c 0<<τ时,τ-R 0 c 0≈τ∴1.5 如图,设,求输出电压V(t)。
1.6 表示系统的噪声性能有哪几种方法?各有什么意义?输入端的噪声电压是否就是等效噪声电压?为什么?ENV ENC ENN ENE η(FWHM)NE不是1.7 设探测器反向漏电流I D =10-8A ,后级电路频宽为1MHz,计算散粒噪声相应的方根值和相对于I D 的比值。
115.6610A -==⨯=35.6610DI -=⨯=1.8 试计算常温下(设T=300K )5M Ω电阻上相应的均方根噪声电压值(同样设频宽为1MHz ),并与1MHz 能量在20pF 电容上的输出幅值作比较。
52.8810V -===⨯∵212E CV =∴0.126V V ==1.9求单个矩形脉冲f (t )通过低通滤波器,RC=T ,RC=5T ,及RC=T/5,时的波形及频谱。
1.10 电路中,若输入电压信号V i (t )=δ(t ),求输出电压信号V 0(t ),并画出波形图,其中A=1为隔离用。
t1.12 设一系统的噪声功率谱密度为2222()//i S a b c ωωω=++,当此噪声通过下图电路后,求A 点与B 点的噪声功率谱密度与噪声均方值。
《核电子学与核探测方法》课程实验教学大纲
课程代码:MPHY1012
课程名称:核电子学与核探测方法
英文名称:Nuclear Electronics and Nuclear
experimental methods
实验室名称:放射医学实验室
课程学时:54实验学时:18
一、本课程实验教学目的与要求
1、学习、了解核辐射探测技术
2、掌握常用的核辐射测量方法;
3、了解核辐射探测器、核电子学仪器的原理
4、掌握常用的核辐射测量仪器的使用方法。
二、主要仪器设备及现有台套数
NaI闪烁计数器10套
HPGe γ 能谱仪1套
8路α、β能谱仪1套
低本底液体闪烁计数器1台
四、考核方式
1、实验报告:每次实验完成后写出实验报告。
2、考核方式:平时实验成绩(学习、操作、实验报告),作为《核电子学与和核探测方法》课程考核内容之一。
五、实验教材、参考书
1、教材:自编
2、参考书:
(1)《原子核物理实验方法》,复旦大学、清华大学、北京大学合编,原子能出版社。
(2)《核物理实验》,复旦大学、北京大学合编,原子能出版社。
《核电子学与核辐射仪器》实验讲义核技术教研室2010年版目录核电子学实验基础 (1)实验注意事项 (7)实验 1 闪烁探测器 (9)实验 2 线性放大器 (14)实验 3 单道脉冲幅度分析器 (19)实验 4 峰值保持器 (24)实验 5 A/D转换电路 (30)实验 6 整机仪器的组装及应用 (36)核电子学实验基础一、数字示波器的使用1、示波器前面板和用户界面核电子实验室使用的是RIGOLDS5102CA型数字示波器,该示波器的外形见图1。
图1 RIGOL DS5102CA数字示波器(1) 界面认识示波器面板上包括旋钮和功能按键。
旋钮的功能与其他示波器类似。
显示屏右侧的一列5个灰色按键为菜单操作键(自上而下定义为1号至5号)。
通过它们可以设置当前菜单的不同选项。
其它按键(包括彩色按键)为功能键,通过它们可以进入不同的功能菜单或直接获得特定的功能应用。
图2 DS5102CA面板操作操作说明(2) 探头补偿在首次将探头与任一输入通道连接时,需要进行此项调节,使得探头与输入通道相配。
未经补偿或补偿偏差的探头会导致测量误差或错误。
若需调整探头补偿,请按如下步骤:①将探头菜单中的衰减系数和探头上开关设定为一样的值,都为1X或10X,通常都设为10X,并用探头将通道1和探头补偿器相连。
打开通道1,然后按设置;②检查所显示波形的形状;图3 补偿过渡图4 正确补偿图5 补偿不足③如必要,用非金属质地的改锥调整探头上的可变电容,直到屏幕显示的波形如图4所示的“补偿正确”。
2、仪器检查在使用仪器前,通常通过自检信号对仪器做一次快速功能检查,以核实本仪器运行正常。
具体步骤如下:(1) 接通电源,打开示波器开关,仪器执行所有自检项目,并确认自检;(2) 用示波器探头将信号接入通道1(CH1),将探头上的开关设定为10X,并用探头线将通道1与探头补偿器相连;(3) 探头设置与示波器中同比例的衰减系数(默认通常设定10X),从而使得测量结果正确反映被测信号的电平;(4) 按住1kHz,峰峰值约3V)。
核电子学教案一、教案概述核电子学是现代科学中的一个重要分支,研究原子核和电子的相互作用以及它们在物质中的行为。
本教案旨在通过一系列教学活动,帮助学生深入了解核电子学的基本理论和应用,并能够运用所学知识解决相关问题。
二、教学目标1. 了解核电子学的基本概念、原理和发展历程;2. 掌握核电子学实验中常用的仪器设备、实验方法和数据处理技巧;3. 能够运用核电子学的知识分析和解释实际生活中的现象和问题;4. 培养学生的实验操作能力、科学思维能力和团队合作精神。
三、教学内容1. 核电子学基础知识1.1 原子核的结构和性质1.2 电子的性质和运动规律1.3 粒子的辐射和相互作用2. 核电子学实验2.1 测量射线的探测器:电离室、闪烁体、半导体探测器等;2.2 测量射线的衰变规律和能量谱;2.3 测量射线的相互作用:散射、吸收和衰减等;2.4 测量射线的应用:核能、医学和材料科学等领域。
3. 核电子学的应用3.1 核能的利用与开发:核能发电、核聚变研究等;3.2 核医学的应用:放射性示踪、放射治疗等;3.3 核材料科学的研究:辐照损伤、辐照效应等。
四、教学方法1. 讲授法:通过示意图、实验装置模型等辅助工具,对核电子学的基本原理进行讲解;2. 实验探究法:引导学生进行核电子学实验,对实验现象进行观察和分析;3. 讨论法:组织学生进行小组讨论,共同探讨核电子学的应用领域和未来发展方向;4. 案例分析法:引导学生分析和解决实际生活中的问题,运用核电子学的知识进行推理和判断。
1. 学生日常表现:包括课堂参与、作业完成情况等;2. 实验报告:对学生进行实验操作能力和数据处理能力的评估;3. 期末考试:综合考核学生对核电子学知识和应用的掌握程度;4. 课堂讨论和小组竞赛:评估学生的团队合作能力和创新思维能力。
六、教学资源1. 教学课件:包括核电子学基础知识的讲解、实验操作流程和案例分析等;2. 实验装置模型:用于讲解和展示核电子学实验装置的结构和工作原理;3. 参考书目:提供给学生进行进一步参考和深入学习的教材和参考书。