普通电阻率测井.
- 格式:doc
- 大小:212.00 KB
- 文档页数:15
地球物理测井第一章 电法测井资源与环境学院桑 琴2007年7月地球物理测井——普通电阻率测井普通电阻率测井,是把一根普通的电极系放入井内,测量井筒周围地层电阻率随井深变化的曲线,用以研究井所穿过的地质剖面和油气水层的测井方法。
梯度电极系电位电极系地球物理测井——普通电阻率测井一、基本原理R pr A(I)1、均匀无限介质电场中电位与介质电阻率的关系假设:均匀无限介质电阻率为R点电极A并供以强度为I的电流电流将以A点为中心呈辐射状向各方向均匀流出,电流线以A为中心指向四周地球物理测井——岩石的导电特性由电流密度的定义可知,离点电源A为r距离的任意一点P的电流密度为:/4πr2 (1-6) j=Ir电流密度j是一个向量,r是单位矢量,数值为1,其方向是射线r的方向。
根据微分形式的欧姆定律,p点的电场强度E为:E=Rj=RIr/4πr2 (1-7)对于恒定的电流场,电场强度等于电位梯度的负值,即E =-gradV(1-8)gradV=(dV/dr)*r称为电位梯度,表示电位在变化最大的方向上每单位长度的增量地球物理测井——岩石的导电特性E=-(dV/dr)*r(1-10)将(1-10))式代入(1-7),可得-dV/dr=RI/4πr2V=RI/4πr+C由于r ∞时,电位V=0,故积分常数c=0,因此V=RI/4πr (1-13)上式表明,在均匀无限介质中,任意一点的电位V与介质的电阻率R及供电电流I成正比,与该点至电源点之间的距离r 成反比。
地球物理测井——岩石的导电特性2、均匀无限介质电阻率的测量由(1-13)式可知,要测量均匀无限介质的电阻率,只须在介质中放入点电源,测出场中一点的电位V,在已知供电电流I和测点与电源点的距离r的情况下,就可以计算出介质的电阻率R。
假定被测定的地层很厚,没有泥浆侵入,井筒中的泥浆电阻率等于地层的电阻率,则井下介质就其导电性,可视为无限均匀介质。
地球物理测井——岩石的导电特性电源检流计oMN A 电极矩井下介质电阻率的测定B A——供电电极B——供电回路电极M、N——测量电极供电回路测量电路地球物理测井——岩石的导电特性由 V=RI/4πr 可知,在点电源A所形成的电场中,M、N点的电位为:V M=RI/4π·AM V N=RI/4π·ANM、N两个测量电极之间的电位差为:ΔVMN =VM-VN=RI/4π(1/AM-1/AN) =RI/4π(MN/AM·AN)R=(4π·AM·AN/MN)· ΔVMN/I地球物理测井——岩石的导电特性令K=4π·AM·AN/MNK是与各电极之间距离有关的系数,称为电极系系数。
电阻率值既不可能等于某一岩层的真电阻率,也不是电极周围各部分介质电阻率的平均值,而是在离电极装置一定距离范围内各介质电阻率综合影响的结果。
我们称之为视电阻率,记作Ra 。
所以通常把普通电阻率测井叫普通视电阻率测井。
其电阻率计算式为为便于对电极系进行研究,还进一步把其中处在同一个回路中的两个电极叫做成对电极,另一个与地面电极组成回路的电极叫做不成对电极。
成对电极之间的距离小于不成对电极到与它相邻那个成对电极之间的距离,叫梯度电极系成对电极间的距离大于不成对电极到与它相邻那个成对电极之间的距离时,叫电位电极系⑵电极系互换原理在一个电极系中,保持电极之间的相对位置不变,只把电极的功能改变(即原供电电极改为测量电极;原测量电极改为供电电极),测量条件不变时,用变化前和变化后的两个电极系对同一剖面进行视电阻率测井,所测曲线完全相同,这叫电极系互换原理。
梯度电极系的记录点规定在成对电极的中点。
电位电极系的记录点规定在相距最近的两个电极的中点。
电极系的电极距是人们用来说明这种探测装置长短的,通常用L表示。
电极距的大小,实际上反映了能影响视电阻率测值的空间介质范围⑷电极系探测深度探测深度,是指在垂直于井轴的方向上所能探测到的介质的横向范围。
均匀介质中梯度电极系的探测深度约为1.4电极距,电位电极系的探测深度约为2倍电极距。
⑸电极系的表示方法电极系的书写方式是按照电极在井内自上而下的顺序写出电极的名称,并在字母之间写上电极间的相应距离(以米为单位)来表示这种电极系,例如A0.95M0.1N,表示电极距为1米的底部梯度电极系,其记录点为MN电极的中点。
1、梯度电极系视电阻率理论曲线对于高阻厚层模型,其理论曲线特征如下:①顶部和底部梯度电极系视电阻率曲线形状正好是相反的;②顶部梯度曲线上的视电阻率极大值、极小值分别出现在高阻层Rt的顶界面和底界面,而底部梯度曲线上的极大值和极小值分别出现在高阻层的底界面和顶界面。
③中部视电阻率测量时不受上下围岩的影响,故在地层中部,曲线出现一个直线段其幅度为Rt对于高阻中等厚度层模型,其理论曲线特征如下①曲线在高阻层界面附近特点和厚地层视电阻率曲线基本相同;②地层中部差异较大,随着地层的变薄,地层中部的平直线段部分不再存在,曲线变化陡直,幅度变低。
第七章 普通电阻率测井(21学时)普通电阻率测井是地球物理测井中最基本最常用的测井方法,它根据岩石导电性的差别,测量地层的电阻率,在井内研究钻井地质剖面。
岩石电阻率与岩性、储油物性、和含油性有着密切的关系。
普通电阻率测井主要任务是根据测量的岩层电阻率,来判断岩性,划分油气水曾研究储集层的含油性渗透性,和孔隙度。
普通电阻率测井包括梯度电极系、电位电极系微电极测井。
本章先简要讨论岩石电阻率的影响因素,然后介绍电阻率测井的基本原理,曲线特点及应用。
第一节 岩石电阻率与岩性储油物性和含油物性的关系各种岩石具有不同的导电能力,岩石的导电能力可用电阻率来表示。
由物理学可知,对均匀材料的导体其电阻率为:SL R r 其中L :导体长度,S :导体的横截面积,R :电阻率仅与材料性质有关 由上式可以看出,导体的电阻不仅和导体的材料有关,而且和导体的长度、横截面积有关。
从研究倒替性质的角度来说,测量电阻这个物理量显然是不确切的,因此电阻率测井方法测量的是地层的电阻率,而不是电阻。
下面分别讨论一下影响岩石电阻率的各种因素:一 岩石电阻率与岩石的关系按导电机理的不同,岩石可分成两大类,离子导电的岩石很电子导电的岩石,前者主要靠连同孔隙中所含的溶液的正负离子导电;后者靠组成岩石颗粒本身的自由电子导电。
对于离子导电的岩石,其电阻率的大小主要取决于岩石孔隙中所含溶液的性质,溶液的浓度和含量等(如砂岩、页岩等),虽然其造岩矿物的自由电子也可以传导电流,但相对于离子导电来说是次要的,因此沉积岩主要靠离子导电,其电阻率比较底。
对于电子导电的岩石,其电阻率主要由所含导电矿物的性质和含量来决定。
大部分火成岩(如玄武岩、花岗岩等)非常致密坚硬不含地层水,主要靠造岩矿物中少量的自由电子导电,所以电阻率都很高。
如果火成岩含有较多的金属矿物,由于金属矿物自由电子很多,这种火成岩电阻率就比较底。
二 岩石电阻率与地层水性质的关系沉积岩电阻率主要由孔隙溶液(即地层水)的电阻率决定,所以研究沉积岩的电阻率必须首先研究影响地层水电阻率的因素。
地层水的电阻率,取决于其溶解岩的化学成分,溶液含盐浓度和地层水的温度,电阻率与含盐浓度,及地层水的温度成正比,溶解盐的电离度越大,离子价越高,迁移率越大,地层水电阻率越小。
也就是说岩石电阻率与地层水矿化度温度之间存在正比关系。
三 含水岩石电阻率与孔隙度的关系沉积岩的导电能力主要取决于单位体积岩石中,孔隙体积(孔隙度)和地层水电阻率,孔隙度越大,地层水的电阻率越低,岩石电阻率就越低实验证明,对于沉积岩mw a R R F φ==0 其中: F — 岩石的地层因素或相对电阻,对于给定的岩样,它是一个常数这一比值与岩石的孔隙度和胶结情况,孔隙度形状有关。
R 0 — 孔隙中充满地层水时的岩石电阻率。
R w — 地层水电阻率a — 比例系数,不同岩石有不同的数值m —胶结指数,随岩石胶结程度而变化φ— 岩石连同孔隙度上式就是测井中广泛引用的阿尔奇公式四 含油岩石电阻率与油气饱和度的关系含油岩石电阻率比含水岩石的电阻率大,岩石含油越多(即含油饱和度越高)岩石的电阻率也越高,这时岩石电阻率除了与岩石的孔隙度,胶结情况及孔隙形状有关外,还与油水在孔隙中的分布状况及含油饱和度和含水饱和度有关。
第二节 普通电阻率测井普通电阻率测井是把一个普通的电极系(由三个电极组成)放入井内,测量井内岩石电阻率变化的曲线。
在测量地层电阻率时,要受井径、泥浆电阻率、上下围岩及电极距等因素的影响,测得的参数不等于地层的真电阻率,而是被称为地层的视电阻率。
因此普通电阻率测井又称为视电阻率测井。
油藏在地下的电阻率是一个既不能直接观察又不能直接测量的物理量,只有当电流通过它的时候才能间接的测出来。
因此,在测量电阻率的时,必须向岩层通入一定的电流,然后研究岩石电阻率不同对电场分布的影响,从而进一步找出电位与电阻率之间的关系。
一 电阻率的测量原理由物理学已知,点电源电流场中任一点的电位rRI U 14⋅=π I — 电流强度(已知)r — 该点到点电源的距离(已知)因此只需要知道电位U ,就可以求得电阻率R 的数值。
上图是普通电阻率测井的测量原理线路,将由供电电极和测量电极组成的电极系A 、M 、M 或M 、A 、B 放入井内而把另一个电极N 或B 放在地面泥浆池中,作为接收回路电极,电极系通过电缆与地面上的电源和记录仪想连接。
当电极系由井内向井口移动时供电电极A 、M 供给电流I 。
测量M 、N 电极间的电位差MN U ∆通过地面记录仪可将电位差转换为地层地层视电阻率R a 通过推导可得到(对图a )I U K I U ABBM AM R MN MN a ∆=∆⋅⋅⋅=π4 K — 电极系系数,它的大小与电极系中三个电极之间的距离有关。
对于图b ,上式中 MN ANAM K ⋅⋅=π4二 电极系的分类在电极系的三个电极中,有两个在同一线路C 供电线路或测量线路中,叫成对电极或同名电极,另外一个和地面电极在同一线路(测量线路或供电线路)中,叫不成对电极或单电极。
根据电极间的相对位置的不同可以分为梯度电极系和电位电极系。
1.电位电极系的三个电极之间有三个距离:AM ,AN ,MN 或AM ,BM ,AB这三个距离当中,如果成对电极之间的距离(MN 或AB )最小,即MN AM >或AB MA >.j 叫梯度电极系,梯度电极系有分为顶部梯度电极系和底部梯度电极系两种:顶部梯度:成对电极在不成对电极之上的梯度电极系。
底部梯度: 成对电极在不成对电极之下当成对电极间的距离无限小(在极限情况的0)时的梯度电极系叫理想梯度电极系。
2. 电极系的三个电极之间如果成对电极之间的距离(MN 或AB )较大,即MN AM <或AB MA >.就叫电位电极系。
当成对电极系中的一个电极放到无限远处时,即∞→MN 或∞→AB 这种电位电极系称为理想电位电极系。
3.电极系的记录点电极系探测范围及表示方法采用记录点这一概念是为了便于更好的划分地层,确定地层的顶底界面。
对于梯度电极系,记录点选择在成对电极的中点,测量的视电阻率曲线的极大值和极小值正好对准地层界面。
电极距为不成对电极到记录点的距离,对于电位电极系,记录点选择在两个相近电极A 、M的中点,记录的视电阻率曲线正好与响应地层的中心对称,电极距为单电极到最近一个成对电极之间的距离。
记录点一般用“O ”表示,电极距电极距用“L ”表示,如上图。
电极系的电极距表示电极系的长度,L 不同探测的范围不同。
探测范围通常以探测半径r 表示,把电极系的探测范围理解为一个假想的球体。
梯度电极系的不成对电极电极和电位电极系的A 电极位于球心,通常认为假想球体对测量结果的影响占整个测量结果的50%,则假想球体即为探测范围根据这一规定,对均匀介质计算的结果是,梯度电极系的探测范围是1.4倍电极距,而电位电极系的r=2L ,由此可知,L 越大探测范围越大。
电极系的表示方法:通常按照电极在井中的次序,由上到下写出代表电极的字母,字母间写出相应电极间的距离,(以米为单位)表示电极系的类如:A0.4M0.1N 表示电极距为0.45m 的底部梯度电极系,电极A 、M 之间的距离为0.4m ,M 、N 之间的距离为0.1m三 视电阻率曲线的特征及影响因素假定只有一个高电阻率地层,上下围岩的电阻率相等,并且没有井的影响,采用理想电极系进行测量。
(一).梯度电极系视电阻率曲线特征1.曲线与地层中点不对称,对着高阻层,底部梯度电极系曲线在地层底界面出现极大值,顶界面出现极小值,顶部梯度电极曲线在高阻层顶界面出现极大值,底界面出现极小值,这是确定地层界面的重要特征,来确定高阻层的顶底界面。
2.地层厚度很大时,再地层中点附近,有一段视电阻率曲线和深度轴平行的直线,其值等于地层的真电阻率曲线(用来确定地层的真电阻率)3.对于h>L的中厚度岩层,其视电阻率曲线与厚度曲线形状相似,单随着厚度的减小,地层中部视电阻率曲线的平直段变小直到消失。
不同厚度的高阻层电阻率取值原则:(1)高阻厚层:取中部曲线段的平直段作为地层的真电阻率。
(2)高阻薄层:取曲线唯一的一个尖峰(极大值)(3)高阻中厚层:取面积平均值(具体取值见书)(二)电位电极系视电阻率曲线特征`1当上下围岩电阻率相等时,电位电极系的视电阻率曲线关于地层中心对称2当地层厚度大于电极距时,对应高电阻率地层中心,视电阻率曲线显示极大值地层厚度越大,极大值越接近于地层真电阻率。
3当地层厚度小于电极距时,对应高阻层中心,曲线出现极小值。
4对厚层取曲线的极大值作为电位电极系的视电阻率数值,围岩上下界面对b的中点。
应界面处平直段的中点即bc,''c(三)视电阻率曲线影响因素(略讲)1采用不同电阻率的泥浆钻井时,会对渗透性地层产生泥浆高侵和泥浆低侵现象,视电阻率会受到影响。
2另外,井位、电极距、上下围岩性质都会对视电阻率产生影响。
因此,在用视电阻率曲线来确定地层真电阻率时,必须经过多次校正。
四、微电极测井微电极测井是在普通电阻率测井的基础上发展起来的一种测井方法,它采用特制的微电极测量井壁附近地层的电阻率。
普通电阻率测井能从剖面上划分出高阻层,但它不能区分这个高阻层是致密层还是渗透层,另外,含油气地层经常会遇到砂泥岩薄的交互层,由于普通电极系的的电极距较长,尽管能增加探测深度,但难以划分薄层(这是一对矛盾)。
因此,为解决上述实际问题,在普通电极系的基础上,采用了电极距很小的微电极测井。
(一)微电极测井的原理微电极电极距比普通电极系的电极距小的多,为了减小井的影响,电极系采用的特殊的结构,测井时使电极紧贴在井壁上,这就大大减小了泥浆对结果的影响。
我国微电极测井普遍采用微梯度和微电位两种电极系,为微梯度的电极距为0.0375m微电位的电极距为0,05m由于电极距很小,实验证明微梯度电极系的探测范围只有5cm微电位为8cm左右。
在渗透性地层处,由于泥浆滤液侵入地层中,在井的周围形成泥浆滤液侵入带,井壁上形成了泥饼,侵入带内的泥浆滤液是不不均匀的。
靠近井壁附近,孔隙内几乎都是泥浆滤液,这部分叫泥浆冲洗带,它的电阻率大于5倍的泥饼电阻率,而泥饼电阻率约为泥浆电阻率的1—3倍,在非渗透的致密层和泥岩层段,没有泥饼和侵入带。
渗透层和非渗透层的这种区别,是区分它们的重要依据。
由于微梯度和微电位电极系探测半径不同则泥饼泥浆薄膜(极板与井壁之间夹的泥浆)和冲洗带之间的电阻率不同,探测半径较大的微电位电极系主要受冲洗带电阻率的影响,显示较高的数值。
微梯度受泥浆影响较大,显示较底的数值。
因此在渗透性地层处,这个差异可以判断渗透性地层,显示出的幅度差称为正幅度差,(反之,显示出的幅度差称为负幅度差)利用微梯度和微电位的视电阻率曲线的差别研究地层,必须使微电极系和井壁的接触条件保持不变,所以要求微梯度和微电位同时测量。