2014年4月全国自考概率论与数理统计真题及答案
- 格式:doc
- 大小:180.00 KB
- 文档页数:6
2007年4月份全国自考概率论与数理统计(经管类)真题参考答案一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.A. AB. BC. CD. D答案:B解析:A,B互为对立事件,且P(A)>0,P(B)>0,则P(AB)=0P(A∪B)=1,P(A)=1-P(B),P(AB)=1-P(AB)=1.2.设A,B为两个随机事件,且P(A)>0,则P(A∪B|A)=()A. P(AB)B. P(A)C. P(B)D. 1答案:D解析:A,B为两个随机事件,且P(A)>0,P(A∪B|A)表示在A发生的条件下,A或B发生的概率,因为A发生,则必有A∪B发生,故P(A∪B|A)=1.3.下列各函数可作为随机变量分布函数的是()A. AB. BC. CD. D答案:B解析:分布函数须满足如下性质:(1)F(+∞)=1,F(-∞)=0,(2)F(x)右连续,(3)F(x)是不减函数,(4)0≤F(x)≤1.而题中F1(+∞)=0;F3(-∞)=-1;F4(+∞)=2.因此选项A、C、D中F(x)都不是随机变量的分布函数,由排除法知B正确,事实上B满足随机变量分布函数的所有性质.4.设随机变量X的概率密度为A. AB. BC. CD. D答案:A5.设二维随机变量(X,Y)的分布律为(如下图)则P{X+Y=0}=()A. 0.2B. 0.3C. 0.5D. 0.7答案:C解析:因为X可取0,1,Y可取-1,0,1,故P{X+Y=0}=P{X=0,Y=0}+P{X=1,Y=-1}=0.3+0.2=0.5.6.设二维随机变量(X,Y)的概率密度为A. AB. BC. CD. D答案:A7.设随机变量X服从参数为2的泊松分布,则下列结论中正确的是()A. E(X)=0.5,D(X)=0.5B. E(X)=0.5,D(X)=0.25C. E(X)=2,D(X)=4D. E(X)=2,D(X)=2答案:D解析:X~P(2),故E(X)=2,D(X)=2.8.设随机变量X与Y相互独立,且X~N(1,4),Y~N(0,1),令Z=X-Y,则D(Z)=()A. 1B. 3C. 5D. 6答案:C解析:X~N(1,4),Y~N(0,1),X与Y相互独立,故D(Z)=D(X-Y)=D(X)+D(Y)=4+1=5.9.A. 0.004B. 0.04C. 0.4D. 4答案:C10.A. AB. BC. CD. D答案:B二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
2014年历年概率汇编 答案20.湖北卷解:(1)依题意,p 1=P (40<X <80)=1050=0.2,p 2=P (80≤X ≤120)=3550=0.7,p 3=P (X >120)=550=0.1.由二项分布得,在未来4年中至多有1年的年入流量超过120的概率为p =C 04(1-p 3)4+C 14(1-p 3)3p 3=0.94+4×0.93×0.1=0.947 7. (2)记水电站年总利润为Y (单位:万元). ①安装1台发电机的情形.由于水库年入流量总大于40,故一台发电机运行的概率为1,对应的年利润Y =5000,E (Y )=5000×1=5000.②安装2台发电机的情形.依题意,当40<X <80时,一台发电机运行,此时Y =5000-800=4200,因此P (Y =4200)=P (40<X <80)=p 1=0.2;当X ≥80时,两台发电机运行,此时Y =5000×2=10 000,因此P (Y =10 000)=P (X ≥80)= p 2+p 3=0.8.由此得Y 的分布列如下:所以,E (Y )=4200×0.2+10 000×③安装3台发电机的情形. 依题意,当40<X <80时,一台发电机运行,此时Y =5000-1600=3400,因此P (Y =3400)=P (40<X <80)=p 1=0.2;当80≤X ≤120时,两台发电机运行,此时Y =5000×2-800=9200,因此P (Y =9200)=P (80≤X ≤120)=p 2=0.7;当X >120时,三台发电机运行,此时Y =5000×3=15 000,因此P (Y =15 000)=P (X >120)=p 3=0.1.由此得Y所以,E (Y )=3400×0.2+9200综上,欲使水电站年总利润的均值达到最大,应安装发电机2台.四川卷17.解:(1)X 可能的取值为10,20,100,-200. 根据题意,有P (X =10)=C 13×⎝⎛⎭⎫121×⎝⎛⎭⎫1-122=38,P (X =20)=C 23×⎝⎛⎭⎫122×⎝⎛⎭⎫1-121=38, P (X =100)=C 33×⎝⎛⎭⎫123×⎝⎛⎭⎫1-120=18, P (X =-200)=C 03×⎝⎛⎭⎫120×⎝⎛⎭⎫1-123=18. 所以X 的分布列为:(2)设“第i 盘游戏没有出现音乐”为事件A i (i =1,2,3),则 P (A 1)=P (A 2)=P (A 3)=P (X =-200)=18.所以“三盘游戏中至少有一盘出现音乐”的概率为1-P (A 1A 2A 3)=1-⎝⎛⎭⎫183=1-1512=511512.因此,玩三盘游戏至少有一盘出现音乐的概率是511512.(3)由(1)知,X 的数学期望为EX =10×38+20×38+100×18-200×18=-54.这表明,获得分数X 的均值为负.因此,多次游戏之后分数减少的可能性更大. 18.福建卷解:(1)设顾客所获的奖励额为X .(i)依题意,得P (X =60)=C 11C 13C 24=12.即顾客所获的奖励额为60元的概率为12,(ii)依题意,得X 的所有可能取值为20,60. P (X =60)=12,P (X =20)=C 23C 24=12,即X 的分布列为所以顾客所获的奖励额的期望为E (X )=20×0.5+60×0.5=40(元).(2)根据商场的预算,每个顾客的平均奖励额为60元.所以,先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1.对于面值由20元和40元组成的情况,同理可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2.以下是对两个方案的分析:对于方案1,即方案(10,10,,则X 1的分布列为X 1的期望为E (X 1)=20×16+60×23+100×16=60,X 1的方差为D (X 1)=(20-60)2×16+(60-60)2×23+(100-60)2×16=16003.对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X 2,则X 2的分布列为X 2的期望为E (X 2)=40×16+60×23+80×16=60,X 2的方差为D (X 2)=(40-60)2×16+(60-60)2×23+(80-60)2×16=4003.由于两种方案的奖励额的期望都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.16天津卷.解:(1)设“选出的3名同学是来自互不相同的学院”为事件A ,则P (A )=C 13·C 27+C 03·C 37C 310=4960, 所以选出的3名同学是来自互不相同学院的概率为4960.(2)随机变量X 的所有可能值为0,1,2,3.P (X =k )=C k 4·C 3-k6C 310(k =0,1,2,3), 所以随机变量X 的分布列是随机变量X 的数学期望E (X )=0×16+1×12+2×310+3×130=65.18.重庆卷解:(1)由古典概型中的概率计算公式知所求概率为P =C 34+C 33C 39=584.(2)X 的所有可能值为1,2,3,且P (X =1)=C 24C 15+C 34C 39=1742,P (X =2)=C 13C 14C 12+C 23C 16+C 33C 39=4384,P (X =3)=C 22C 17C 39=112,故X 的分布列为从而E (X )=1×1742+2×4384+3×112=4728.17.湖南卷解:记E ={甲组研发新产品成功},F ={乙组研发新产品成功},由题设知P (E )=23,P (E )=13,P (F )=35,P (F )=25,且事件E 与F ,E 与F ,E 与F ,E 与F 都相互独立.(1)记H ={至少有一种新产品研发成功},则H =E F ,于是P (H )=P (E )P (F )=13×25=215,故所求的概率为P (H )=1-P (H )=1-215=1315.(2)设企业可获利润为X (万元),则X 的可能取值为0,100,120,220.因为P (X =0)=P (E F )=13×25=215,P (X =100)=P (E F )=13×35=15,P (X =120)=P (E F )=23×25=415,P (X =220)=P (EF )=23×35=25,故所求的分布列为数学期望为E (X )=0×215+100×15+120×415+220×25=300+480+132015=210015=140.17.安徽卷解: 用A 表示“甲在4局以内(含4局)赢得比赛”,A k 表示“第k 局甲获胜”,B k 表示“第k 局乙获胜”,则P (A k )=23,P (B k )=13,k =1,2,3,4,5.(1)P (A )=P (A 1A 2)+P (B 1A 2A 3)+P (A 1B 2A 3A 4) =P (A 1)P (A 2)+P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)P (A 3)P (A 4)=⎝⎛⎭⎫232+13×⎝⎛⎭⎫232+23×13×⎝⎛⎭⎫232=5681. (2)X 的可能取值为2,3,4,5.P (X =2)=P (A 1A 2)+P (B 1B 2)=P (A 1)P (A 2)+P (B 1)P (B 2)=59,P (X =3)=P (B 1A 2A 3)+P (A 1B 2B 3)= P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)P (B 3)=29,P (X =4)=P (A 1B 2A 3A 4)+P (B 1A 2B 3B 4)=P (A 1)P (B 2)P (A 3)P (A 4)+P (B 1)P (A 2)P (B 3)·P (B 4)=1081,P (X =5)=1-P (X =2)-P (X =3)-P (X =4)=881.故X 的分布列为EX =2×59+3×29+4×1081+5×881=22481.16.北京卷解:(1)根据投篮统计数据,在10场比赛中,李明投篮命中率超过0.6的有5场,分别是主场2,主场3,主场5,客场2,客场4.所以在随机选择的一场比赛中,李明的投篮命中率超过0.6的概率是0.5.(2)设事件A 为“在随机选择的一场主场比赛中,李明的投篮命中率超过0.6”,事件B 为“在随机选择的一场客场比赛中,李明的投篮命中率超过0.6”,事件C 为“在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6”.则C =AB ∪AB ,A ,B 相互独立.根据投篮统计数据,P (A )=35,P (B )=25.故P (C )=P (AB )+P (AB ) =35×35+25×25 =1325. 所以,在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6的概率为1325.(3)EX =x -.21.江西卷解:(1)当n =3时,ξ的所有可能取值为2,3,4,5.将6个正整数平均分成A ,B 两组,不同的分组方法共有C 36=20(种),所以ξ的分布列为:E ξ=2×15+3×310+4×310+5×15=72.(2)ξ和η恰好相等的所有可能取值为n -1,n ,n +1,…,2n -2.又ξ和η恰好相等且等于n -1时,不同的分组方法有2种; ξ和η恰好相等且等于n 时,不同的分组方法有2种;ξ和η恰好相等且等于n +k (k =1,2,…,n -2)(n ≥3)时,不同的分组方法有2C k 2k 种. 所以当n =2时,P (C )=46=23,当n ≥3时,P (C )=2⎝⎛⎭⎫2+∑n -2k =1C k 2k C n 2n.(3)由(2)得,当n =2时,P (C )=13,因此P (C )>P (C ).而当n ≥3时,P (C )<P (C ).理由如下:P (C )<P (C )等价于4(2+∑n -2k =1C k 2k )<C n2n ,①用数学归纳法来证明:(i)当n =3时,①式左边=4(2+C 12)=4(2+2)=16,①式右边=C 36=20,所以①式成立. (ii)假设n =m (m ≥3)时①式成立,即4⎝⎛⎭⎫2+∑m -2k =1C k 2k <C m 2m 成立,那么,当n =m +1时, 左边=4⎝⎛⎭⎫2+∑m +1-2k =1C k 2k=4⎝⎛⎭⎫2+∑m -2k =1C k 2k +4C m -12(m -1)<C m 2m +4Cm -12(m -1)=(2m )!m !m !+4·(2m -2)!(m -1)!(m -1)!=(m +1)2(2m )(2m -2)!(4m -1)(m +1)!(m +1)!<(m +1)2(2m )(2m -2)!(4m )(m +1)!(m +1)!=C m +12(m +1)· 2(m +1)m (2m +1)(2m -1)<C m +12(m +1)=右边, 即当n =m +1时,①式也成立.综合(i)(ii)得,对于n ≥3的所有正整数,都有P (C )<P (C )成立.18.辽宁卷解:(1)设A 1表示事件“日销售量不低于100个”,A 2表示事件“日销售量低于50个”,B 表示事件“在未来连续3天里有连续2天日销售量不低于100个且另1天销售量低于50个”.因此P (A 1)=(0.006+0.004+0.002)×50=0.6,P (A 2)=0.003×50=0.15,P (B )=0.6×0.6×0.15×2=0.108.(2)X 可能取的值为0,1,2,3,相应的概率分别为P (X =0)=C 03·(1-0.6)3=0.064, P (X =1)=C 13·0.6(1-0.6)2=0.288,P (X =2)=C 23·0.62(1-0.6)=0.432,P (X =3)=C 33·0.63=0.216.X 的分布列为因为X ~B (3,0.6)(1-0.6)=0.72. 20.全国卷解:记A 1表示事件:同一工作日乙、丙中恰有i 人需使用设备,i =0,1,2. B 表示事件:甲需使用设备. C 表示事件:丁需使用设备.D 表示事件:同一工作日至少3人需使用设备.(1)因为P (B )=0.6,P (C )=0.4,P (A i )=C i 2×0.52,i =0,1,2, 所以P (D )=P (A 1·B ·C +A 2·B +A 2·B ·C )= P (A 1·B ·C )+P (A 2·B )+P (A 2·B ·C )=P (A 1)P (B )P (C )+P (A 2)P (B )+P (A 2)P (B )P (C )= 0.31.(2)X 的可能取值为0,1,2,3,4,其分布列为 P (X =0)=P (B ·A 0·C ) =P (B )P (A 0)P (C )=(1-0.6)×0.52×(1-0.4) =0.06,P (X =1)=P (B ·A 0·C +B ·A 0·C +B ·A 1·C )=P (B )P (A 0)P (C )+P (B )P (A 0)P (C )+P (B )P (A 1)P (C )=0.6×0.52×(1-0.4)+(1-0.6)×0.52×0.4+(1-0.6)×2×0.52×(1-0.4)=0.25,P (X =4)=P (A 2·B ·C )=P (A 2)P (B )P (C )=0.52×0.6×0.4=0.06, P (X =3)=P (D )-P (X =4)=0.25,P (X =2)=1-P (X =0)-P (X =1)-P (X =3)-P (X =4)=1-0.06-0.25-0.25-0.06=0.38,所以 EX =0×P (X =0)+1×P (X =1)+2×P (X =2)+3×P (X =3)+4×P (X =4)=0.25+2×0.38+3×0.25+4×0.06=2.18.山东卷解:(1)记A i 为事件“小明对落点在A 上的来球回球的得分为i 分”(i =0,1,3),则P (A 3)=12,P (A 1)=13,P (A 0)=1-12-13=16;记B i 为事件“小明对落点在B 上的来球回球的得分为i 分”(i =0,1,3), 则P (B 3)=15,P (B 1)=35,P (B 0)=1-15-35=15.记D 为事件“小明两次回球的落点中恰有1次的落点在乙上”.由题意,D =A 3B 0+A 1B 0+A 0B 1+A 0B 3, 由事件的独立性和互斥性,P (D )=P (A 3B 0+A 1B 0+A 0B 1+A 0B 3) =P (A 3B 0)+P (A 1B 0)+P (A 0B 1)+P (A 0B 3)=P (A 3)P (B 0)+P (A 1)P (B 0)+P (A 0)·P (B 1)+P (A 0)P (B 3) =12×15+13×15+16×35+16×15 =310, 所以小明两次回球的落点中恰有1次的落点在乙上的概率为310.由题意,随机变量ξ可能的取值为0,1,2,3,4,6. (2)由事件的独立性和互斥性,得 P (ξ=0)=P (A 0B 0)=16×15=130,P (ξ=1)=P (A 1B 0+A 0B 1)=P (A 1B 0)+P (A 0B 1)=13×15+16×35=16,P (ξ=2)=P (A 1B 1)=13×35=15,P (ξ=3)=P (A 3B 0+A 0B 3)=P (A 3B 0)+P (A 0B 3)=12×15+16×15=215,P (ξ=4)=P (A 3B 1+A 1B 3)=P (A 3B 1)+P (A 1B 3)=12×35+13×15=1130,P (ξ=6)=P (A 3B 3)=12×15=110.可得随机变量ξ所以数学期望E ξ=0×130+1×16+2×15+3×215+4×1130+6×110=9130.19.陕西卷解:(1)设A 表示事件“作物产量为300 kg ”,B 表示事件“作物市场价格为6元/kg ”, 由题设知P (A )=0.5,P (B )=0.4, ∵利润=产量×市场价格-成本, ∴X 所有可能的取值为500×10-1000=4000,500×6-1000=2000, 300×10-1000=2000,300×6-1000=800.P (X =4000)=P (A )P (B )=(1-0.5)×(1-0.4)=0.3,P (X =2000)=P (A )P (B )+P (A )P (B )=(1-0.5)×0.4+0.5×(1-0.4)=0.5, P (X =800)=P (A )P (B )=0.5×0.4=0.2, 所以X 的分布列为(2)设C i 表示事件“第i 季利润不少于2000元”(i =1,2,3), 由题意知C 1,C 2,C 3相互独立,由(1)知,P (C i )=P (X =4000)+P (X =2000)=0.3+0.5=0.8(i =1,2,3), 3季的利润均不少于2000元的概率为P (C 1C 2C 3)=P (C 1)P (C 2)P (C 3)=0.83=0.512; 3季中有2季利润不少于2000元的概率为P(C1C2C3)+P(C1C2C3)+P(C1C2C3)=3×0.82×0.2=0.384,所以,这3季中至少有2季的利润不少于2000元的概率为0.512+0.384=0.896.20.全国卷解:记A1表示事件:同一工作日乙、丙中恰有i人需使用设备,i=0,1,2.B表示事件:甲需使用设备.C表示事件:丁需使用设备.D表示事件:同一工作日至少3人需使用设备.(1)因为P(B)=0.6,P(C)=0.4,P(A i)=C i2×0.52,i=0,1,2,所以P(D)=P(A1·B·C+A2·B+A2·B·C)=P(A1·B·C)+P(A2·B)+P(A2·B·C)=P(A1)P(B)P(C)+P(A2)P(B)+P(A2)P(B)P(C)=0.31.(2)X的可能取值为0,1,2,3,4,其分布列为P(X=0)=P(B·A0·C)=P(B)P(A0)P(C)=(1-0.6)×0.52×(1-0.4)=0.06,P(X=1)=P(B·A0·C+B·A0·C+B·A1·C)=P(B)P(A0)P(C)+P(B)P(A0)P(C)+P(B)P(A1)P(C)=0.6×0.52×(1-0.4)+(1-0.6)×0.52×0.4+(1-0.6)×2×0.52×(1-0.4)=0.25,P(X=4)=P(A2·B·C)=P(A2)P(B)P(C)=0.52×0.6×0.4=0.06,P(X=3)=P(D)-P(X=4)=0.25,P(X=2)=1-P(X=0)-P(X=1)-P(X=3)-P(X=4)=1-0.06-0.25-0.25-0.06=0.38,所以EX=0×P(X=0)+1×P(X=1)+2×P(X=2)+3×P(X=3)+4×P(X=4)=0.25+2×0.38+3×0.25+4×0.06=2.。
概率论与数理统计(二)(课程代码:02197)本试卷共五页,满分100分;考试时间150分钟。
一、单项选择题(每小题4分,共40分)1)、设事件A 、B 满足2.0)(=-A B P ,6.0)(=B P ,则)(AB P =( ) A )、0.12 B )、0.4 C )、0.6 D )、0.8 2)、设二维随机变量),(Y X 的分布律为 则}{Y X P ==( )A)、0.3 B )、0.5 C )、0.7 D )0.8 3)、设随机变量X 服从参数为2的泊松分布,则下列结论中正确的是( ) A )、5.0)(,5.0)(==X D X EB )、25.0)(,5.0)(==X D X EC )、4)(,2)(==XD X ED )、2)(,2)(==X D XE 4)、设随机变量X 服从正态分布(0,4)N ,()x Φ为标准正态分布函数,则{36}( ).P X ≤≤=. (6)(3) . (3)(1.5) 3. (1.5)(1) . (3)()4A B C D Φ-ΦΦ-ΦΦ-ΦΦ-Φ5)、设随机变量)2,1( ~2-N X ,则X 的概率密度=)(x f ( ) A )、4)1(241+-x eπB )、8)1(241+-x eπC )、8)1(2221+-x eπD )、8)1(2221--x eπ6)、设随机变量)1,0(~,)1,0(~N Y N X ,且X 与Y 相互独立,则~22Y X +( )A )、)2,0(NB )、)2(2χC )、)2(tD )、)1,1(F7)、设)2,1( ~2N X ,n X X ,,1 为X 的样本,记∑==n i i X n X 11则有( ) A )、)1,0(~/21N n X - B )、)1,0(~41N X - C )、)1,0(~21N X - D )、)1,0(~21N X - 8)、设总体),( ~2σμN X ,其中μ未知,4321,,,x x x x 为来自总体X的一个样本,则以下关于μ的四个估计:3211513151ˆx x x ++=μ,)(41ˆ43212x x x x +++=μ,1371ˆx =μ,2147261ˆx x +=μ中,哪一个是无偏估计?( )A )、1ˆμB )、2ˆμC )、3ˆμD )4ˆμ 9)、对随机变量X 来说,如果 EX DX ≠,则可断定X 不服从( )分布。
《概率论与数理统计》习题及答案第 二 章1.假设一批产品中一、二、三等品各占60%,30%,10%,从中任取一件,发现它不是三等品,求它是一等品的概率.解 设i A =‘任取一件是i 等品’ 1,2,3i =,所求概率为13133()(|)()P A A P A A P A =,因为 312A A A =+所以 312()()()0.60.30.9P A P A P A =+=+=131()()0.6P A A P A ==故1362(|)93P A A ==. 2.设10件产品中有4件不合格品,从中任取两件,已知所取两件中有一件是不合格品,求另一件也是不合格品的概率.解 设A =‘所取两件中有一件是不合格品’i B =‘所取两件中恰有i 件不合格’ 1, 2.i = 则12A B B =+11246412221010()()()C C C P A P B P B C C =+=+, 所求概率为2242112464()1(|)()5P B C P B A P A C C C ===+. 3.袋中有5只白球6只黑球,从袋中一次取出3个球,发现都是同一颜色,求这颜色是黑色的概率.解 设A =‘发现是同一颜色’,B =‘全是白色’,C =‘全是黑色’,则 A B C =+, 所求概率为336113333611511/()()2(|)()()//3C C P AC P C P C A P A P B C C C C C ====++ 4.从52张朴克牌中任意抽取5张,求在至少有3张黑桃的条件下,5张都是黑桃的概率.解 设A =‘至少有3张黑桃’,i B =‘5张中恰有i 张黑桃’,3,4,5i =, 则345A B B B =++, 所求概率为555345()()(|)()()P AB P B P B A P A P B B B ==++51332415133********1686C C C C C C ==++. 5.设()0.5,()0.6,(|)0.8P A P B P B A ===求()P A B 与()P B A -.解 ()()()() 1.1()(|) 1.10P AB P A P B P A B P A P B A =+-=-=-= ()()()0.60.40.2P B A P B P AB -=-=-=.6.甲袋中有3个白球2个黑球,乙袋中有4个白球4个黑球,今从甲袋中任取2球放入乙袋,再从乙袋中任取一球,求该球是白球的概率。
概率论与数理统计 第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。
2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。
3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率为 。
4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。
5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。
6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。
7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。
8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。
9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率为 。
10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A{}Y X B >=,则=)|(A B P 。
11、设B A ,是两事件,则B A ,的差事件为 。
12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。
13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。
14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。
15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。
16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P 。
17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。
答案和题目概率论与数理统计(经管类)综合试题一(课程代码 4183)一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.下列选项正确的是 ( B ).A. A B A B +=+B.()A B B A B +-=-C. (A -B )+B =AD. AB AB = 2.设()0,()0P A P B >>,则下列各式中正确的是( D ).A.P (A -B )=P (A )-P (B )B.P (AB )=P (A )P (B )C. P (A +B )=P (A )+P (B )D. P (A +B )=P (A )+P (B )-P (AB )3.同时抛掷3枚硬币,则至多有1枚硬币正面向上的概率是 ( D ). A.18 B. 16 C. 14 D. 124.一套五卷选集随机地放到书架上,则从左到右或从右到左卷号恰为1,2,3,4,5顺序的概率为 ( B ).A.1120 B. 160C. 15D. 125.设随机事件A ,B 满足B A ⊂,则下列选项正确的是 ( A ).A.()()()P A B P A P B -=-B. ()()P A B P B +=C.(|)()P B A P B =D.()()P AB P A =6.设随机变量X 的概率密度函数为f (x ),则f (x )一定满足 ( C ). A. 0()1f x ≤≤ B. f (x )连续C.()1f x dx +∞-∞=⎰D. ()1f +∞=7.设离散型随机变量X 的分布律为(),1,2,...2kbP X k k ===,且0b >,则参数b的值为( D ).A.12B. 13C. 15 D. 18.设随机变量X , Y 都服从[0, 1]上的均匀分布,则()E X Y += ( A ). A.1 B.2 C.1.5 D.09.设总体X 服从正态分布,21,()2EX E X =-=,1210,,...,X X X 为样本,则样本均值101110ii X X ==∑~( D ).A.(1,1)N -B.(10,1)NC.(10,2)N -D.1(1,)10N - 10.设总体2123(,),(,,)XN X X X μσ是来自X 的样本,又12311ˆ42X aX X μ=++ 是参数μ的无偏估计,则a = ( B ).A. 1B.14 C. 12D. 13二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
全国2013年1月高等教育自学考试概率论与数理统计(经管类)试题一、单项选择题(本大题共10小题,每小题2分,共20分)二、填空题(本大题共15小题,每小题2分,共30分)三、计算题(本大题共2小题,每小题8分,共16分)四、综合题(本大题共2小题,每小题12分,共24分)五、应用题(10分)全国2013年1月高等教育自学考试 概率论与数理统计(经管类)答案1、本题考查的是和事件的概率公式,答案为C.2、解:()()(|)1()()P B AB P AB P B AB P AB P AB ⋂===()()()0.50.15(|)0.5()()1()0.7P BA P B P AB P B A P B P A P A --=====- ()()0.15(|)0.3()()()0.5P B AB P AB P AB B P A P B P B ⋂=====()()(|)1()()P A AB P AB P A AB P AB P AB ⋂=== ,故选B.3、解:本题考查的是分布函数的性质。
由()1F +∞=可知,A 、B 不能作为分布函数。
再由分布函数的单调不减性,可知D 不是分布函数。
所以答案为C 。
4、解:选A 。
{||2}{2}{2}1{2}{2}1(2)(2)1(2)1(2)22(2)P X P X P X P X P X >=>+<-=-≤+<-=-Φ+Φ-=-Φ+-Φ=-Φ 5、解:因为(2)0.20.16P Y c ===+,所以0.04c =又(2)10.80.20.02P X c d ==-==++,所以10.020.040.14d =--= ,故选D 。
6、解:若~()X P λ,则()()E X D X λ==,故 D 。
7、解:由方差的性质和二项分布的期望和方差:1512(1)()()3695276633D X Y D X D Y -+=+=⨯⨯+⨯⨯=+= ,选A8、解:由切比雪夫不等式2(){|()|}1D X P X E X εε-<>-,可得21600{78008200}{|8000|200}10.96200P X P X <<=-<>-= ,选C 。
第九章 附-统计与概率高考真题 (2014全国1)18. (本小题满分12分)从某企业的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(I )求这500件产品质量指标值的样本平均数x 和样本方差2s (同一组数据用该区间的中点值作代表); (Ⅱ)由频率分布直方图可以认为,这种产品的质量指标值Z 服从正态分布2(,)N μδ,其中μ近似为样本平均数x ,2δ近似为样本方差2s .(i )利用该正态分布,求(187.8212.2)P Z <<;(ii )某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值为于区间(187.8,212.2)的产品件数,利用(i )的结果,求EX .18.【解析】:(Ⅰ) 抽取产品质量指标值的样本平均数x 和样本方差2s 分别为1700.021800.091900.222000.332100.242200.082300.02200x =⨯+⨯+⨯+⨯+⨯+⨯+⨯= ()()()()()()2222222300.02200.09100.2200.33100.24200.08300.02s =-⨯+-⨯+-⨯+⨯+⨯+⨯+⨯150= …………6分(Ⅱ)(ⅰ)由(Ⅰ)知Z ~(200,150)N ,从而(187.8212.2)P Z <<=(20012.220012.2)0.6826P Z -<<+= ………………9分(ⅱ)由(ⅰ)知,一件产品中质量指标值为于区间(187.8,212.2)的概率为0.6826 依题意知(100,0.6826)X B :,所以1000.682668.26EX =⨯= ………12分(2014全国2)19.(12分)某地区2007年至2013年农村居民家庭人均纯收入y (单位:千元)的数据如下表: 年份 2007 2008 2009 2010 2011 2012 2013 年份代号t 1 2 3 4 5 6 7 人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9 (Ⅰ)求y 关于t 的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣. 解答:解:(Ⅰ)由题意,=(1+2+3+4+5+6+7)=4,=(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3, ∴===0.5, =﹣=4.3﹣0.5×4=2.3.∴y 关于t 的线性回归方程为=0.5t+2.3;(Ⅱ)由(Ⅰ)知,b=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元. 将2015年的年份代号t=9代入=0.5t+2.3,得:=0.5×9+2.3=6.8,故预测该地区2015年农村居民家庭人均纯收入为6.8千元.(2015全国1)(19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费i x 和年销售量(1,2,...,8)i y i 数据作了初步处理,得到下面的散点图及一些统计量的值。
历年自考概率论与数理统计(经管类)真题及参考答案(全套)xx年4月份全国自考概率论与数理统计真题参考答案一、单项选择题在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.A. AB. BC. CD. D 答案:B解析:A,B互为对立事件,且P(A)>0,P(B)>0,则P(AB)=0 P(A∪B)=1,P(A)=1-P(B),P(AB)=1-P(AB)=1.2. 设A,B为两个随机事件,且P>0,则P= A. P B. PC. PD. 1 答案:D解析:A,B为两个随机事件,且P(A)>0,P(A∪B|A)表示在A发生的条件下,A或B发生的概率,因为A发生,则必有A∪B发生,故P(A∪B|A)=1.3. 下列各函数可作为随机变量分布函数的是 A. A B. BC. CD. D 答案:B解析:分布函数须满足如下性质:F(+∞)=1,F(-∞)=0,(2)F(x)右连续,(3)F(x)是不减函数,(4)0≤F(x)≤1.而题中F1(+∞)=0;F3(-∞)=-1;F4(+∞)=2.因此选第 1 页项A、C、D中F(x)都不是随机变量的分布函数,排除法知B正确,事实上B满足随机变量分布函数的所有性质.第 2 页4. 设随机变量X的概率密度为A. AB. BC. CD. D答案:A5. 设二维随机变量的分布律为(如下图)则P{X+Y=0}=第 3 页A. B. C. D.答案:C解析:因为X可取0,1,Y可取-1,0,1,故P{X+Y=0}=P{X=0,Y=0}+P{X=1,Y=-1}=+=6. 设二维随机变量的概率密度为A. AB. BC. CD. D 答案:A7. 设随机变量X服从参数为2的泊松分布,则下列结论中正确的是 A. E=,D= B. E=,D= C. E=2,D=4 D. E=2,D=2 答案:D解析:X~P(2),故E=2,D=2.8. 设随机变量X与Y相互独立,且X~N,Y~N,令Z=X-Y,则D= A. 1 B. 3 C. 5 D. 6第 4 页答案:C解析:X~N(1,4),Y~N(0,1),X与Y相互独立,故D(Z)=D(X-Y)=D(X)+D(Y)=4+1=5.第 5 页9.A. B. C. D. 4二、填空题请在每小题的空格中填上正确答案。
课程代码为04183的概率论与数理统计试题及答案(2014年4月、10月)全国2014年4月高等教育自学考试概率论与数理统计(经管类)试题课程代码:04183本试卷满分100分,考试时间150分钟.考生答题注意事项:1.本卷所有试题必须在答题卡上作答。
答在试卷上无效。
试卷空白处和背面均可作草稿纸。
2.第一部分为选择题。
必须对应试卷上的题号使用28铅笔将“答题卡”的相应代码涂黑。
3.第二部分为非选择题。
必须注明大、小题号,使用0.5毫米黑色字迹签字笔作答。
4.合理安排答题空间。
超出答题区域无效。
第一部分选择题一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸"的相应代码涂黑。
错涂、多涂或未涂均无分。
1.掷一颗骰子,观察出现的点数。
A表示“出现3点”,B表示“出现偶数点”,则A.A B⊂ B.A B⊂C.A B⊂ D.A B⊂2.设随机变量x的分布律为,F(x)为X的分布函数,则F(0)=A.0.1B.0.3C.0.4D.0.63.设二维随机变量(X,Y)的概率密度为,11,02,(,)0,≤≤≤≤其它,c x yf x y-⎧=⎨⎩则常数c=A.14B.12C.2D.44.设随机变量X服从参数为2的泊松分布,则D(9—2X)=A.1B.4C.5D.85.设(X,Y)为二维随机变量,则与Cov(X,Y)=0不等价...的是A.X与Y相互独立B.()()()D X Y D X D Y-=+C.E(XY)=E(X)E(Y)D.()()()D X Y D X D Y+=+6.设X为随机变量,E(x)=0.1,D(X)=0.01,则由切比雪夫不等式可得A.{}0.110.01≥≤P X -B.{}0.110.99≥≥P X -C.{}0.110.99≤P X -<D.{}0.110.01≤P X -<7.设x 1,x 2,…,x n 为来自某总体的样本,x 为样本均值,则1()ni i x x =-∑=A.(1)n x -B.0C.xD.nx8.设总体X 的方差为2σ,x 1,x 2,…,x n 为来自该总体的样本,x 为样本均值,则参数2σ的无偏估计为A.2111n i i x n =-∑ B.211n i i x n =∑ C.211()1ni i x x n =--∑ D.11()2ni i x x n =-∑ 9.设x 1,x 2,…,x n 为来自正态总体N (μ,1)的样本,x 为样本均值,s 2为样本方差.检验假设H 0∶μ=μ0,H 1∶μ≠μ0,则采用的检验统计量应为xx ()x μ-0()x μ-10.设一元线性回归模型为201,(0,),1,2,,,i i i i y x N i n ββεεσ=++=:L 则E (y i )=A.0βB.1i x βC.01i x ββ+D.01i i x ββε++非选择题部分注意事项:用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
1【解析】因为,所以,而,所以,即;又由集合的加法公式P(AB)=P(A)+P(B)-P(A∪B)=0.5+0.4-0.6=0.3,所以=0.5-0.3=0.2,故选择B.[快解] 用Venn图可以很快得到答案:【提示】1. 本题涉及集合的运算性质:(i)交换律:A∪B=B∪A,AB=BA;(ii)结合律:(A∪B)∪C=A∪(B∪C),(AB)C=A(BC);(iii)分配律:(A∪B)∩C=(A∩C)∪(B∩C),(A∩B)∪C=(A∪C)∩(B∪C);(iv)摩根律(对偶律),.2.本题涉及互不相容事件的概念和性质:若事件A与B不能同时发生,称事件A与B互不相容或互斥,可表示为A∩B=,且P(A∪B)=P(A)+P(B).2.【答案】C【解析】根据分布函数的性质,选择C。
【提示】分布函数的性质:① 0≤F(x)≤1;② 对任意x1,x2(x1<x2),都有P{x1<X≤x2}=F(x2)-F(x1);③ F(x)是单调非减函数;④ ,;⑤ F(x)右连续;⑥ 设x为f(x)的连续点,则F‘(x)存在,且F’(x)=f(x).3【答案】D【解析】由课本p68,定义3-6:设D为平面上的有界区域,其面积为S且S>0. 如果二维随机变量(X,Y)的概率密度为,则称(X,Y)服从区域D上的均匀分布.本题x2+y2≤1为圆心在原点、半径为1的圆,包括边界,属于有界区域,其面积S=π,故选择D.【提示】课本介绍了两种二维连续型随机变量的分布:均匀分布和正态分布,注意它们的定义。
若(X,Y)服从二维正态分布,表示为(X,Y)~.4.【答案】A【解析】因为随机变量X服从参数为2的指数分布,即λ=2,所以;又根据数学期望的性质有 E(2X-1)=2E(X)-1=1-1=0,故选择A.【提示】1.常用的六种分布(1)常用离散型随机变量的分布:A. 两点分布① 分布列② 数学期望:E(X)=P③ 方差:D(X)=pq。
12014学年第一学期《概率率与数理统计》(A 卷)标准答案和评分标准 一、选择题1. D2. C3. A4. D5. D6. C7. B8. B9. D 10. B 二、填空题1. 0.12. 0.73. 2e -,,0()0,0x e x f x x -⎧≥=⎨<⎩ 4. 4/5或0.85. 2(2)1Φ-或(2)(2)Φ-Φ-6. 4,127. 7, 8三、1.解:设123,,A A A 分别表示被保险人为“谨慎型”、“一般型”和“冒失型”,B 表示被保险人在一年内出了事故。
(1分)依题意,有 123()0.2,()0.5,()0.3P A P A P A ===, 111(|)0.05,(|)0.1,(|)0.3P B A P B A P B A ===, (2分)所以,由贝叶斯公式可得 (1分)1111112233()()(|)(|)()()(|)()(|)()(|)P A B P A P B A P A B P B P A P B A P A P B A P A P B A ==++ (4分) 0.20.0510.06670.20.050.50.10.30.315⨯===⨯+⨯+⨯ (2分) 2.解:根据题意,X 可能的取值有1,2,3, (1分)取值的概率分别为13241(1)2C P X C ===,12241(2)3C P X C ===,2411(3)6P X C ===故X (6分)11113(21)(211)(221)(231) 4.332363E X +=⨯+⨯+⨯+⨯+⨯+⨯== (3分)3.解:(1)由120()d d 13cf x x cx x +∞-∞===⎰⎰ 知3c =; (2分)(2)当0x ≤ 时,()()d 0d 0x xF x f x x x -∞-∞===⎰⎰;当01x <≤ 时,230()()d 3d xxF x f x x x x x -∞===⎰⎰;当1x > 时,120()()d 3d 1x F x f x x x x -∞===⎰⎰;所以30,0,(),0 1.1, 1.x F x x x x ≤⎧⎪=<≤⎨⎪>⎩(4分)2(3)1203()()30.754E X xf x dx x x dx +∞-∞==⋅==⎰⎰ (2分)1222203()()30.65E X x f x d x x x d x +∞-∞==⋅==⎰⎰ (2分) 223()()[()]0.37580D XE X E X =-== (2分)(4)解法一:因为1Y X =-是严格单调的函数,所以 当01y <<时,即,01x <<时,2()(1)(1)3(1)Y X f y f y y y '=--=- 当Y 为其他值时, ()(1)(1)0Y X f y f y y '=--= 所以,1Y X =-的密度函数为:⎩⎨⎧<<-=其他,010,)1(3)(2y y y f Y (4分)解法二:1Y X =-的分布函数()Y F y 为()()(1)(1)Y F y P Y y P X y P X y =<=-<=>-1(1)1(1),X P X y F y =-≤-=--而其它100)1(3)1()]1(1[)()(2<<⎪⎩⎪⎨⎧-=-=--==y y y f y F dy d dy y dF y f X X Y Y (4分)四、1. 解:矩法估计,因为1()xxxxE X xe dx xdexee dx θθθθμθ+∞+∞+∞----+∞===-=-+⎰⎰⎰0xeθθθ-+∞=-=或因为1XE θ⎛⎫⎪⎝⎭,所以()E X μθ== (4分) 由矩法估计ˆX μ= ,所以ˆX θ=。
概率论与数理统计自考题-9(总分100, 做题时间90分钟)第一部分选择题一、单项选择题1.设随机事件A与B互不相容,且P(A)>0,P(B)>0,则______ •**(B|A)=0•**(A|B)>0•**(A|B)=P**(AB)=P(A)P(B)SSS_SIMPLE_SINA B C D分值: 2答案:A[解析] ,P(A)>0,又A与B互不相容,所以P(AB)=0即P(A|B)=0.2.设A,B为两个随机事件,且P(AB)>0,则P(A|AB)=______•**(A)•**(AB)•**(A|B)**SSS_SIMPLE_SINA B C D分值: 2答案:D[解析] P(A|AB)表示的意义是在A、B两个事件同时发生的条件下事件A发生的概率,易知P(A|AB)=1.3.设随机变化量X的概率密度为则______A. B. C. D.SSS_SIMPLE_SINA B C D分值: 2答案:A[解析] .4.设随机变量X服从参数为3的指数分布,其分布函数记为F(x),则______A. B.C.1-e-1 D.SSS_SIMPLE_SINA B C D分值: 2答案:C[解析] ∵X服从参数为3的指数分布,5.设下列函数的定义域均为(-∞,+∞),则其中可以作为概率密度的是______ A.f(x)=-e-x B.f(x)=e-xC. D.f(x)=e-|x|SSS_SIMPLE_SINA B C D分值: 2答案:C[解析] 由概论密度的性质得,f(x)≥0,,A项,f(x)=-e-x<0排除,B项,,C项f(x).同理排除D.6.设随机变量,Y~N(2,10),又E(XY)=14,则X与Y的相关系数=______ρXY• A.-0.8• B.-0.16•****SSS_SIMPLE_SINA B C D分值: 2答案:D[解析] .7.已知随机变量X的概率密度为则(E)X=______A.6 B.3C.1 D.SSS_SIMPLE_SINA B C D分值: 2答案:B[解析] 因为,所以就有.8.设随机变量X~N(0,1),Y~N(0,1),且X与Y相互独立,则X2+Y2~______•**(0,2)B.χ2(2)•**(2)**(1,1)SSS_SIMPLE_SINA B C D分值: 2答案:B[解析] 由χ2分布定义知,X2+Y2~χ2(2).9.设随机变量Z~B(n,p),n=1,2,…,其中0<p<1,则______nA. B.C. D.SSS_SIMPLE_SINA B C D分值: 2答案:B[解析] 由独立同分布的中心极限定理知.10.设总体X~N(μ,σ2),其中σ2未知.现随机抽样,计算得样本方差为100,若要对其均值进行检验.采用______•**—检验法B.χ2—检验法•**—检验法**—检验法SSS_SIMPLE_SINA B C D分值: 2答案:D[解析] Z—检验法适用对象:单个或多个正态总体,σ2已知时,关于均值μ的假设检验.t—检验法适用对象:单个或多个正态总体,σ2未知,用样本值S2代替时,关于均值μ的假设检验.χ2—检验法:用来检验在未知正态总体的均值时,其方差是否等于某个特定值.F—检验法,用来检验均值未知的两个正态总体,其方差是否相等.第二部分非选择题二、填空题1.设随机事件A与B相互独立,且P(A)=P(B)=,则=______.SSS_FILL分值: 2答案:[解析]2.甲、乙两门高射炮彼此独立地向一架飞机各发一炮,甲、乙击中飞机的概率分别为0.4,0.5,则飞机至少被击中一炮的概率为______.SSS_FILL分值: 2答案:0.7[解析] 设甲击中飞机的概率为P(A),乙击中飞机的概率为P(B),则P(AB)为甲、乙同时击中飞机的概率.故飞机至少被击中一炮的概率为:P(A∪B)=P(A)+P(B)-P(AB)=0.4+0.5-0.4×0.5=0.7.3.设A为随机事件,P(A)=0.3,则=______.SSS_FILL分值: 2答案:0.7[解析]4.设事件A与B相互独立,且P(A)=0.3,P(B)=0.4,则P(A∪B)=______.分值: 2答案:0.58[解析] ∵A、B相互独立∴P(AB)=P(A)P(B)=0.4×0.3=0.12P(A∪B)=P(A)+P(B)-P(AB)=0.3+0.4-0.12=0.58.5.设X是连续型随机变量,则P{X=5}=______.SSS_FILL分值: 2答案:0[解析] 因为X是连续型随机变量,其任意一点的概率都为零,所以P{x=5}=0.6.设随机变量X服从正态分布N(1,4),Ф(x)为标准正态分布函数,已知Ф(1)=0.8413,Ф(2)=0.9772,则P{|X|<3}=______.SSS_FILL分值: 2答案:0.8185[解析]7.设随机变量X的分布函数为则当x>0时,X的概率密度f(x)=______.SSS_FILL分值: 2答案:e-x[解析] F(x)与f(x)的对应关系为f(x)=F'(x),当x>0时f(x)=(1-e-x)1=e-x.8.设二维随机变量(X,Y)的概率密度为则当y>0时,(X,Y)关于Y的边缘概率密(y)=______.度fY分值: 2答案:e-y[解析]9.设二维随机变量(X,Y)的概率密度为则P{X+Y≤1}=______.SSS_FILL分值: 2答案:[解析] 因为X+Y≤1又0<x<2,2<y<1,所以随机点必落在右图区域中.10.设随机变量X的分布律为,则E(X2)=______.SSS_FILL分值: 2答案:1[解析] .11.设随机变量X~N(0,4),则E(X2)=______.SSS_FILL分值: 2答案:4[解析] X~N(0,4),∴E(x)=0,D(x)=4,E(x2)=D(x)+E2(x)=4+0=4.12.设随机变量F~F(n1,n2),则~______.SSS_FILL答案:F(N2,N1)[解析] 由F分布的构造知,若F~F(m,n),则有1/F~F(n,m),∴.13.设X1,X2,…,Xn…是独立同分布的随机变量序列,E(Xn)=μ,D(Xn)=σ2,n=1,2,…,则=______.SSS_FILL分值: 2答案:0.5[解析] 根据独立同分布中心极限定理:14.设0.05是假设检验中犯第一类错误的概率,H0为原假设,则P{拒绝H|H真}=______.SSS_FILL分值: 2答案:0.05[解析] 由第一类错误的定义即知.15.设x1,x2,…,xn为样本观测值,经计算知,.则=______.SSS_FILL分值: 2答案:36[解析]三、计算题1.设工厂甲、乙、丙三个车间生产同一种产品,产量依次占全厂产量的45%,35%,20%,且各车间的次品率分别为4%,2%,5%.求:(1)从该厂生产的产品中任取1件,它是次品的概率;(2)该件次品是由甲车间生产的概率.SSS_TEXT_QUSTI答案:以A1,A2,A3依次表示任取1件产品,它是由甲、乙、丙车间所生产的事件,B表示事件“任取1件产品,它是次品”.(1)(2)2.设某行业的一项经济指标服从正态分布N(μ,σ2),其中μ,σ2均未知.今获取了该指标的9个数据作为样本,并算得样本均值=56.93,样本方差s2=(0.93)2,求μ的置信度为95%的置信区间.(附:t0.025=2.306)SSS_TEXT_QUSTI分值: 8答案:正态总体的方差σ2未知,μ的置信度为(1-α)的置信区间为.由,s=0.93,n=9,α=0.05,.计算可知μ的置信度为95%的置信区间为(56.22,57.64).四、综合题设随机变量X的概率密度为SSS_TEXT_QUSTI1.求X的分布函数FX(x);分值: 4答案:SSS_TEXT_QUSTI2.求;分值: 4答案:SSS_TEXT_QUSTI3.令Y=2X,求Y的概率密度fY(y).分值: 4答案:y=g(x)=2x,α=-∞,β=+∞,,则设二维随机变量(X,Y)的分布律为SSS_TEXT_QUSTI4.求(X,Y)分别关于X,Y的边缘分布律;分值: 6答案:X,Y的分布律分别为SSS_TEXT_QUSTI5.试问X与Y是否相互独立,为什么?分值: 6答案:由于P{X=0,Y=0}=0.2,P{X=0}=0.3,P{Y=0}=0.4而P{X=0,Y=0}≠P{X=0}P{Y=0},故X与Y不相互独立.五、应用题1.设某厂生产的食盐的袋装重量服从正态分布N(μ,σ2)(单位:g),已知σ2=9.在生产过程中随机抽取16袋食盐,测得平均袋装重量=496.问在显著性水平α=0.05下,是否可以认为该厂生产的袋装食盐的平均袋重为500g?(μ0.025=1.96)SSS_TEXT_QUSTI分值: 10答案:检验假设H0:μ=500;H1:μ≠500.已知n=16,σ=3,,成立时,,在H,即认为该厂生产的代装食盐的平均重量不是500g.由于,故拒绝H1。
概率论与数理统计考试试卷(附答案)一、选择题(共6小题,每小题5分,满分30分) 1. 事件表达式B A -的意思是 ( ) (A) 事件A 与事件B 同时发生 (B) 事件A 发生但事件B 不发生 (C) 事件B 发生但事件A 不发生(D) 事件A 与事件B 至少有一件发生2. 假设事件A 与事件B 互为对立,则事件A B ( ) (A) 是不可能事件 (B) 是可能事件 (C) 发生的概率为1(D) 是必然事件3. 已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) (A) 自由度为1的χ2分布 (B) 自由度为2的χ2分布 (C) 自由度为1的F 分布(D) 自由度为2的F 分布4. 已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( )(A) X +Y ~P (4) (B) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D) X +Y ~N (0,3)5. 样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) (A) X 1+X 2+X 3是μ的无偏估计(B)1233X X X ++是μ的无偏估计(C) 22X 是σ2的无偏估计(D) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计6. 随机变量X 服从在区间(2,5)上的均匀分布,则X 的方差D (X )的值为( ) (A) 0.25(B) 3.5(C) 0.75(D) 0.5二、填空题(共6小题,每小题5分,满分30分。
把答案填在题中横线上) 1. 已知P (A )=0.6, P (B |A )=0.3, 则P (AB )= __________2. 三个人独立地向一架飞机射击,每个人击中飞机的概率都是0.4,则飞机被击中的概率为__________3. 一个袋内有5个红球,3个白球,2个黑球,任取3个球恰为一红、一白、一黑的概率为_____4. 已知连续型随机变量,01,~()2,12,0,.x x X f x x x ≤≤⎧⎪=-<≤⎨⎪⎩其它 则P {X ≤1.5}=_______.5. 假设X ~B (5, 0.5)(二项分布), Y ~N (2, 36), 则E (2X +Y )=__________6. 一种动物的体重X 是一随机变量,设E (X )=33, D (X )=4,10个这种动物的平均体重记作Y ,则D (Y )=_____________________ _______三、有两个口袋,甲袋中盛有两个白球,一个黑球,乙袋中盛有一个白球,两个黑球。
全国2014年4月高等教育自学考试 概率论与数理统计(经管类)试题一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题 纸"的相应代码涂黑。
错涂、多涂或未涂均无分。
1.掷一颗骰子,观察出现的点数。
A 表示“出现3点”,B 表示“出现偶数点”,则 A.A B ⊂ B.A B ⊂ C.A B ⊂ D.A B ⊂2.设随机变量x 的分布律为 ,F(x)为X 的分布函数,则F(0)= A.0.1 B.0.3 C.0.4 D.0.63.设二维随机变量(X ,Y )的概率密度为,11,02,(,)0,≤≤≤≤其它,c x y f x y -⎧=⎨⎩则常数c=A.14 B.12 C.2 D.44.设随机变量X 服从参数为2的泊松分布,则D(9—2X )= A.1 B.4 C.5 D.85.设(X ,Y )为二维随机变量,则与Cov(X ,Y )=0不等价...的是 A.X 与Y 相互独立 B.()()()D X Y D X D Y -=+ C.E(XY)=E(X)E(Y) D.()()()D X Y D X D Y +=+6.设X 为随机变量,E(x)=0.1,D(X )=0.01,则由切比雪夫不等式可得A.{}0.110.01≥≤P X -B.{}0.110.99≥≥P X -C.{}0.110.99≤P X -<D.{}0.110.01≤P X -<7.设x 1,x 2,…,x n 为来自某总体的样本,x 为样本均值,则1()ni i x x =-∑=A.(1)n x -B.0C.xD.nx8.设总体X 的方差为2σ,x 1,x 2,…,x n 为来自该总体的样本,x 为样本均值, 则参数2σ的无偏估计为A.2111n i i x n =-∑ B.211n i i x n =∑ C.211()1ni i x x n =--∑ D.11()2ni i x x n =-∑ 9.设x 1,x 2,…,x n 为来自正态总体N (μ,1)的样本,x 为样本均值,s 2为样本方差.检验假设H 0∶μ=μ0,H 1∶μ≠μ0,则采用的检验统计量应为A./x s n- B.0/x s n-C.()n x μ-D.0()n x μ-10.设一元线性回归模型为201,(0,),1,2,,,i i i i y x N i n ββεεσ=++=:L 则E (y i )= A.0β B.1i x β C.01i x ββ+ D.01i i x ββε++非选择题部分注意事项:用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
自考概率论试题及答案讲解概率论是研究随机现象及其规律性的数学分支,它在统计学、金融学、物理学等多个领域都有着广泛的应用。
以下是一份自考概率论的试题及答案讲解,供考生参考。
一、选择题1. 设随机变量X服从参数为λ的泊松分布,那么P(X=2)等于()。
A. λ^2B. e^(-λ)λ^2C. e^(-2λ)λ^2D. λ^2/2答案: B讲解:泊松分布的概率质量函数为 P(X=k) = (e^(-λ)λ^k) /k!,其中k为自然数。
将k=2代入公式,得到 P(X=2) = (e^(-λ)λ^2) / 2! = e^(-λ)λ^2。
2. 如果连续型随机变量X的概率密度函数为f(x),那么P(a<X<b)等于()。
A. ∫_a^b f(x) dxB. ∫_b^a f(x) dxC. f(a) - f(b)D. f(b) - f(a)答案: A讲解:对于连续型随机变量,其累积分布函数(CDF)是概率密度函数(PDF)的积分。
因此,P(a<X<b)可以通过计算从a到b的积分来得到,即∫_a^b f(x) dx。
二、填空题1. 设随机变量Y服从正态分布N(μ, σ^2),那么Y的期望值E(Y)等于______。
答案:μ讲解:正态分布的期望值由其均值参数μ决定,即E(Y) = μ。
2. 随机变量Z服从标准正态分布,即Z~N(0,1),那么P(Z<0)等于______。
答案: 0.5讲解:标准正态分布是关于Y轴对称的,因此Z小于0的概率等于Z大于0的概率,都是0.5。
三、解答题1. 一个工厂的机器在一天内出现故障的概率是0.05。
如果机器每天独立运行,那么在接下来的7天内,机器至少出现一次故障的概率是多少?答案: 1 - (1 - 0.05)^7 ≈ 0.28讲解:机器在一天内不出现故障的概率是1 - 0.05 = 0.95。
由于每天独立运行,7天内都不出现故障的概率是(0.95)^7。
绝密★考试结束前
全国2014年4月高等教育自学考试
概率论与数理统计(经管类)试题
课程代码:04183
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分
注意事项:
1.答题前,考生务必将自己的考试课程名称、姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
2.每小题选出答案后,用2B铅笔把答题纸上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试题卷上。
一、单项选择题(本大题共10小题,每小题2分,共20分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题
纸"的相应代码涂黑。
错涂、多涂或未涂均无分。
1.掷一颗骰子,观察出现的点数。
A表示“出现3点”,B表示“出现偶数点”,则
A.A B
⊂
⊂ B.A B
C.A B
⊂ D.A B
⊂
2.设随机变量x的分布律为,F(x)为X的分布函数,
则F(0)= A.0.1 B.0.3 C.0.4
D.0.6
3.设二维随机变量(X ,Y )的概率密度为,11,02,
(,)0,≤≤≤≤其它,c x y f x y -⎧=⎨⎩
则常
数c= A.14
B.12
C.2
D.4
4.设随机变量X 服从参数为2的泊松分布,则D(9—2X )= A.1 B.4 C.5
D.8
5.设(X ,Y )为二维随机变量,则与Cov(X ,Y )=0不等价...的是 A.X 与Y 相互独立 B.()()()D X Y D X D Y -=+ C.E(XY)=E(X)E(Y)
D.()()()D X Y D X D Y +=+
6.设X 为随机变量,E(x)=0.1,D(X )=0.01,则由切比雪夫不等式可得 A.{}0.110.01≥≤P X - B.{}0.110.99≥≥P X - C.{}0.110.99≤P X -<
D.{}0.110.01≤P X -<
7.设x 1,x 2,…,x n 为来自某总体的样本,x 为样本均值,则1
()n i i x x =-∑= A.(1)n x - B.0 C.x
D.nx
8.设总体X 的方差为2σ,x 1,x 2,…,x n 为来自该总体的样本,x 为样本均值,
则参数2σ的无偏估计为
A.2
1
11n i
i x n =-∑
B.21
1n i i x n =∑ C.21
1()1n
i i x x n =--∑ D.1
1()2n
i i x x n =-∑ 9.设x 1,x 2,…,x n 为来自正态总体N (μ,1)的样本,x 为样本均值,s 2为样本方差.检验假设H 0∶μ=μ0,H 1∶μ≠μ0,则采用的检验统计量应为
x
()x μ- 0()x μ-
10.设一元线性回归模型为201,(0,),1,2,
,,i i i i y x N i n ββεεσ=++=则E (y i )=
A.0β
B.1i x β
C.01i x ββ+
D.01i i x ββε++
非选择题部分
注意事项:用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
二、填空题(本大题共15小题,每小题2分,共30分) 11.设A 、B 为随机事件,11(),(),2
3
P A P B A ==则P (AB )=_______.
12.设随机事件A 与B 相互独立,P (A )=0.3,P (B )=0.4,则P (A -B )=_______.
13.设A ,B 为对立事件,则()P A
B =_______.
14.设随机变量X 服从区间[1,5]上的均匀分布,F (x )为X 的分布函数,当1≤x ≤5时,F(x)=_______. 15.设随机变量X 的概率密度为2,01,1()20,则P 其他,
x x f x X ≤≤⎧⎧
⎫=>⎨
⎨⎬⎩⎭⎩=_______.
16.已知随机变量X ~N (4,9),{}{}≤P X c P X c >=,则常数c =_______. 17.设二维随机变量(X ,Y )的分布律为
则常数a =_______.
18.设随机变量X 与Y 相互独立,且X ~N (0,1),Y ~N(-1,1),记Z =X -Y ,则Z ~_______.
19.设随机变量X 服从参数为2的指数分布,则E (X 2)=_______. 20.设X ,Y 为随机变量,且E (X )=E (Y )=1,D (X )=D(Y )=5,0.8XY ρ=,
则E (XY )=_______.
21.设随机变量X ~B (100,0.2),Φ(x)为标准正态分布函数,
Φ(2.5)=0.9938,应用中心极限定理,可得
P {20≤X ≤30)≈_______.
22.设总体X ~N (0,1),1234,,,x x x x 为来自总体X 的样本,则统计量
2222
1234x x x x +++~_______.
23.设样本的频数分布为 则样本均值
x =_______.
24.设总体X ~N (μ,16),μ未知,1216,,,x x x 为来自该总体的样本,x
为样本均值,u α
为标准正态分布的上侧α分位数.当μ的置信区间是0.050.05,x u x u ⎡⎤-+⎣⎦时,
则置信度为_______.
25.某假设检验的拒绝域为W ,当原假设H 0成立时,样本值(12,,,n x x x )
落入W 的
概率为0.1,则犯第一类错误的概率为_______. 三、计算题(本大题共2小题,每小题8分,共16分) 26.设二维随机变量(X ,Y )的概率密度为
2
6,01,01,
(,)0,≤≤≤≤其他x y x y f x y ⎧⎪=⎨⎪⎩
求:(1)(X ,Y )关于X 的边缘概率密度f x (x);(2){}P X Y >. 27.设二维随机变量(X ,Y )的分布律为
求:(1)E (Y ),D (X );(2)E (X +Y ).
四、综合题(本大题共2小题,每小题12分,共24分)
28.有甲、乙两盒,甲盒装有4个白球1个黑球,乙盒装有3个白球2个黑球.从甲盒中任取1个球,放入乙盒中,再从乙盒中任取2个球.(1)求从乙盒中取出的是2个黑球的概率;(2)己知从乙盒中取出的是2个黑球,问从甲盒中取出的是白球的概率.
29.设随机变量X ~N (0,1),记Y =2X ,求:(1)P{X<-1};(2)P{|X |<1}; (3)Y 的概率密度.(:(1)0.8413附Φ=) 五、应用题(10分)
30.某项经济指标X ~N(μ,2),将随机调查的11个地区的该项指标
1211,,
,x x x 作为样
本,算得样本方差S 2=3.问可否认为该项指标的方差仍为2?(显著水平
α
=0.05)
(附:22
0.025
0.975(10)20.5,(10) 3.2X X ==)
2014年4月全国自考《概率论与数理统计(经管类)》参考答案,读者可以登录:/ziliao/,免费下载
》》更有2010年—2015年4月、10月全国自考《概率论与数理统计(经管类)》真题及答案--免费下载。