微生物来源的酶抑制剂
- 格式:ppt
- 大小:1.85 MB
- 文档页数:3
中国兽医科学2021,51(02〉: 161-168Chinese Veterinary Science网络首发时间:2020-12-ll D01:10.16656/j.issn.l673-4696.2021.0024 中图分类号:S852.734 文献标志码:A文章编号:1673_4696(2021)02-016卜08猪带纟条虫丝氨酸蛋白酶抑制剂Ts-serpin-1对 人巨噬细胞THP-1的免疫调节功能研究毕研丽\刘仲蓉'郭爱疆\张少华、王帅”,才学鹏(1.中国农业科学院兰州兽医研究所家畜疫病病原生物学国家重点实验室,甘肃兰州730046;2.甘肃农业大学动物医学院,甘肃兰州730070;3.中国兽医药品监察所,北京100081)摘要:主要研究猪带绦虫丝氨酸蛋白酶抑制剂Ts-serpin-l(WormBase:TsM_000065700)对宿主THP-1 细胞的免疫调节作用通过设计特异性引物和RT-PCR扩增技术,获得Ts-serpin-1编码序列,用qRT-PCR 分析Ts-serpin-l基因在猜带線虫成虫和中綠期幼虫的表达情况;构建pCold-Ts-serpin-1原核表达栽体,诱导表达纯化重组蛋白Ts-serpin-1;用重组蛋白Ts-serpin-1处理THP-1细胞,采用qRT-PCR和ELISA方法检测Ts-serpin-1处理THP-1细胞后,各炎性细胞因子的变化情况,结果显示:获得的Ts-serpin-1目的基因长度为1149匕口,编码382个氨基酸,含有56卬丨11家族特有的反应中心环。
7^-36叩丨11-1基因在猪带绦虫 成虫和中绦期幼虫均表达,且成虫表达量显著高于幼虫。
重组蛋白Ts-serpin-1的分子质量约为43 ku,可抑 制THP-1细胞促炎性细胞因子IL-6、IL-10、IL- 12、TNF-a、丨FN-y和iNOS2的表达,促进抗炎性细胞因子 1L-10和TGF-y3的分泌表达。
抗生素一、发现一类微生物抑制或杀死其他种类微生物的作用称为拮抗作用。
拮抗作用是微生物界的普遍现象,早在微生物发现之前,人们已经利用拮抗作用治病,如我国人利用豆腐上的霉治疗疮,美洲人用发霉的面包治疗伤口化脓等。
随着微生物学的发展,人们认识到了拮抗作用的本质,开始有意识地研究。
本世纪初,已经分离出多种抗生素,但其效率不高,毒性较大,没有实用价值。
1929年,英国人Flemming 在培养葡萄球菌时,发现从空气中落到培养基上的一种青霉菌能抑制其周围的葡萄球菌生长。
他进一步研究发现青霉菌分泌一种抗菌物质,能抑制葡萄球菌生长,于是把它命名为青霉素。
他没有进行动物试验,青霉素也没有用于临床。
直到1940年,牛津大学研究小组提出“青霉素是一种化学治疗剂”,才将它应用于临床。
同年,瓦克斯曼发现链霉素,抗生素时代开始,陆续发现了许多抗生素,成功地治疗了肺炎、结核等传染病,使人类寿命显著提高。
此后三十年间,发现的抗生素有数千种,有上百种被广泛应用,抗生素已经成为一个独立的工业部门。
二、概念抗生素是能以低浓度抑制或影响活的机体生命过程的次级代谢产物及其衍生物。
抗生素的概念是不断扩大的,最初只包括对微生物的作用,现在已经有抗肿瘤、抗真菌、抗病毒、抗原虫、抗寄生虫以及杀虫、除草的抗生素。
近年来把来源于微生物的酶抑制剂也包括在抗生素中,总数已超过9000种。
三、作用机理(一)作用特点1.选择性作用一种抗生素只对一定种类的微生物有作用,即抗菌谱。
青霉素一般只对革兰氏阳性菌有作用,多粘菌素只对革兰氏阴性菌有作用,它们的抗菌谱较窄。
氯霉素、四环素等对多种细菌及某些病毒都有抑制作用,称为广谱抗生素。
2.选择性毒力抗生素对人和动物的毒力远小于对病菌的毒力,称为选择性毒力。
通常抗生素可在极低浓度下有选择地抑制或杀死微生物。
选择性毒力是化学治疗的基础。
3.耐药性细菌在抗生素的作用下,大批敏感菌被抑制或杀死,但也有少数菌株会调整或改变代谢途径,变成不敏感菌,产生耐药性。
种类天然α-葡萄糖苷酶抑制剂(glucosidase inhibitor)主要源于动物、植物、微生物,目前已上市并在临床上应用的α-葡萄糖苷酶抑制剂类降糖药主要有:拜唐苹(阿卡波糖),每片50毫克(德国拜耳);卡博平(阿卡波糖),每片50毫克(中美华东);倍欣(伏格列波糖),每片0.2毫克(天津武田);奥恬苹(米格列醇,miglitol),每片50毫克(四川维奥)。
其中拜唐苹及卡博平为医保药物,倍欣与奥恬苹尚未进入医保目录。
拜唐苹:(阿卡波糖),Acarbose特点:由白色放线菌属菌株发酵而成,为德国拜耳公司出品,仅有微量原形或分解产物为人体吸收,绝大部分经肠道排出。
规格:50毫克/片剂量:150~300毫克/日副作用:消化道反应:肠鸣,腹胀,恶心,呕吐,食欲减退,偶有腹泻,一般两周后可缓解,必要是可减量。
倍欣:(伏格列波糖),V oglibose特点:由日本武田药品有限公司生产,通过抑制α- 葡萄糖苷酶,延缓双糖(淀粉在淀粉酶作用下水解为双糖)在α- 葡萄糖苷酶作用下分解为单糖,延缓葡萄糖与果糖的吸收速度,从而降低餐后血糖。
规格:0.2毫克/片剂量:0.6毫克/日副作用:同拜糖平。
编辑本段作用机制食物中的淀粉(多糖)经口腔唾液、胰淀粉酶消化成含少数葡萄糖分子的低聚糖(或称寡糖)以及双糖与三糖,进入小肠经α- 葡萄糖苷酶作用下分解为单个葡萄糖,为小肠吸收。
在生理的状态下,小肠上,中、下三段均存在α- 葡萄糖苷酶,在服用α- 葡萄糖苷酶抑制剂后上段可被抑制, 而糖的吸收仅在中、下段,故吸收面积减少,吸收时间后延,从而对降低餐后高血糖有益, 在长期使用后亦可降低空腹血糖, 估计与提高胰岛素敏感性有关。
编辑本段作用特点(1)抑制小肠上皮细胞表面的α-糖苷酶。
药物与酶的结合时间大约是4~6小时,此后酶的活性可恢复。
(2)延缓碳水化合物的吸收,而不抑制蛋白质和脂肪的吸收。
α-葡萄糖苷酶抑制剂(3)一般不引起营养吸收障碍。
酪氨酸酶抑制剂的应用研究进展胡泳华;贾玉龙;陈清西【摘要】酪氨酸酶是一类络合铜离子的金属酶类,广泛存在于动植物、微生物及人体中,是生物体合成黑色素、果蔬褐变的关键酶.酪氨酸酶的异常表现可能会出现黑色素瘤等,黑色素异常生成造成的色素沉着是动物衰老及果蔬褐变的重要表现.综述了酪氨酸酶抑制剂在美容保健、色素型皮肤病的治疗、病虫害防治以及食品保鲜等方面的应用,如:通过直接抑制酪氨酸酶活性以及调控细胞中酪氨酸酶的表达量来有效调控黑色素的生成,从而达到美白及治疗色素紊乱症的作用;抑制果蔬褐变,延长货架期;抑制昆虫蜕皮时的鞣化,达到杀灭农业害虫的目的;提高微生物对于紫外线及其他辐射的敏感度,进一步达到抑菌的目的.【期刊名称】《厦门大学学报(自然科学版)》【年(卷),期】2016(055)005【总页数】9页(P760-768)【关键词】酪氨酸酶抑制剂;医疗美容;害虫防治;保鲜;生物抗菌【作者】胡泳华;贾玉龙;陈清西【作者单位】厦门大学生命科学学院,福建厦门361102;厦门大学生命科学学院,福建厦门361102;厦门大学生命科学学院,福建厦门361102【正文语种】中文【中图分类】Q356.1酪氨酸酶(tyrosinase,EC 1.14.18.1)广泛分布于微生物、动植物及人体中,在植物中,酪氨酸酶一般称为多酚氧化酶;在昆虫中,一般称为酚氧化酶;在微生物和人体中,称为酪氨酸酶.酪氨酸酶是生物体合成黑色素、果蔬褐变的关键酶,在昆虫蜕皮时的鞣化过程和伤口愈合中起重要作用,细菌的黑色素能保护细菌细胞和孢子免受紫外线的伤害.酪氨酸酶具有单酚酶和二酚酶双重催化功能,在单酚酶的作用下,酪氨酸被羟基化成L-多巴(L-DOPA),在二酚酶的作用下,L-DOPA被氧化生成多巴醌,多巴醌再经过一系列的反应之后生成黑色素[1].酪氨酸酶表现异常,有可能会出现黑色素瘤及早发性老年痴呆疾病等,黑色素异常生成造成的色素沉着是动物衰老及果蔬褐变的重要表现[2].酪氨酸酶抑制剂应用广泛,涉及美容保健、色素型皮肤病治疗、病虫害防治以及食品保鲜等多个领域.黑素细胞中酪氨酸酶的基因转录是在小眼转录因子(microphthalmia transcription factor,MITF)的调控下进行的,MITF是黑素细胞增殖及黑素生成过程中起决定性作用的转录因子.现有研究表明,很多信号途径参与调节MITF的表达,例如:Wnt信号途径、cAMP(cyclic adenosine monophosphate)信号途径、P38及MAP(mitogen activated protein)激酶信号途径等[3],一些主要信号通路总结于图1所示.在阳光照射(即紫外线的刺激下),皮肤角化细胞中的黑色素体受到刺激,可以通过促使分泌促肾上腺皮质激素和α-MSH黑色素细胞刺激素激活ACTH(adreno cortico tropic hormone)和PGE2(prostaglandin E2)蛋白的活化,激活cAMP调节CREB和CRE复合体的形成,进一步激活通路下游的酪氨酸酶活化;CREB/CRE复合体也可以通过上游NOS活化导致PKG(protein kinase G)通路激活而完成,DAG调控的PKC(protein kinase C)通路同样可以达到活化复合体的作用.CREB/CRE复合体激活之后,调节黑色素信号通路中的关键因子MITF在细胞核内完成MBOX结合,激活酪氨酸酶、相关蛋白TRP-1和DCT的大量表达活化.在完成黑素合成相关基因转录后,黑素在黑素小体内主要通过酪氨酸酶的作用进行合成,在人体皮肤角化细胞中,黑色素的形成导致表皮褐变,产生黑斑.以酪氨酸酶抑制剂作为化妆品美白添加剂的作用靶点主要是通过抑制酪氨酸酶的活性和调节酪氨酸酶的转录.其中抑制酪氨酸酶活力的作用模式是目前市场上大多数美白化妆品类开发应用的依据[4].黑色素细胞树突生长障碍是造成白癜风的病因之一,Wang等[5]研究了Rnaset2在人体黑色素细胞中的作用,研究结果表明Rnaset2是调控色素细胞树突生成的关键蛋白之一.Ito等[6]研究诱变白斑病相关酚类发现其能被酪氨酸酶催化,但相应的酚类抑制剂却不能被催化,证实酚类酪氨酸酶抑制剂在开发时需要先检查其是否能够被酪氨酸酶催化.孙道权等[7]研究了水溶性丝胶蛋白能够有效抑制黑色素生成,丝胶粉能够抑制皮肤中的酪氨酸酶活性,从而抑制黑色素的生成,对皮肤起到一定美白作用.陈龙等[8]的研究发现鱼胶原肽能够有效地抑制酪氨酸酶活性,鱼胶原肽可作为无毒副作用的纯天然美白化妆品原料.成静等[9]的研究发现胶原三肽作为构成胶原的最小单位,能够很好地抑制酪氨酸酶活性,在小鼠的黑色素瘤B16细胞中,既能够很好地抑制黑色素生成,同时又对细胞毒性较低.刘琦等[10]研究了维生素C、乙基醚、烟酰胺、β-熊果苷等美白化妆品成分对酪氨酸酶活性的抑制作用,研究表明3种美白剂对于酪氨酸酶的抑制作用表现为非竞争型抑制机理,说明他们与酪氨酸酶的独立部位结合,而不会和底物竞争活性中心.张凤兰等[11]研究表明,熊果苷具有一定的毒性,但它能被人体皮肤表面分离的菌株代谢转变成氢醌类化合物,但转变程度不足以对人CHO (Chinese hamster ovary)细胞产生致畸作用.杨美花等[12]的研究表明L-半胱氨酸能够有效抑制酪氨酸酶的活性,并且能够被酪氨酸酶催化成一种无色底物,使酪氨酸酶不表现出活性,并在细胞水平上证明L-半胱氨酸能够作为一种安全无毒的美白化妆品有效成分.还有很多研究发现多种药用植物中能够提取出有效抑制酪氨酸酶活性的成分,从而极大地丰富了酪氨酸酶抑制剂来源.Bae等[13]从毛壳属植物中提取的毛壳素就能够很好地抑制酪氨酸酶活性并且抑制小鼠黑色素瘤中黑色素的生成.柯静霞[14]的研究表明,蛇婆子提取物在使用8周水平上,能够有效抑制酪氨酸酶活性,降低黑色素活性,并且有效降低黑色素生成量,从而具有一定的美白功效.罗倩仪等[15]通过酪氨酸酶抑制模型研究了几种美白祛斑复配配方的实际筛选和功能优化,实验证明壬二酸衍生物、红景天提取物能够具有一定的美白祛斑作用.Lin等[16]从台湾火刺木中分离的活性物质也能够高效低毒的对酪氨酸酶产生良好的抑制效果并且作为美白剂进行使用.铃木敏幸等[17]对美白化妆品的发展方向进行综述时也提到,通过酪氨酸酶的阻碍实验可以有效地评价美白剂的相关作用,并且能够反映化妆品降低黑素生成的能力.早在2005年刘之力等[18]提到,中药复方乙醇提取物对酪氨酸酶有时也会存在激活作用,但激活酪氨酸酶活力并不代表能够在动物试验中增加黑色素生成的作用.马秋华等[19]从商品化的药物筛选到壬二酸,发现其具有抑制酪氨酸酶活性,并且能够有选择性地抑制黑色素过多的异常化细胞,作为一种美白化妆品的原料.付晓磊等[20]基于商品化的酪氨酸酶抑制剂对苯二酚合成了一系列对苯二酚氨基酸缀合物,通过表征实验证明其能够有效地抑制酪氨酸酶活性,通过构效关系模型研究证实了其具有良好的抑制活性;宋长伟等[21]基于龙胆酸化合物设计合成了系列衍生物,也具有良好的抑制黑色素生成的作用.以上的研究结果显示,酪氨酸酶抑制剂在化妆品研制过程中作为美白添加剂,能够保护人体皮肤免受紫外线辐射.酪氨酸酶在植物体内广泛存在,其很早就被作为植物储藏期间色变腐烂的原因加以研究.果蔬体内多酚氧化酶主要存在于完整细胞的质体、线粒体等细胞器内膜和细胞膜上及细胞质中,而酚类底物存在于液泡中,这种区室化分布减少了酚类物质与酶的接触,避免了正常组织中酶促褐变的发生.果蔬等产品在受到机械损伤或处于低温、高温环境下,细胞膜的完整性被破坏,区室化分布受到损害,使得酚类物质与多酚氧化酶相接触,加速了正常组织的褐变过程[22-23].在多酚氧化酶作用下,果蔬内源性多酚类物质如酪氨酸、多巴等氧化形成醌,醌类物质再聚合形成类黑色素,从而导致产品变色,造成营养丢失及经济损失.早期,含硫化合物广泛应用于食品的抗褐变中,王伟等[24]发现亚硫酸氢钠对马铃薯多酚氧化酶具有显著的抑制作用及在马铃薯切片护色中具有防褐变功能.然而,这些含硫化合物由于硫的残留对人体的健康造成一定的影响逐步被限制使用.目前,普遍的保鲜方法大致可以分为以下几类:低温保鲜[25-26]、化学保鲜[27-28]、气调保鲜[29-30]、涂膜保鲜[31-32]、臭氧保鲜[33-34]以及辐射保鲜[35-36]等.这些方法虽然可以不同程度地对食品的保鲜起到一定的作用,但由于成本高、费用多等原因而不能得到广泛应用.因此寻求一种高效、简单、低价的保鲜方法显得十分的重要.Sato等[37]从Lentinula edodes中克隆了1 854 bp的Letyr基因,其编码618个氨基酸残基的分子质量为68 ku的蛋白.该基因在蘑菇采后保鲜过程中的表达量大量增加.Sakamoto等[38]采用抑制消减杂交的方法发现采后的Lentinula edodes中两个酚氧化酶基因(酪氨酸酶tyr和漆酶lcc4)的表达明显增加,并且鉴定出这是导致蘑菇褐变的主要原因.因此,可以通过抑制酪氨酸酶的活力达到抑制或延缓食品褐变的发生,而且酪氨酸酶还是各种微生物生命活动所必需的酶,抑制酪氨酸酶的活性还能抑制腐烂菌的生长,达到保鲜防腐的目的,且不影响食品的风味及口感. 常见的酪氨酸酶抑制剂如半胱氨酸、抗坏血酸、柠檬酸等已应用于食品的保鲜中[39-40].Dawley等[41]研究了4-己基间苯二酚对蘑菇酪氨酸酶的抑制作用,而4-己基间苯二酚已被应用于防止苹果片褐变[42]以及延缓虾类产品体内水溶性色原物质被氧化成黑色素而造成虾头胸部黑变[43].Lin等[28]研究了没食子酸丙酯对酪氨酸酶的作用,而后将其应用于龙眼的保鲜中,取得了很好的抗褐变效果.Xing等[44]发现铁取代磷酸盐(Na6PMo11FeO40)对酪氨酸酶是可逆的非竞争型抑制作用,并且其可以显著地延缓莲藕切片的褐变.植酸(又称为肌醇六磷酸)可以很好地抑制苹果汁中的多酚氧化酶活力从而可以显著地降低苹果汁在加工过程中褐变的发生[45].另外,冷冻处理、70 ℃热变性或者300~1 000 MPa高压处理也可以使酪氨酸酶活力失活[46],但这些处理可能对食品的品质造成一定的影响,因此从酪氨酸酶抑制剂出发寻找高效的保鲜剂不失为一种有效的手段.本研究采用酪氨酸酶抑制剂研究了抑制剂对马铃薯条、双孢蘑菇、龙眼及荔枝的抗褐变保鲜,研究结果如图2所示.由图2可知,对照组的马铃薯条比实验组褐变严重;对照组的蘑菇表皮褐变严重,出现腐烂现象;对照组的龙眼表皮褐变严重,有掉果及腐烂现象;而对照组的荔枝果实出现褐变、发霉现象.可见酪氨酸酶抑制剂可以很好地延缓果蔬褐变的发生.随着人口数量的不断增长及生活质量的不断提高,粮食短缺所带来的威胁也越来越严重,粮食产量受到自然灾害及病虫害的极大挑战.农药是控制病虫害、提高粮食产量的最有效手段之一.然而由于农药的广泛应用使得害虫的抗药性不断上升,农药本身的毒性亦不断上升,这对自然环境以及人类自身都构成了极大的威胁.面对这一严峻形势,研制新型、无公害、对环境友好的低毒高效杀虫剂已成为农业工业的第一目标,现有的农药品种远远不能满足粮食生产的需要,仍然需要大力加强农药新品种的研究与开发[47].早在1993年著名昆虫毒理学家张宗炳等[48]指出:探索新杀虫药剂的一条最有希望的途径是生物途径,其中酪氨酸酶抑制剂可列入首选.酪氨酸酶在昆虫的正常发育过程中具有重要的生理功能.它主要参与表皮的硬化、黑化过程;参与对外来侵染物的免疫防御反应;参与伤口愈合反应[49-51].在昆虫表皮硬化过程中,酪氨酸酶催化单酚羟化为二酚,然后氧化成醌,醌与表皮层中的角蛋白及几丁质相互作用,互相交联在一起,形成角质,高度硬化的角质可以阻断微生物和异物的入侵,形成保护昆虫的第一道屏障.此外,酪氨酸酶还可产生具有细胞毒杀作用的氧自由基和具有潜在细胞毒杀作用的半醌及三羟酚,进一步增强寄主的防御能力.在较高等的无脊椎动物如节肢动物中,酪氨酸酶除了参与角质的硬化和黑化外,还参与其他2种重要的生理过程,即防御反应(节肢动物免疫)和伤口愈合.对于小颗粒异物如细菌,宿主可通过吞噬作用加以消灭.当入侵的异物太大(如寄生虫),宿主便通过黑色素包被作用来抵抗和消灭寄生虫,而酪氨酸酶在这个过程中起重要作用.由于这些过程可能是害虫形成防御体系的重要反应,因此酪氨酸酶有可能作为害虫控制中的一个作用靶标.天然酪氨酸酶抑制剂将成为继几丁质酶抑制剂后的一类新的环境友好型的害虫生物调控剂.本实验室设计的酪氨酸酶抑制剂3,4-二羟基苯甲酸庚酯对于菜青虫(Pieris rapae L.)具有杀灭作用,将质量浓度分别为0,2.5,5,10,20,40 mg/mL的酪氨酸酶抑制剂和菜青虫饲料混合均匀,制成内吸型杀虫剂配方,对菜青虫喂养持续3 d,在第3天观察效果(图3)发现,5 mg/mL的质量浓度就可以有效抑制菜青虫幼虫的生长,这主要是通过抑制昆虫幼虫生长过程中的表皮糅化来达成的,可见这种质量浓度饲喂的幼虫大小明显小于对照组,而10 mg/mL的质量浓度以上,则可以完全杀灭菜青虫幼虫,说明了酪氨酸酶抑制剂可以有效抑制农业常见害虫幼虫的生长,在高浓度作用下,能够有效杀灭害虫幼虫,具有较好的研究价值和应用前景.Dong等[52]克隆了小菜蛾中的多酚氧化酶(PPO)并通过real-time PCR研究发现PPO存在于小菜蛾的不同发育阶段.Bhonwong等[53]比较了过表达PPO、抑制PPO表达以及正常的马铃薯叶喂养棉铃虫及甜菜夜蛾的生长情况,结果证实了PPO 在抑制棉铃虫及甜菜夜蛾的生长发育中起到重要的作用.Pan等[54]合成了系列的3,4-二羟基烷基酯,该系列化合物可以有效地抑制酪氨酸酶活力,并且发现其能使小菜蛾的生长明显受到抑制,进一步研究发现该系列化合物能使小菜蛾中PPO基因表达下降,从而抑制其生长.此外,曲酸[55]、缩氨基硫脲类化合物[56]、苯胺类席夫碱[57]以及α-巯基-β-取代苯基丙烯酸[58]等化合物对昆虫酚氧化酶具有很好的抑制作用,这为研究开发新型的“昆虫生命活动干扰剂”进行了有益探索.酪氨酸酶是合成黑色素的关键酶,其代谢产生的黑色素能够有效提高细菌对抗紫外线以及其他电离辐射作用[59].蔡信之等[60]甚至将高表达酪氨酸酶的基因转入苏云金芽胞杆菌中,用以增强细菌的抗紫外线以及抗辐射能力.因此,筛选出能够抑制微生物的酪氨酸酶活性便显得尤为重要.Basavegowda等[61]通过对青蒿素提取物进行纳米金属离子处理后,发现其不仅能够有效抑制酪氨酸酶,还能够表现出良好的抑菌活性.田敏等[62]通过对环境微生物进行筛选,以链霉菌X59为鉴定菌的黑色素生物合成抑制剂筛选模型,从4 000余种微生物中筛选出一株活性化合物产生菌,其代谢产物能够有效抑制黑色素的生物合成.黄晓冬等[63]研究了红树植物桐花树叶片多酚提取物能够抑制酪氨酸酶活性并对大肠杆菌、金黄色葡萄球菌和枯草芽孢杆菌具有明显的抑制活性;鲁卫斌等[64]的研究表明直接从马铃薯中提取的酪氨酸酶用于处理羊毛,具有一定的抗菌功效,并且对金黄色葡萄球菌的抑菌率能达到76.32%.Xia等[65]的研究表明,5-羟基-4-乙酰基-2,3-萘二羧酸酐萘酚-呋喃能够有效地抑制酪氨酸酶活性,同时抑制细菌的生长.王聪慧等[66]的综述中也提到,茶多酚作为一种天然化合物,能够有效地抑制酪氨酸酶活性,同时具有很好的抑菌功效,对伤寒杆菌、副伤寒杆菌、痢疾杆菌、溶血性链球菌、金黄色葡萄球菌等均有明显的抑制作用;也有前人研究证实丁香酚能够在抑制酪氨酸酶活性的同时,对黄曲霉、烟曲霉、产黄青霉、桔青霉、粘红酵母的生长均有不同程度的抑制作用,是一种良好的天然防腐剂.张丽娟等[67]研究了3-羟基苯甲酸对酪氨酸酶的抑制机理以及几种常见腐败菌的抑制作用,证明了3-羟基苯甲酸具有很好的抑制酪氨酸酶及细菌生长的作用.陈祥仁等[68]研究了3,4-二羟基氰苯对于酪氨酸酶稳态酶活力以及酶促反应的迟滞时间有影响,同时能够很好地抑制大肠杆菌、金黄色葡萄球菌、枯草芽孢杆菌3种细菌和真菌白色假丝酵母的生长.本文中研究了酪氨酸酶抑制剂对细菌的抑制作用,研究结果如图4所示.4-苯基丁醇对克雷伯氏肺炎菌(图4(a))、根癌农杆菌(图4(b))和沙门氏菌(图4(c))均有一定的抑制作用并呈浓度依赖效应.3-羟基苯甲醛对克雷伯氏肺炎菌(图4(d))、根癌农杆菌(图4(e))和沙门氏菌(图4(f))有一定的抑制作用,但效果不如4-苯基丁醇明显.综上,酪氨酸酶抑制剂可以很好地应用于生物抗菌中.目前,酪氨酸酶抑制剂已经在医疗、农业抗虫、食品保鲜等多方面得到了广泛的应用,但就其在黑色素合成信号通路的作用、抑制农业害虫及微生物的生长以及食品的防褐变保鲜中的具体作用机制仍需进一步研究.【相关文献】[1] 陈清西,宋康康.酪氨酸酶的研究进展[J].厦门大学学报(自然科学版),2006,45(5):731-737.[2] 陈清西,林建峰,宋康康.酪氨酸酶抑制剂的研究进展[J].厦门大学学报(自然科学版),2007,46(2):274-282.[3] LEE H S,GOH M J,KIM J,et al.A systems-biological study on the identification of safe and effective molecular targets for the reduction of ultraviolet B-induced skin pigmentation[J].Sci Rep,2015,2(5):10305.[4] 孙蓓,李潇,卢永波.影响皮肤黑素沉着的美白制剂及其作用机制研究进展[J].中国美容医学,2015,24(22):82-85.[5] WANG Q,WANG X,LE Y,et al.Rnaset2 inhibits melanocyte outgrowth possibly through interacting with shootin1[J].J Dermatol Sci,2015,80 (1):25-32.[6] ITO S,WAKAMATSU K.A convenient screening method to differentiate phenolic skin whitening tyrosinase inhibitors from leukoderma-inducing phenols[J].J DermatolSci,2015,80(1):18-24.[7] 孙道权,庄愉,盛家镛,等.可用于化妆品中水溶性丝胶粉的性能研究[J].日用化学工业,2014,44(12):683-687.[8] 陈龙,陈栋梁,杨国燕,等.鱼胶原肽抑制酪氨酸酶活性能力的比较研究[J].中国美容医学,2008,17(10):1512-1515.[9] 成静,陈栋梁,江雪琼,等.胶原三肽对B16黑素瘤细胞黑素合成的影响[J].中国美容医学,2011,20(6):939-942.[10] 刘琦,刘洋,吴金昊,等.几种美白剂抑制酪氨酸酶活性的研究[J].日用化学品科学,2015,38(11):22-27.[11] 张凤兰,黄湘鹭,曹进,等.熊果苷的遗传毒性及人体表皮细菌对熊果苷代谢转化作用研究[J].中国药事,2014,28(4):375-380.[12] 杨美花,李智聪,刘凤娇,等.L-半胱氨酸作为化妆品美白添加剂的作用机理[J].厦门大学学报(自然科学版),2009,48(4):581-584.[13] BAE J S,HAN M,YAO C,et al.Chaetocin inhibits IBMX-induced melanogenesis inB16F10 mouse melanoma cells through activation of ERK[J].Chem BiolInteract,2015,245:66-71.[14] 柯静霞.蛇婆子提取物在化妆品中的应用及美白功效研究[J].日用化学品科学,2011,34(5):30-33.[15] 罗倩仪,钟理.美白祛斑剂的复配研究及在化妆品中的应用[J].广东化工,2012,39(15):10-11.[16] LIN R D,CHEN M C,LIU Y L,et al.New whitening constituents from taiwan-native Pyracantha koidzumii:structures and tyrosinase inhibitory analysis in human epidermal melanocytes[J].Int J Mol Sci,2015,16 (12):28598-28613.[17] 铃木敏幸,芋川玄尔.美白化妆品发展趋向[J].上海轻工业,1996(4):20-24.[18] 刘之力,李雅莉,刘俐,等.六种中药复方乙醇提取物对酪氨酸酶激活作用及动物致色素作用的研究[J].中国皮肤性病学杂志,2005,19(10):588-591.[19] 马秋华,汪峰,周春英.壬二酸衍生物抑制酪氨酸酶活性实验研究[J].中国麻风皮肤病杂志,2011,27(3):215-217.[20] 付晓磊,赵春晖,张翼轩,等.对苯二酚的氨基酸缀合物的合成、表征及美白活性[J].应用化学,2015,32(2):158-166.[21] 宋长伟,熊丽丹,王裕军,等.新型龙胆酸衍生物的合成及其抑制酪氨酸酶活性研究[J].有机化学,2012,32:1753-1758.[22] 林河通,席芳,陈绍军.果实贮藏期间的酶促褐变[J].福州大学学报(自然科学版),2002,30(增刊):696-703.[23] CIOU J Y,LIN H H,CHIANG P Y,et al.The role of polyphenol oxidase and peroxidase in the browning of water caltrop pericarp during heat treatment[J].FoodChemistry,2011,127(2):523-527.[24] 王伟,胡泳华,黄浩,等.亚硫酸氢钠在马铃薯切片过程中防褐变作用机理的研究[J].厦门大学学报(自然科学版),2010,49(2):256-259.[25] WANG C X,LV X N,LIU Y,et al.Influence of tempe-rature and relative humidity on aging of atmospheric plasma jet treatment effect on ultrahigh-modulus polyethylene fibers[J].Journal of Adhesion Science and Technology,2007,21(15):1513-1527.[26] LATTAB N,KALAI S,BENSOUSSAN M,et al.Effect of storage conditions (relative humidity,duration,and temperature) on the germination time of Aspergillus carbonarius and Penicillium chrysogenum[J].International Journal of FoodMicrobiology,2012,160(1):80-84.[27] GACCHE R N,ZORE G B,GHOLE V S.Kinetics of inhibition of polyphenol oxidase mediated Browning in apple juice by beta-cyclodextrin and L-ascorbate-2-triphosphate[J].Journal of Enzyme Inhibition and Medicinal Chemistry,2003,18(18):1-5. [28] LIN Y F,HU Y H,LIN H T,et al.Inhibitory effects of propyl gallate on tyrosinase and its application in controlling pericarp browning of harvested longan fruits[J].J Agric FoodChem,2013,61:2889-2895.[29] GUILLAUME C,SCHWAB I,GASTALDI E,et al.Biobased packaging for improving preservation of fresh common mushrooms (Agaricus bisporus L.)[J].Innovative Food Science & Emerging Technologies,2010,11 (4):690-696.[30] BAN Z J,LI L,GUAN J F,et al.Modified atmosphere packaging (MAP) and coating for improving preservation of whole and sliced Agaricus bisporus[J].Journal of Food Science and Technology,2014,51(12):3894-3901.[31] JIANG T J.Effect of alginate coating on physicochemical and sensory qualities of button mushrooms (Agaricus bisporus) under a high oxygen modifiedatmosphere[J].Postharvest Biology and Technology,2013,76:91-97.[32] HONG K Q,XIE J H,ZHANG L B,et al.Effects of chitosan coating on postharvest life and quality of guava (Psidium guajava L.) fruit during cold storage[J].Scientia Horticulturae,2012,144:172-178.[33] DING T,RAHMAN S M E,OH D H.Inhibitory effects of low concentration electrolyzed water and other sanitizers against foodborne pathogens on oyster mushroom[J].Food Control,2011,22(2):318-322.[34] YUK H G,YOO M Y,YOON J W,et al.Effect of combined ozone and organic acid treatment for control of Escherichia coli O157:H7 and Listeria monocytogenes on enoki mushroom[J].Food Control,2007,18(5):548-553.[35] FERNANDES A,BARREIRA J C M,ANTONIO A L,et al.Study of chemical changes and antioxidant activity variation induced by gamma-irradiation on wildmushrooms:comparative study through principal component analysis[J].Food Research International,2013,54 (1):18-25.[36] FERNANDES A,ANTONIO A L,BARREIRA J C M,et al.Effects of gamma irradiation on the chemical composition and antioxidant activity of Lactarius deliciosus L.wild edible mushroom[J].Food and Bioprocess Technology,2013,6(10):2895-2903.[37] SATO T,KANDA K,OKAWA K,et al.The tyrosinase-encoding gene of lentinula edodes,letyr,is abundantly expressed in the gills of the fruit-body during post-harvest preservation[J].Bioscience Biotechnology and Biochemistry,2009,73(5):1042-1047. [38] SAKAMOTO Y,NAKADE K,SATO T.Characterization of the post-harvest changes in gene transcription in the gill of the Lentinula edodes fruiting body[J].Current Genetics,2009,55(4):409-423.[39] OZOGLU H,BAYINDIRLI A.Inhibition of enzymic browning in cloudy apple juice with selected antibrowning agents[J].Food Control,2002,13 (4/5):213-221.[40] ROJAS-GRAU M A,SOBRINO-LOPEZ A,TAPIA M S,et al.Browning inhibition in fresh-cut ′fuji′ apple slices by natural antibrowning agents[J].Journal of FoodScience,2006,71(1):S59-S65.[41] DAWLEY R M,FLURKEY W H.4-Hexylresorcinol,a potent inhibitor of mushroom tyrosinase[J].Journal of Food Science,1993,58(3):609-610.[42] ALVAREZ-PARRILLA E,DE LA ROSA L A,RODRIGO-GARCIA J,et al.Dual effect of beta-cyclodextrin (beta-CD) on the inhibition of apple polyphenol oxidase by 4-hexylresorcinol (HR) and methyl jasmonate (MJ)[J].Food Chemistry,2007,101(4):1346-1356.[43] MARTINEZ-ALVAREZ O,GOMEZ-GUILLEN C,MONTERO P.Effect of different chemical compounds as coadjutants of 4-hexylresorcinol on the appearance of deepwater pink shrimp (Parapenaeus longirostris) during chilled storage[J].International Journal of Food Science and Technology,2008,43 (11):2010-2018.[44] XING R,ZHENG A P,WANG F,et al.Functionality study of Na6PMo11FeO40 as a mushroom tyrosinase inhibitor[J].Food Chemistry,2015,175:292-299.[45] DU Y J,DOU S Q,WU S J.Efficacy of phytic acid as an inhibitor of enzymatic and non-enzymatic browning in apple juice[J].Food Chemistry,2012,135(2):580-582.[46] SULAIMAN A,SILVA F V M.High pressure processing,thermal processing and freezing of Camarosa strawberry for the inactivation of polyphenoloxidase and control of browning[J].Food Control,2013,33 (2):424-428.[47] 罗万春.世界新农药与环境——发展中的新型杀虫剂[M].北京:世界知识出版社,2002:1-5.[48] 张宗炳,冷欣夫.杀虫药剂毒理及应用[M].北京:化学工业出版社,1993:331-337.[49] THEOPOLD U,SCHMIDT O,SODERHALL K,et al.Coagulation inarthropods:defence,wound closure and healing[J].Trends in Immunology,2004,25 (6):289-294.[50] SUGUMARAN M,NELLAIAPPAN K.Characterization of a new phenoloxidase inhibitor from the cuticle of Manduca sexta[J].Biochem Biophys Res Commun,2000,268(2):379-383.[51] KRAMER K J,HOPKINS T L.Tyrosine metabolism for insect cuticle tanning[J].Archives of Insect Bioche-mistry and Physiology,1987,6(4):279-301.[52] DONG W,TANG B Z,SONODA S,et al.Sequencing and characterization of two cDNAs putatively encoding prophenoloxidases in the diamondback moth,Plutella xylostella (L.) (Lepidoptera:Yponomeutidae)[J].Applied Entomology and Zoology,2011,46 (2):211-221.[53] BHONWONG A,STOUT M J,ATTAJARUSIT J,et al.Defensive role of tomato polyphenol oxidases against cotton bollworm (Helicoverpa armigera) and beet armyworm (Spodoptera exigua)[J].Journal of Chemical Ecology,2009,35(1):28-38.[54] PAN Z Z,LI H L,YU X J,et al.Synthesis and anti-tyrosinase activities of alkyl 3,4-dihydroxybenzoates[J].J Agric Food Chem,2011,59(12):6645-6649.[55] 王树栋,罗万春,高兴祥,等.曲酸对小菜蛾酚氧化酶抑制作用的研究[J].中国农业科学,2004,37(9):1316-1321.[56] 李智聪,马素娟,潘志针,等.缩氨基硫脲化合物的合成及对菜青虫酚氧化酶抑制作用研究[J].厦门大学学报(自然科学版),2009,48(5):623-626.。