Impulse and DC surface flashover of LDPETi02 nanocomposites in Vacuum
- 格式:pdf
- 大小:975.69 KB
- 文档页数:4
微凸体干涉机制英语Microasperity interference is a fascinating phenomenon that occurs when two surfaces with tiny protrusions come into contact. These protrusions, or microasperities, can cause all sorts of interesting effects, from increased friction to changes in surface adhesion.In the world of tribology, microasperity interference is often seen as a nuisance, as it can lead to wear and tear. But when viewed through the lens of creativity, these tiny imperfections actually have the potential to open up new areas of research. For instance, engineers are exploring ways to utilize these microasperities to create unique surface textures that enhance lubrication or reduce noise.The study of microasperity interference is not just about physics and mechanics. It's also about understanding how materials interact at the nanoscale. This requires a multidisciplinary approach, blending knowledge from fieldslike materials science, surface engineering, and tribology.One fascinating aspect of microasperity interference is how it can affect the performance of mechanical components. Even the smallest imperfections can have a significant impact on friction, wear, and the overall lifespan of a component. By understanding and controlling these microasperities, engineers can design more efficient and durable systems.In the future, as we continue to push the boundaries of technology, microasperity interference will become an even more important topic of research. As we build smaller and more complex devices, the role of these tiny imperfections will become increasingly significant. Who knows, maybe one day we'll even be able to harness the power of microasperity interference to create entirely new types of materials and devices.。
有一段时间,有一种力量,无声的接近。
有一种思维,有一种融合,有一种变迁,有一种.....徘徊在都市的街口,就在回首间竟不经意的发现那突如其来的漫天遍地的“泊来”文字不知何时就占领了我极目可触的远近距离。
街上匆匆的行人脚步,仿佛也隐隐的暗示着某种侵蚀的渐渐“衍化”,林林总总的人形,象形字母也更是广而告之的跃然其中。
这就是我们的生存现境,在这整个地球日益联系紧密的今天一一在官方的语言里一一加强多边联系,增强相互理解,我们似乎更需要一种沟通的工具,于是我们接受了一种文化一一正如这种文化的前身所影射的一样——只有英文化,而无日不落。
但正是这种扩张,才使英文化迅速的成为唯一的世界性语言,而正是种语言使国家相互之间的交流,民族相互之间的融合,企业相互之间的竞争变的越发简捷,方便……本手册仅致力于能为加强变压器行业的相互沟通,相互合作,相互交流作一些绵薄之力。
由于作者水平有限,书中难免出现纰漏,还望读者不吝提出指导意见。
编者注变压器有关名词术语英译词汇表A GLOSSARY FOR ENGLISH TRSNSFORMER OFTRANSFORMER TERMINOLOGY目录TABLE OF CONTENTS目录 ------------------------------------------------ 1基础词汇------------------------------------------- 2常用单位------------------------------------------- 5各类产品名称及类型------------------------------------ 6铁芯及铁芯制造---------------------------------- 8线圈及线圈制造---------------------------------- 9油箱附件及油箱制造------------------------------------ 11装配及干燥,油处理------------------------------------ 13包装及运输---------------------------------------- 15图纸及技术文件用语------------------------------------ 17质量控制及试验设备------------------------------------ 20常用生产及工装设备------------------------------------ 21材料标准件及标准零件---------------------------------- 221. 基础词汇BASIC TERMINOLOGY1. 变压器的电压组合voltage combination ( of a transformer)2. 额定电压rated voltage3. 额定电流rated current4. 额定容量rated power5. 额定电压比rated voltage ratio6. 空载电流no-load current7. 空载损耗no-load loss8. 负载损耗load loss9. 附加损耗additional loss10. 杂散损耗stray loss11. 阻抗电压impedance voltage12. 电阻电压resistance voltage13. 电抗电压reactance voltage14. 电压调整率voltage regulation15. 相位差phase displacement16. 零序阻抗zero-sequence impedance17. 工频power frequency18. 中频medium frequency19. 高频high frequency20. 振荡频率oscillating frequency21. 谐振频率resonance frequency22. 绝缘强度dielectric strength insulation strength23. 主绝缘main insulation24. 纵绝缘longitudinal insulation24. 自振频率natural frequency of vibration25. 频率响应frequency response26. 介电常数dielectric constant27. 绝缘击穿insulation breakdown28. 沿面放电(爬电)creeping discharge29. 局部放电partial discharge30. 破坏性放电disruptive discharge31. 局部放电起始电压partial discharge inception voltage32. 局部放电终止电压partial discharge extinction voltage33. 过电压over voltage34. 短时过电压short time over voltage35. 暂态过电压transient over voltage36. 操作过电压switching over voltage37. 大气过电压atmospheric over voltage438. 额定耐受电压rated withstand voltage39. 短时工频耐受电压short-duration power frequency withstand voltage40. 额定雷电冲击耐受电压rated lighting impulse withstand voltage41. 屏蔽shielding42. 静电屏蔽electrostatic shielding43. 磁屏蔽magnetic shielding44. 标准大气条件standard atmosphere condition45. 全波雷电冲击full wave lighting impulse46. 截波雷电冲击chopped wave lighting impulse47. 冲击伏秒特性voltage/time characteristics of impulse48. 爬电距离creepage distance49. 体积电阻volume resistance50. 截断时间time to chopping51. 视在电荷apparent charge52. 波前时间视在波前时间time to crest ,virtual front time53. 半峰值时间time to half value of crest54. 峰值peak value55. 有效值root-mean-square value56. 标称值nominal value57. 标值per unit value58. 导电率admittance59. 电导conductance , conductivity60. 介质损耗dielectric loss61. 介损角的正切值loss tangent62. 电晕放电corona discharge63. 闪络flashover64. 内外绝缘internal external insulation65. 绝缘电阻insulation resistance66. 绝缘电阻吸收比absorption ratio of insulation resistance67. 避雷器surge arrestor68. 避雷器的残压residual voltage of an arrestor69. 绝缘材料的耐温等级temperature class of insulation70. 感应耐压试验induced over voltage withstand test71. 突发短路试验short-circuit test72. 互感器的负荷burden of an instrument transformer73. 额定负荷rated burden of an instrument transformer74. 准确级次accuracy class75. 电流电压误差current voltage error76. 相角差(互感器)phase displacement (instrument transformer)77. 复合误差composite error78. 暂态特性(误差)transient characteristics error79. 额定短时热电流rated short thermal current380. 额定连续热电流81. 额定动稳定电流82. 额定仪表保安电流83. 二次极限感应电流(保安因数)84. 额定准确极限值的一次电流85. 误差补偿86. 额定电压因数87. 准确限值因数88. 笛卡儿坐标89. 极坐标90. 横坐标91. 纵坐标92. 复数93. 实数部分94. 虚数部分95. 正负数96. 小数97. 四舍五入98. 分数,分子,分母99. 假分数100. 钝锐角101. 补角102. 余角103. 平行104. 垂直105. 乘方106. 开方107. n 的五次方108. 幂109. 微分110. 积分111. 成正比112. 概率113. 归纳法114. 插入法115. 外推116. 最大似然法117. 图解法118. 有限元法119. 模拟法120. 方波响应121. 叠加电荷rated continuous thermal current rated dynamic currentrated instrument security current secondary limiting e.m.f(security factor) rated accuracy limit primary current error compensation rated voltage factor accuracy limit factor Cartesian coordinate polar coordinate abscissa X-axis ordinate Y-axis complex number real number component imaginary number component positive negative number decimal round off fraction, numerator, denominator improper fraction obtuse (acute) number supplementary angle complement angle parallel perpendicular involution evolution extraction of root involve to the fifth power , 5th power of n exponent , exponential differential , differentiation integrate , integration proportional (inversely proportional) to probability inductive method interpolation method extrapolation method maximum likelihood method graphic method finite element method simulation method step response superimposed charge4potential gradient stray capacitance ultrasonic location non-distructive flaw detection infrared scanning computeraided design and manufacturing computer aided test maximum minimumapproximate revolution per minute speed , velocity acceleration gravitationalacceleration earthquake , seism quantity department abbreviation here in after referred as XX see XX , vide XXH 常用单位(包括缩写)UNIT COMMOMLY USED (INCLUDING ABBREVIATION)meter , decimeter , centimeter millimeter kilometer mile , knot yard , inchpound , pound per square inch foot British thermal unitgorse power intensity of pressure Pascal Torr viscosity , Pascal . Second poise , Centpoise Joulekilowatt-hour Tesla gauss Oersted122.电位梯度 123.杂散电容 124.超声定位 125.无损探伤 126.红外线扫描 127.计算机辅助设计 128.计算机辅助实验 129.最大,小 130.近似于 131.每分钟转数 132.速度 133.加速度 134.重力加速度 135.地震 136.数量 137.部门 138.缩写 139.以下简称为 XX 140.参见 XX1. 米, 分米, 厘米 , 毫米2. 公里3. 英里 , 海里4. 码 , 吋5. 磅 , 磅/平方寸6. 呎7. 英制热量单位 8. 马力 9. 压强10. 帕斯卡, 千帕 11.托12. 粘度, 帕斯卡秒 13. 泊, 厘泊 14. 焦耳 15. 千瓦时 16. 特斯拉 17. 高斯 18. 奥斯特519. 库仑20. 牛顿, 达因21. 摄氏度, 开尔文 22. 法拉, 皮克法拉 23. 升 , 立方分米 24. 加仑25. 桶(石油)26. 标准国际单位制27. 厘米-克-秒 单位制 28. 磁通密度 29. 电流密度 30. 安匝数31. 轴向(径向)漏磁通 32. 热点(最热点 ) 33. 局部过热 34. 涡流损耗35. 磁滞损耗 CoulombNewton , dyneCelsius(centigrade) , Kelvin Farad , pico-farad Liter , cubic decimeter gallonbarrel (petroleum) standard international unit CGS unit flux density current density number of ampere-turns axial (radial) leakage flux hot (hottest) spot local over hot eddy current loss Hysteresis lossm 各类产品名称及类型TYPE AND NAME OF KINDS OF PRODUCTpower transformerpower transformer with OLTC (off-circuit tap-changer)distribution transformer autotransformerinterconnecting transformer step-up (step-down) transformer generator transformer substationtransformer conventer transformer transformer with split windings power plant transformer single-phase transformer three-phase transformer oil-immersed transformer noninflammable medium impregnated transdry type transformer cast resin (resin moulded) transformer transformer with H class insulation gas insulated transformer1. 电力变压器2. 有(无)载调压电力变压器3. 配电变压器4. 自耦变压器5. 联络变压器6. 升(降)压变压器7. 发电机变压器8. 电站用变压器9. 变流变压器 10. 分裂变压器 11. 厂用变压器 12. 单相变压器 13. 三相变压器 14. 油浸式变压器 15. 浸难燃油变压器 16. 干式变压器17. 塑料浇注变压器 18.H 级绝缘变压器 19. 气体绝缘变压器6three-phase banks with separate sin gle-phase tran- furn ace tran sformer rectifier tran- tracti on (locomotive) tran- mi ning tran-flame-proof tran- isolation tran- testi ng tran- filame nt tran- welding tran- braz ing tran- marine tran- starti ng autotra nsformer cascade testi ng tran sformer three-phase tran- booster tran- movable substati oncomplete self-protected sin gle-phase tran- curre nt tran- voltage tran- bus-type curre nt tran- porcela in type curre nt tran- bush ing curre nt tran- capacitor type curre nt tran- reverse type curre nt tran- cast res in curre nt tran- capacitor type curre nt tran- earthed voltage tran- comb ined in strume nt tran- movin g-coil voltage tran- autotra nsformer regulator variac in troduct ion voltage regulator magn etic saturatio n voltage regulatorseries reactor shu nt reactoriron core reactor air core reactorcon crete (ceme nt) reactor three-phase n eutral reactor20. 单相变压器组成的三相组合 21. 电炉变压器 22. 整流变压器23. 列车牵引变压器 24. 矿用变压器 25. 防爆变压器 26. 隔离变压器 27. 试验变压器 28. 灯丝变压器 29. 电焊变压器 30. 钎焊变压器 31. 船用变压器32. 启动自耦变压器 33. 串级式试验变压器 34. 三线圈变压器 35. 增压变压器 36. 移动式变压器 37. 成套变电站38. 全自动保护单相变压器 39. 电流互感器 40. 电压互感器41. 母线式电流互感器 42. 瓷箱式电流互感器 43. 套管用电流互感器 44. 电容式电流互感器 45. 倒立式电流互感器 46. 塑料浇注式互感器 47. 电容式电压互感器 48. 接地电压互感器 49. 组合式互感器 50. 移圈调压器 51. 自耦调压器 52. 接触调压器 53. 感应调压器 54. 磁饱和调压器complete substati on 57. 并联电抗器 58. 铁心电抗器 59. 空心电抗器 60. 水泥电抗器61. 三相接地电抗器7starti ng reactor smooth ing reactor bala nee reactor arc-suppressi on reactor wave trap coil ballast saturable reactor sealed enclosed type core type shell type outdoor (in door, pole mountin g)type movable (trailer moun ted) type n atural cooli ng (air blast cooli ng) forced oil air cooli ng (water cooli ng) directed forced oil circulati on cooli ng directed forced oil circulati on forced air cooli ng constant flux voltage variation(C.F.VV.) variable flux voltage variatio n( C.F.V.V.) combined voltage variation oil-immersed natural cooli ng oil-immersed air cooli ng oil-immersed forced oil circulati on air cooli ng oil-immersed forceddirected oil circulati on air cooli ngIV 铁芯及铁芯制造 CORE AND CORE MANUFATURING core lam ination a lam in ati on stack lamin ati on drawing diagram 45o mitred joi nt oil-duct air ven tilati ngduct of core stepped lap core butt joint core woundcore evolute core air gap ten sile plate of core limbcore limb yoke (upper, lower) side yoke62. 启动电抗器63. 平波电抗器64. 平衡电抗器65. 消弧电抗器66. 阻波器67. 镇流器68. 饱和电抗器69. 密闭式,包封式70. 芯式71. 壳式72. 户外(户内)式,柱上式 73. 移动式(列车式)74. 自然冷却(吹风冷却)75. 强油风冷(水冷) 76. 油导向冷却77. 油导向吹风冷却 78. 恒磁通调压 79. 变磁通调压 80. 混合调压81. 油浸自冷82. 油浸风冷83. 油浸强迫油循环风冷84. 油浸强迫导向风1. 铁心片2. 一叠铁心3. 铁心叠积图4. 45o 斜接缝5. 铁心油道(气道)6. 阶梯接缝7. 对接铁心8. 卷铁心9. 渐开线铁心 10. 空气隙 11. 铁心拉板 12. 铁心柱13. 上(下)铁轭 14. 旁轭8epoxy-bound bandage yoke tensile belt top jointing beam of upper yoke (side yoke) upper yoke clamping (lower) web (limb) of yoke clamping stiffening plate of yoke clamping winding compression bolt nut of compressing boltcompressing bolt with spring (hydraulic damper)winding supporting plate foot pad positioning hole positioning stud tensile rod yoke clamping bolt core earthing strip earthing screen of core (side yuoke) window height (center line distance M0) wood padding block lamination factor stage of lamination stacks circumscribed circle of core leg core surface perpendicular to lamination wood bar (padding block) positioning plate partitionV 线圈及线圈制造 WINDING AND WINMDINGMANUFACTURING single layer (double, multi-) cylindrical winding largesize long layer winding continuous winding semi-continuous winding interleaved winding interleaved-continuous winding partial-interleaved windingsandwich-interleaved winding capacitor shield winding disk winding sandwich winding15. 环氧绑扎带 16. 轭拉带17. 上轭顶梁(侧梁) 18. 上夹件(下夹件) 19. 夹件腹板(肢板) 20. 夹件加强铁 21. 压线圈的压钉 22. 压钉螺母23. 弹簧压钉(油缸压钉) 24. 线圈支撑架 25. 垫脚 26. 定位孔27. 带螺母的定位柱 28. 拉螺杆29. 夹件夹紧螺杆 30. 铁芯接地片31. 铁芯地屏(旁轭地屏)32. 窗口高度(中心距M 0) 33. 木垫块 34. 叠片系数 35. 铁芯的级 36. 芯柱外接圆 37. 铁芯端面38. 木棒(木垫块)39. 定位板40. 隔板 1. 单层(双层,多层)圆筒式线圈2. 大型层式线圈3. 连续式线圈4. 半连续式线圈5. 纠结式线圈6. 纠结-连续式线圈7. 部分纠结式线圈8. 插花纠结式线圈9. 插入电容式线圈10. 饼式线圈(双饼线圈) 11. 交错式线圈9helical winding single-row split winding foil winding sectional winding uniformly insulated winding tertiary winding 压) high voltage (low, mid-) windingauxiliary winding regulating winding 曲折形, T 形) star (delta, zigzag) connection open-delta connection winding disk (winding layer) layer insulation (insulation between disk) end insulation tapping terminal radial spacer between disk axial strip radial strip transformer connection between diskstransposed connection between disks initial terminal (final terminal ) of winding insulating cylinder insulation between turns insulation angled ring (collar ring) insulating filling strips between turnsfractional turn (integer turn) parallel wound conductors composite conductor transposed conductor paper wrapped conductor enameled wrapped conductorhard drawn copper conductor annealed conductor glass-fibre covered conductor paper channel banding wire (rope) electrostatic plate (ring)insulation wrappingoverall height of winding copper height of winding trimming of winding 12. 螺旋式线圈 13. 单列螺旋 14. 分列线圈15. 箔式线圈16. 分段式线圈17. 全绝缘式线圈18. 第三线圈19. 高压线圈(中压,低20. 辅助线圈 21. 调压线圈 22. 星形连接(三角形,23. 开口三角连接24. 线段(线层)25. 层绝缘(段)26. 端绝缘27. 分接头 28. 段间横垫块 29. 轴向撑条30. 径向撑条31. 段间过渡联线32. 段间换位联线33. 线圈起始端(终)34. 绝缘纸筒 35. 匝间绝缘 36. 绝缘角环37. 线匝间垫条38. 分数匝(整数匝)39. 并绕导线40. 复合导线41. 换位导线 42. 纸包线 43. 漆包线44. 硬拉铜导线45. 退火导线46. 玻璃丝包线47. 纸槽48. 绑线(绳) 49. 静电板(环) 50. 绝缘包扎 51. 线圈总高度 52. 铜线高度 53. 线圈修整10线圈浸漆 线圈的换位 分组换位 标准换位 线圈展开图 线圈的干燥与压缩 绝缘的压缩收缩率 无氧铜导线 铝合金导线 纵向油道 横向油道varnish impregnation of windingtransposition of windings transposition by groups standard transpositionplaniform drawing of winding drying and compressing of winding shrinkage ofinsulation under compression deoxygenized copper conductor aluminium-alloy conductor vertical oil-duct horizontal oil-ductW 油箱附件及油箱制造TANK AND TANK ' S FITTING MANUFCTURING bell type tank upper part (bottom part) of tank tank wall (with magnectic shield) tank bottom tube connecting flange draining valve oil sampling valve (plug) gate (butterfly,ball) valve pressure relief valve explosion-proof pipe connecting flange for evacuation (for oil filter) pocket for mercury thermometerbase plate of rating plate hand hole (manhole) tank rim pad frame for tank rim gasket ascending flanged base lifting lug with bearing plate for jacks positioning pin cover plate (temporary)conservator with rubber diaphrage(bladder) precipitation well air exhausting pipeoil conduitlifting lug (lifting eyebolt) ladder with balustrade form-fit tank54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64.1. 2.3. 4. 5.6.7. 8. 9. 10. 11.12.13. 14. 15. 16. 17.18. 19. 20. 21. 22. 23.24.25.26.27. 钟罩式油箱 上下节油箱 箱壁(带磁屏蔽) 箱底 联管夹 放油活门 油样活门 闸阀(蝶阀,球阀) 压力释放阀 安全气道(防爆筒) 真空接头(滤油接头) 水银温度计座 铭牌底板 手孔(人孔) 箱沿 箱沿护框 升高座 吊板与千斤顶支座 定位钉 盖板(临时) 带隔膜储油柜 沉淀盒(集污盒) 导气管 导油管 吊拌(吊环) 有围栏的梯子 适形油箱11breather gas relaypitot relay flow relay air (water) cooler bracket (tensile rod) for cooler oil-submerged pump flow quantity (m 3/min) liftcontrol box (panel) terminal box (block) connecting box for fan-motors metallic hosejoint flange for enclosed bus-bar tubular oil-level indicatormagnetic type oil-level indicator steel plate surfacepre-processing layout shearing edge shaping gas cutting (automatic gas cutting) plasma cutting bending press (brake) automatic submerged-arc wilding co2 protected welding argon protected welding cold bending machine for profiles pipe bending machine bending die for steel tube double-action punching machine double column punching machine single pole correction press movable radial drilling machine deep-throat punching machine revolving fixture for core clamping fabrication welding transposition fixture stud welder spot welder seam welder multi-point spot welder surface lathecoloured kerosene leakage test28. 呼吸品29. 气体继电器 30. 皮托继电器 31. 流动继电器32. 风(水)冷却品 33. 冷却品托架 34. 潜油泵 35. 流量 36. 扬程37. 控制箱(盘) 38. 端子箱39. 风扇接线盒 40. 金属软管41. 封闭母线联接法兰 42. 管式油位指示表 43. 磁铁式油位指示器 44. 钢板表面预处理 45. 刻线 46. 剪切 47. 刨边 48. 气割49. 等离子切割50. 折板机(液压) 51. 埋弧自动焊 52. C O2保护焊 53. 氩弧焊54. 形材冷弯机 55. 弯管机56. 钢管压弯模 57. 双动冲床 58. 龙门冲床59. 单点液压矫正机 60. 移动式摇臂转床 61. 深颈冲床62. 夹件焊装翻转架 63. 焊接变位架 64. 螺杆焊机 65. 点焊机 66. 缝焊机 67. 多点焊机 68. 端面车床69. 火油着色试漏12fluorescent leakage test vaccum strength test ultrasonic flaw detection magnetic flaw detection clear away welding flux clear away welding splashesantirust primer iron red epoxy primer iacquer showeringthinnernitrocellulose lacquer alkyd base lacquervn 装配,干燥及油处理TRANSFORMER ASSEMBLY , DRY AND OIL-PROCESS1. 引线附加绝缘 additional insulation of lead2. 引线夹(支架) leads clamping (supporting frame)3. 线圈围屏 winding screen (fastening belt of screen)4. 软电缆 flexible cable5. 有载开关 on-load tap-changer (OLTC)6. 切换开关 diverter switch7. 选择开关 selector switch8. 软接线片 flexible connecting strip9. 线圈直流电阻测试 winding d.c. resistance measurement 10. 联结组(极性)校验 check on connection group (polarity) 11. 铜焊机 brazing transformer 12. 磷铜焊料 phosphor-copper brazing metal 13. 铜焊钳夹 brazing pliers 14. 锡焊 soldering 15. 气相加热真空干燥 vacuum drying with vapour phase heating 16. 循环热风干燥 drying with hot-air circulation 17. 真空浸油 oil impregnation under vacuum 18. 真空干燥缸 vacuum drying autoclave 19. 真空系统 vacuum plant20. 真空泵(真空阀,真空计)vacuum pump (vacuum valve ) 21. 增压泵 booster (pump) 22. 自动记录仪表 autographic recording instrument 23. 干燥的终点判断 terminus determination of drying process70. 荧光试漏 71. 真空强度试验 72. 超声探伤 73. 磁力探伤 74. 消除焊药皮 75. 消除焊渣飞溅 76. 防锈底漆 77. 环氧铁红底漆 78. 淋漆(喷漆) 79. 溶剂(稀释剂) 80. 硝基漆 81. 酚醛漆1324. 露点测量dew point measurement25. 高压套管导杆头inner connecting stud of HVbushing26. 接地套管(端子)farthing bushing (terminal)27. 热油循环hot-oil circulation28. 注油后静放j-A-* r 、、,1standstill after oil-filling29. 密封式滤leakage lest on sealed parts30. 穿缆式高压套管cable through type HV bushing31. 高压套管绝缘护筒cylindrical insulating barrier of HVbushing32. 大电流套管heavy current bushing33. 加强式套管long-creepage bushing34. 接地标志earthing mark35. 中点套管neutral bushing36. 有载开关操作系统driving mechanism of OLTC37. 操作机构手柄operating handle of driving mechanism38. 活性氧化铝active aluminium oxide (activated alumine)39. 硅胶silica gel40. 电阻温度计resistance thermometer41. 信号温度计signaling thermometer42. 线圈温度指示器winding temperature indication43. 远距离温度计thermometer with remote indication44. 瓷箱(互感器)porcelain casing (instrument transformer)45. 瓷箱压圈clamping ring for porcelain casing46. 膨胀器expander47. 二次端子箱secondary terminal box48. 胶囊rubber bladder49. 电缆夹cable clip50. 绝缘装配insulation assembly51. 器身装配active part assembly52. 总装配final assembly53. 自动升降装配架automatic assembly scaffold54. 线圈吊具winding hoisting tool(two-leg ,three-leg)55. 插板刀lamination inserting knife56. 拆除上轭dismantle of upper yoke57. 插板reinsertion of upper yoke58. 线圈油压千斤顶hydraulic jacks for winding compression59. 油压泵站hydraulic pump station60. 引线绝缘包扎机lead insulation wrapping machine61. 冷压焊钳cold pressing pliers62. 线圈纸筒较紧器tightening device for winding cylinder63. 轭片N型夹n-shaped clips for upper yoke64. 斜纹布带twill cotton tape65. 箱壁绝缘隔板insulation diaphragm on the tank wall1466. 绝缘成型件 paper moulded insulating part 67. 真空干燥vacuum drying68. 气相加热阶段 vapour-phase heating period 69. 高真空阶段 high vacuum period70. 真空注油阶段 vacuum oil filling period 71. 煤油蒸发器 kerosene evaporator 72. 煤油回收泵 kerosene recycling pump 73. 蒸汽加热排管 steam heating radiators74. 立式真空缸 top loading vacuumdrying autoclave 75. 缸开启开油缸 opening mechanismof autoclave cover 76. 移动式净油站 movable oil purificator 77. 油脱水装置 oil-dehydrating device 78. 油过滤芯子cartridge of oil-filer 79. 油基(石蜡基,环烷基) oil base (paraffin base ,naphthene base) 80. 油的吸气性gas separating property of oil81. 油闪点(凝固点) flash point (congealing point )of oil 82. 酸值 acid value 83. 抗氧化剂 antioxidant 84. 抗凝剂anticoagulent85. 阻化油(非阻化油) inhibited (un-) oil 86. 油试验器oil tester87. 油的胶体污染 colloidal contamination of oil 88. 吸附剂absorbent89. 油中含水量(含气量) gas (moisture) content of oil90. 油中颗粒数 particle content of oil 91. 气相色谱分析 chromatography 92. 甲烷(乙烷) methane, ethane 93. 乙炔 acetylene 94. 乙烯 ethylene95. 一氧化碳 carbon monoxide 96. 丙烯acryl97. 氧(氮,氢) oxygen, nitrogen, hydrogen 98. 总烃含量 overall hydrocarbon content 99. 百万分之一parts per million忸包装及运输PACKAGE AND TRANSPORTATIONpackage packing list1. 包装箱2. 装箱单15packaged in craterailway highway transportation water(sea) transportation saddle bottomed wagon open web girder wagon trailer truck tankerschnabel wagon hoisting crane floating crane caterpillar crane railway crane steel cable chain block containertransport capstan and pulley block delivery date destination shipping mark handled with care don 't stack up don 't turn over consignor consignee gross weight case No. dispatch list pallet fork lift center of gravity oversizetransport don 't uncouple with slipping loading capacity port of loading marshalling yardtotal weight of product weight of active part weight of oil transport weightdismantled accessories spare parts3. 花板包装4. 铁路(公路)运输5. 水路(海路)运输6. 凹形车7. 落孔车8. 拖车9. 卡车 10. 油罐车 11. 钳夹式车 12. 起重机 13. 浮吊 14. 履带吊15. 铁路轨道吊 16. 钢丝绳 17. 手拉葫芦 18. 集装箱运输 19. 绞盘与滑轮组 20. 发货日期 21. 到站 22. 唛头23. 小心轻放 24. 不准叠放 25. 不准倒置 26. 发货人 27. 收货人 28. 毛重 29. 箱号 30. 发货单 31. 底拖 32. 叉车 33. 重心34. 限速运输 35. 不准流放 36. 装载量 37. 装货港口 38. 铁路编组站 39. 产品总重 40. 器身重量 41. 油重 42. 运输重 43. 拆卸附件 44. 备件16parts subjected to weartransported with nitrogen fillingtransported with oil fillingtransportation dimension sizerating plate datadesignating plate , illustration plateindication markdesign codesymbol of productserial No.service conditioninsulating levelworking altitudeambient temperaturewinding temperature-riseillustrative drawing for winding terminalsillustrative drawing for winding connection maximum(minimum) tappingrated tappingIX图纸及技术文件用语TECHNICAL FOR DRAWING AND TECHNICAL DOCUMENTS1. 零件parts2. 部件component (assembly) parts3. 基础件basic parts4. 借用件shared parts5. 标准件standard parts6. 外购件general parts7. 附件accessories8. 配合件mating parts9. 可拆卸件dismountable parts10. 成套设备 a complete11 . 初步设计preliminary12. 技术设计technical design13. 技术设计说明书instruction for technical design14 . 施工图设计working drawing design15. 技术协议technical agreement16 . 技术任务书assignment for technical design45. 易损件46. 充氮运输47. 充油运输48. 运输尺寸图49. 铭牌数据50. 标志牌,指示牌51. 指示标记52. 标准号53. 产品代号54. 产品序号55. 使用条件56. 绝缘水平57. 海拔高度58. 环境温度59. 线圈温升60. 线圈端子位置示意图61. 线圈连接组图62. 最大最小分接63. 额定分接17. 技术条件technical condition17annex (appendix) to the contract examination and appraisal program summary of trial production type test report routine test report technical and economical analysis feasibitily studytechnical document for product delivery quality certificate operation instruction of transformer general layout overall dimension installation drawing illustrative drawing principle circuit diagram block diagram table (graph) shipping dimension drawing foundation drawing originals(transparent print) blue print duplicates contents of drawing (documents) detail list of drawing detail list of purchased parts reference list of customers title block of drawing number item name drawing No.unit weight designed , checked , approved pertaining to assembly drawing No.scale paper size for unmarked for unmarked edges hardening surface hardening galvanized nikel , pickling18. 合同附件 19. 检验鉴定大纲 20. 试制总结 21. 形式试验报告 22. 出厂试验报告 23. 技术经济分析 24. 可行性分析 25. 出厂技术文件 26. 产品合格证27. 变压器使用说明书 28. 总图29. 外形尺寸图 30. 安装图 31. 示意图32. 线路原理图 33. 方框图 34. 图表 35. 运输图 36. 地基图 37. 底图 38. 蓝图 39. 复制图 40. 图样目录 41. 零件明细表 42. 外购件明细表 43. 产品用户一览表 44. 图纸标题栏 45. 项号 46. 名称 47. 图号48. 单件重量49. 设计,校核,审定 50. 隶属装配图号 51. 比例 52. 纸型 53. 其余54. 其余倒角 55. 淬火56. 表面淬火 57. 镀锌 58. 镀镍 59. 酸洗18phosphorated coated with two layers of primer surface coatingsemi-conducting coating hot dipping anti-corna coating tack weld spot weld stud weldwelded according to practical condition drilled together with mating parts ream after drilling through hole shot-blastgrinding to flat after welding clear away burrs tempering straighteningsymmetrical parts tapered hole forging (die casting) angle evenness finish (roughness) inclination circularity (ellipticity) eccentricity (concentricity) inconcentricity flatness straightness parallelism perpendicularityunfolded A-A enlarged B-B tuned by viewed from K A-A section alignment nut locked by punching three points pieced together reverse60. 磷化61. 涂两遍底漆 62. 表漆63. 半导体涂层 64. 热浸 65. 防叠层 66. 点固焊 67. 点焊 68. 标杆焊 69. 配焊70. 与配合件同时钻孔 71. 钻后绞孔 72. 透孔73. 吹砂(抛丸) 74. 焊后磨平 75. 去毛刺 76. 回火 77. 校直 78. 对称件 79. 锥度孔80. 煅件(压铸件) 81. 角钢(槽钢) 82. 整齐度83.表面光洁度 (粗糙度) 84. 倾斜度85. 圆度(椭圆度) 86. 偏心度(同心度) 87. 不同心度 88. 平(不平)度 89. 直度 90. 平行度 91. 垂直度 92. 展开图 93.A-A 放大 94.B-B 转 95.K 向96.A-A 剖面97. 对中心(不对中心) 98. 冲铆三点锁紧螺母 99. 铆接 100. 改版19X 质量控制及试验设备QUALITY CONTROL AND TEST EQUIPMENT101. 质量(质量控制)quality control102. 质量方针quality policy103. 质量管理quality management104. 质量保证体系quality guarantee105. 质量监督quality supervisor106. 质量成本quality rated cost107. 可靠性reliability108. 可用性availability109. 合格conformity110. 缺陷nonconformity111. 设计评审design review112. 关键工序critical process113. 控制点control point114. 验收检验acceptance inspection115. 准确度accuracy116. 校准calibration117. 误差error118. 产品鉴定product appraisal119. 投运试验commissioning test120. 首件试验first item inspection121. 工序间试验in-process inspection122. 最总检验final inspection123. 出厂检验routine test124. 形式试验type test125. 特殊试验special test126. 标准偏差standard deviation127. 正态分布normal distribution128. 设计定型finalization of design129. 定形改版finalized revision130. 市场调查market survey131. 试验用仪器仪表testing instrument132. 冲击电压发生器impulse voltage generator133. 截断装置chopping device134. 试验发电机组testing generator set135. 电容补偿装置capacitor compensation device136. 高压示波器high voltage137. 分压器voltage divider138. 标准电容器standard capacitor20幻常用生产及工装设备EQUIPMENT AND TOOLS COMMONLY USEDlathevertical lathe surfacing lathesaddle bed lathe automatic lathe numerical control lathe turret lathe backing off lathe bulging lathe drill bench drill radial drill boring machine jig boring machine facing boring lathe millerscrew universal miller spline miller planer type miller slotting machine139. 法拉第笼faraday cage140. 局放测试仪 partial discharge tester 141. 数字电压表 digital display voltmeter 142. 低功率因数瓦特表 low power factor wattmeter 143. 西林电桥 schering bridge 144. 变比电桥 bridge for testing of voltage 145. 频率表 frequency meter 146. 热电偶 thermoelectric couple 147. 红外线扫描仪 infrared scanner 148. 水电阻 water resistance 149. 球极 sphere-gap 150. 峰值电压表 peak value voltmeter 151. 表面温度计 surface thermometer 152. 记忆示波器 memory scope 153. 钳形电流器 tong-type ammeter 154. 万用表 universal testertransformation ratio1. 车床— 、 (■»2. 立式车床3. 断面车床4. 马鞍车床5. 自动车床6. 数控车床7. 大角车床8. 铲背车床9. 旋压车床10. 钻床 11. 台钻 12. 摇臂钻 13. 镗床14. 坐标镗床 15. 落地镗床 16. 铣床17. 螺旋铣床 18. 万能铣床 19. 花键铣床 20. 龙门铣床 21. 插床21gear slottingdouble housing planer open side planer shaper hydraulic planer shaperbroaching machine hack saw disk saw band saw presspunch press shearing machine punch shear bending press thread hobbing machine grinder circular (internal)grinder刈材料标准件及标准零件MATERIALS AND STANDARD PARTSferrous metal (non-ferrous metal) insulatingmaterial (heat-resistant material) low carbon steel (alloy steel) anti-magnetic steel (low-temperature steel) stainless steel hot-rolled (cold-rolled) silicon sheet steel cold rolled grain oriented silicon sheet steel copper (brass , bronze , phosphor bronze) lead (tin, silver, zinc) platinum (g old, antimony, mercury) insulating paper (press board) high-densitypressboard pulp crepe paper calendered insulating paper cable paper condenser paper kraft paper 22. 插齿机23. 双柱龙门刨 24. 单臂刨床 25. 刨边机 26. 液压刨床 27. 牛头刨床 28. 拉床 29. 弓锯床 30. 圆锯床 31. 带锯床 32. 压力机 33. 冲压机 34. 剪板机 35. 剪断机 36. 折板机 37. 滚丝机 38. 磨床39. 外圆(内圆)磨床1. 黑色金属(有色金属)2. 绝缘材料(保温材料)3. 低碳钢(合金钢)4. 抗磁钢(低温钢)5. 不锈钢6. 热轧(冷轧)硅钢片7. 冷轧晶粒取向硅钢片8. 紫铜(黄铜,青铜,磷铜) 9. 铅(锡,银,锌) 10. 铂(金,锑,汞) 11. 绝缘纸(纸板) 12. 高密度纸板 13. 纸浆14. 皱纹纸(压光皱纹纸) 15. 压延绝缘纸 16. 电缆纸 17. 电容器纸18. 牛皮纸(青壳纸)。
静电成像方式英语作文Title: The Principle and Applications of Electrostatic Imaging。
Electrostatic imaging, a technique utilized in various fields including medical diagnostics, security screening, and scientific research, relies on the manipulation of electrostatic forces to generate images. This essay delves into the principle behind electrostatic imaging, its applications, and the advancements in this technology.### Principle of Electrostatic Imaging。
Electrostatic imaging operates on the fundamental principle of electrostatic attraction and repulsion. It involves the creation of an electric field between acharged object and a grounded substrate. When an object is charged, the electric field interacts with nearby particles, causing redistribution of charges and resulting invariations in the electric potential across the surface. Bymeasuring these potential differences, an image of theobject's surface or internal structure can be reconstructed.### Components of Electrostatic Imaging Systems。
Simplify complex motor-drive troubleshooting with guided test setups and automated drivemeasurements that provide reliable, repeatable test results.The new Fluke MDA 510 and MDA 550 Motor-Drive Analyzers save time and eliminate the hassle of setting up complex measurements, while simplifying the troubleshooting process. Simply select a test and the step-by-step guided measurements show youwhere to make voltage and current connections, while the preset measurement profiles ensure you will capture all the data you need for each critical motor-drive section—from the input to the output, the DC bus, and the motor itself. From basic to advanced measurements, the MDA-500 Series has you covered, and with a built-in report generator you can quickly and easily generate as-found, and as-left reports with confidence.The MDA-510 and MDA-550 are the ideal portable motor-drive analysis test tools, and can help safely locate and troubleshoot typical problems on inverter type motor-drive systems.• • ••••KEY MEASUREMENTSInverter output voltage, DC bus voltage and ripple voltage, harmonics, unbalance THREE POWERFUL TEST TOOLS IN ONEMotor-drive analyzer, waveform analyzer and recording data logger all in oneHIGHEST SAFETY RATING IN THE INDUSTRY600 V CAT IV/1000 V CAT III rated for use at the service entrance and downstreamThe Fluke MDA-510 and MDA-550 Motor Drive Analyzers use guided test measurements to make analysis easier than everDrive inputMeasure input voltage and current to quickly see whether values are within acceptable limits by comparing the drive’s nominal rated voltage to the actual supplied voltage. Then, check the input current to determine if the current is within the maximum rating and the conductors are suitably sized. You can also check whether the harmonic distortion is within an acceptable level by visu-ally inspecting the waveform shape or by viewing the harmonics spectrum screen (MDA-550) which shows both the total harmonic distortion and individual harmonics.Voltage and current unbalanceCheck the voltage unbalance at the input terminals so you canensure the phase unbalance is not too high (> 6-8 %), and that thephase rotation is correct. You can also check the current unbalance, as excessive unbalance may indicate a drive rectifier problem.Extended harmonic measurementsExcessive harmonics are not just a threat to your rotating machines but also to other equipment connected to the electrical powersystem. The MDA-550 provides the ability to discover the harmon-ics of the motor-drive but can also discover the possible effects of inverter switching electronics. The MDA-550 has three harmonic ranges, 1st to 51st Harmonics, 1 to 9 kHz and 9 kHz to 150 kHz giving the ability to detect any harmonic pollution problems.DC busIn a motor-drive the conversion of AC to DC inside the drive is critical, having the correct voltage and adequate smoothing with low ripple is required for the best drive performance. High ripple voltage may be an indicator of failed capacitors or incorrect sizing of the connected motor. The record function of the MDA-500 Series can be used to check DC bus performance dynamically in the oper-ating mode while a load is applied.Drive outputCheck the output of the drive focusing both on voltage to frequency ratio (V/F), and voltage modulation. When high V/F ratio measure-ments are experienced, the motor may overheat. With low V/Fratios, the connected motor may not be able to provide the requiredtorque at the load to sufficiently run the intended process.Drive input step-by-step guided measurement connectionsDrive output waveform with auto triggeringExtended harmonics spectrum from 9 kHz to 150 kHzVoltage modulationMeasurements of the Pulse Width Modulated signal are used to check for high voltage peaks which can damage motor winding insulation. The rise time or steepness of impulses is indicated by the dV/dt reading (rate of voltage change over time), this should be compared to the motor’s specified insulation. The measure-ments can also be used to measure switching frequency to identify whether there is a potential issue with electronic switching, or with grounding, where the signal floats up and down.Motor inputEnsuring that voltage is being supplied at the motor input termi-nals is key, and the selection of cabling from drive to the motoris critical. Incorrect cabling selection can result in both drive and motor damage due to excessive reflected voltage peaks. Checking that the current present at the terminals is within the motor rating is important as over current condition could cause the motor to run hot, decreasing the life of the stator insulation which can result in the early failure of the motor.Motor shaft voltageVoltage pulses from a variable speed drive can couple from a motor’s stator to its rotor, causing a voltage to appear on the rotor shaft. When this rotor shaft voltage exceeds the insulating capac-ity of the bearing grease, flashover currents (sparking) can occur, causing pitting and fluting of the motor bearing race, damage that can cause a motor to fail prematurely. The MDA-550 Series ana-lyzers are supplied with carbon fiber brush probe tips that can easily detect the presence of destructive flashover currents, while the impulse amplitude and count of events will enable you to take action before failure occurs. The addition of this accessory and capability of the MDA-550 allows you to discover potential damage without investing in expensive permanently installed solutions.Step-by-step guided measurements ensure you have the data you need, when you need itThe MDA-500 Series is designed to help you quickly and easily test and troubleshoot typical problems on three-phase and single-phase inverter type motor-drive systems. The on-screen information, and step-by-step setup guidance make it easy to con-figure the analyzer and get the drive measurements you need to make better maintenance decisions, fast. From power input to the installed motor, the MDA-500 provides the measurement capabilityfor the fastest motor-drive troubleshooting.Voltage modulation with zoomMotor shaft voltage discharge event countsQuick and easy measurement setup1) Press ‘Motor Drive Analyzer’ button and select‘Drive Measurement Location’.2) Use the on-screen context information tofurther guide you to successful setup andmeasurement.3) Choose the measurement.4) Select the measurement method/option.5) Connect the test probes according to the dia-gram. Once complete press ‘Next’.6) The analyzer will then automatically trigger,and configure the reading for the optimummeasurements.Reporting and analysisThe MDA-500 Series simplifies the process of gathering data and writing test reports with abuilt-in report generator.At each test point or measurement there is the option to create, update or modify a report. Simply press ‘SAVE TO REPORT’ and select the appropri-ate screens to save into a text based report file. By performing the step-by-step guided measure-ments a comprehensive report can be created directly from the instrument to document the entire troubleshooting process.Input the report name. The single report encom-passes all recorded measurements and can easily be shared with other users and used for motor-drive benchmarking, and for comparing data nowand in the future.Featured measurementsSpecificationsOrdering informationMDA-510Motor drive analyzer, 4 channel, 500 MHzMDA-550Motor drive analyzer, 4 channel, 500 MHz with motor shaft and harmonicsIncludes1x BP 291 li-ion battery pack, 1x BC190 charger/power adapter, 3x VPS 100:1 high voltage probes with alligator clips, 1xVPS410-II-R 10:1 500MHz voltage probe, 1x i400s ac current clamp, 1x C1740 carrying case, 1x 2 GB USB drive with manuals and FlukeView™2 softwareMDA-550 also includes 1x SVS-500 shaft voltage set (3x brush, probe holder, two-piece extension rod and magnetic base), additional 2x i400s ac current clampsAdditional accessoriesSVS-500 set of 3x brushes, probe holder, two-piece extension rod and magnetic baseSB-500 set of 3x replacement brushes*In addition, Fluke 190 series II ScopeMeter™ Test Tools acces-sories are also supported by the MDA-500 Series Fluke CorporationPO Box 9090, Everett, WA 98206 U.S.A.Fluke Europe B.V.PO Box 1186, 5602 BDEindhoven, The NetherlandsFor more information call:In the U.S.A. (800) 443-5853 orFax (425) 446-5116In Europe/M-East/Africa +31 (0) 40 2675 200 or Fax +31 (0) 40 2675 222In Canada (800)-36-FLUKE orFax (905) 890-6866From other countries +1 (425) 446-5500 or Fax +1 (425) 446-5116Web access: ©2018 Fluke Corporation.Specifications subject to change without notice. Printed in U.S.A. 6/2018 6011207b-enModification of this document is not permitted without written permission from Fluke Corporation. Fluke. Keeping your worldup and running.®。
Loop system 环网系统Demagnetization 退磁,去磁Distribution system 配电系统Relay panel 继电器屏Trip circuit 跳闸电路Tertiary winding 第三绕组Switchboard 配电盘,开关屏Eddy current 涡流Instrument transducer 测量互感器Copper loss 铜损Oil-impregnated paper 油浸纸绝缘Iron loss 铁损Bare conductor 裸导线Leakage flux 漏磁通Reclosing 重合闸Autotransformer 自耦变压器Distribution dispatch center 配电调度中心Zero sequence current 零序电流Pulverizer 磨煤机Series (shunt) compensation 串(并)联补偿Drum 汽包,炉筒Restriking 电弧重燃Superheater 过热器Automatic oscillograph 自动录波仪Peak-load 峰荷Tidal current 潮流Prime grid substation 主网变电站Trip coil 跳闸线圈Reactive power` 无功功率Synchronous condenser 同步调相机Active power 有功功率Main and transfer busbar 单母线带旁路Shunt reactor 并联电抗器Feeder 馈电线Blackout 断电、停电Skin effect 集肤效应Extra-high voltage (EHV) 超高压Potential stress 电位应力(电场强度)Ultra-high voltage (UHV) 特高压Capacitor bank 电容器组Domestic load 民用电crusher 碎煤机Reserve capacity 备用容量pulverizer 磨煤机Fossil-fired power plant 火电厂baghouse 集尘室Combustion turbine 燃气轮机Stationary (moving) blade 固定(可动)叶片Right-of-way 线路走廊Shaft 转轴Rectifier 整流器Kinetic(potential) energy 动(势)能Inductive (Capacitive) 电感的(电容的) Pumped storage power station 抽水蓄能电站Reactance (impedance) 电抗(阻抗)Synchronous condenser 同步调相机Reactor 电抗器Light(boiling)-water reactor 轻(沸)水反应堆Reactive 电抗的,无功的Stator(rotor) 定(转)子Phase displacement (shift) 相移Armature 电枢Surge 冲击,过电压Salient-pole 凸极Retaining ring 护环Slip ring 滑环Carbon brush 炭刷Arc suppression coil 消弧线圈Short-circuit ratio 短路比Primary(backup) relaying 主(后备)继电保护Induction 感应Phase shifter 移相器Autotransformer 自藕变压器Power line carrier (PLC) 电力线载波(器)Bushing 套管Line trap 线路限波器Turn (turn ratio) 匝(匝比,变比)Uninterruptible power supply 不间断电源Power factor 功率因数Spot power price 实时电价Tap 分接头Time-of-use(tariff) 分时(电价)Recovery voltage 恢复电压XLPE(Cross Linked Polyethylene )交联聚乙烯(电缆)Arc reignition 电弧重燃Rms (root mean square) 均方根值Operation mechanism 操动机构RF (radio frequency) 射频Pneumatic(hydraulic) 气动(液压)Rpm (revolution per minute) 转/分Nameplate 铭牌LAN (local area network) 局域网Independent pole operation 分相操作LED (light emitting diode) 发光二极管Malfunction 失灵Single (dual, ring) bus 单(双,环形)母线Shield wire 避雷线IC (integrated circuit) 集成电路Creep distance 爬电距离FFT (fast Fourier transform) 快速傅立叶变换Silicon rubber 硅橡胶Telemeter 遥测Composite insulator 合成绝缘子Load shedding 甩负荷Converter (inverter) 换流器(逆变器)Lateral 支线Bus tie breaker 母联断路器Power-flow current 工频续流Protective relaying 继电保护sparkover 放电Transfer switching 倒闸操作Silicon carbide 碳化硅Outgoing (incoming) line 出(进)线Zinc oxide 氧化锌Phase Lead(lag) 相位超前(滞后)Withstand test 耐压试验Static var compensation (SVC) 静止无功补偿Dispatcher 调度员Flexible AC transmission system(FACTS) 灵活交流输电系统Supervisory control and data acquisition (SCADA) 监控与数据采集EMC (electromagnetic compatibility) 电磁兼容ISO (international standardization organization) 国际标准化组织GIS (gas insulated substation, geographic information system) 气体绝缘变电站,地理信息系统IEC (international Electrotechnical Commission) 国际电工(技术)委员会IEEE (Institute of Electrical and Electronic Engineers) 电气与电子工程师学会(美)IEE (Institution of Electrical Engineers) 电气工程师学会(英)scale 刻度,量程calibrate 校准rated 额定的terminal 接线端子fuse 保险丝,熔丝humidity 湿度resonance 谐振,共振moisture 潮湿,湿气analytical 解析的operation amplifier 运算放大器numerical 数字的amplitude modulation (AM) 调幅frequency-domain 频域frequency modulation (FM) 调频time-domain 时域binary 二进制operation amplifier 运算放大器octal 八进制active filter 有源滤波器decimal 十进制passive filter 无源滤波器hexadecimal 十六进制power system 电力系统impulse current 冲击电流power network 电力网络impulse flashover 冲击闪络insulation 绝缘inhomogenous field 不均匀场overvoltage 过电压insulation coordination 绝缘配合aging 老化internal discharge 内部放电alternating current 交流电lightning stroke 雷电波AC transmission system 交流输电系统lightning overvoltage 雷电过电压arc discharge 电弧放电loss angle (介质)损耗角attachment coefficient 附着系数magnetic field 磁场attenuation factor 衰减系数mean free path 平均自由行程anode (cathode) 阳极(阴极)mean molecular velocity 平均分子速度breakdown (电)击穿negative ions 负离子bubble breakdown 气泡击穿non-destructive testing 非破坏性试验cathode ray oscilloscope 阴极射线示波器non-uniform field 不均匀场cavity 空穴,腔partial discharge 局部放电corona 电晕peak reverse voltage 反向峰值电压composite insulation 组合绝缘photoelectric emission 光电发射critical breakdown voltage 临界击穿电压photon 光子Discharge 放电phase-to-phase voltage 线电压Dielectric 电介质,绝缘体polarity effect 极性效应dielectric constant 介质常数power capacitor 电力电容dielectric loss 介质损耗quasi-uniform field 稍不均匀场direct current 直流电radio interference 无线干扰divider ratio 分压器分压比rating of equipment 设备额定值grounding 接地routing testing 常规试验electric field 电场residual capacitance 残余电容electrochemical deterioration 电化学腐蚀shielding 屏蔽electron avalanche 电子崩short circuit testing 短路试验electronegative gas 电负性气体space charge 空间电荷epoxy resin 环氧树脂streamer breakdown 流注击穿expulsion gap 灭弧间隙surface breakdown 表面击穿field strength 场强sustained discharge 自持放电field stress 电场力switching overvoltage 操作过电压field distortion 场畸变thermal breakdown 热击穿field gradient 场梯度treeing 树枝放电field emission 场致发射uniform field 均匀场flashover 闪络wave front(tail) 波头(尾)gaseous insulation 气体绝缘withstand voltage 耐受电压Prime mover 原动机Power factor 功率因数Torque 力矩Distribution automation system 配电网自动化系统Servomechanism 伺服系统Automatic meter reading 自动抄表Boiler 锅炉Armature 电枢Internal combustion engine 内燃机Brush 电刷Deenergize 断电Commutator 换向器Underground cable 地下电缆Counter emf 反电势Loop system 环网系统 Demagnetization 退磁,去磁Distribution system 配电系统 Relay panel 继电器屏Trip circuit 跳闸电路 Tertiary winding 第三绕组Switchboard 配电盘,开关屏 Eddy current 涡流Instrument transducer 测量互感器 Copper loss 铜损Oil-impregnated paper 油浸纸绝缘 Iron loss 铁损Bare conductor 裸导线 Leakage flux 漏磁通Reclosing 重合闸 Autotransformer 自耦变压器Distribution dispatch center 配电调度中心 Zero sequence current 零序电流Pulverizer 磨煤机 Series (shunt) compensation 串(并)联补偿Drum 汽包,炉筒 Restriking 电弧重燃Superheater 过热器 Automatic oscillograph 自动录波仪Peak-load 峰荷 Tidal current 潮流Prime grid substation 主网变电站 Trip coil 跳闸线圈Reactive power` 无功功率 Synchronous condenser 同步调相机Active power 有功功率 Main and transfer busbar 单母线带旁路Shunt reactor 并联电抗器 Feeder 馈电线Blackout 断电、停电 Skin effect 集肤效应Extra-high voltage (EHV) 超高压 Potential stress 电位应力(电场强度) Ultra-high voltage (UHV) 特高压 Capacitor bank 电容器组Domestic load 民用电 crusher 碎煤机Reserve capacity 备用容量 pulverizer 磨煤机Fossil-fired power plant 火电厂 baghouse 集尘室Combustion turbine 燃气轮机 Stationary (moving) blade 固定(可动)叶片Right-of-way 线路走廊 Shaft 转轴Rectifier 整流器 Kinetic(potential) energy 动(势)能Inductive (Capacitive) 电感的(电容的) Pumped storage power station 抽水蓄能电站Reactance (impedance) 电抗(阻抗) Synchronous condenser 同步调相机Reactor 电抗器 Light(boiling)-water reactor 轻(沸)水反应堆Reactive 电抗的,无功的 Stator(rotor) 定(转)子Phase displacement (shift) 相移 Armature 电枢Surge 冲击,过电压 Salient-pole 凸极Retaining ring 护环 Slip ring 滑环Carbon brush 炭刷 Arc suppression coil 消弧线圈Short-circuit ratio 短路比 Primary(backup) relaying 主(后备)继电保护Induction 感应 Phase shifter 移相器Autotransformer 自藕变压器 Power line carrier (PLC) 电力线载波(器)Bushing 套管 Line trap 线路限波器Turn (turn ratio) 匝(匝比,变比) Uninterruptible power supply 不间断电源Power factor 功率因数 Spot power price 实时电价Tap 分接头 Time-of-use(tariff) 分时(电价)Recovery voltage 恢复电压 XLPE(Cross Linked Polyethylene )交联聚乙烯(电缆)Arc reignition 电弧重燃 Rms (root mean square) 均方根值Operation mechanism 操动机构 RF (radio frequency) 射频Pneumatic(hydraulic) 气动(液压) Rpm (revolution per minute) 转/分Nameplate 铭牌 LAN (local area network) 局域网Independent pole operation 分相操作 LED (light emitting diode) 发光二极管Malfunction 失灵 Single (dual, ring) bus 单(双,环形)母线Shield wire 避雷线 IC (integrated circuit) 集成电路Creep distance 爬电距离 FFT (fast Fourier transform) 快速傅立叶变换Silicon rubber 硅橡胶 Telemeter 遥测Composite insulator 合成绝缘子 Load shedding 甩负荷Converter (inverter) 换流器(逆变器) Lateral 支线Bus tie breaker 母联断路器 Power-flow current 工频续流Protective relaying 继电保护 sparkover 放电Transfer switching 倒闸操作 Silicon carbide 碳化硅Outgoing (incoming) line 出(进)线 Zinc oxide 氧化锌Phase Lead(lag) 相位超前(滞后) Withstand test 耐压试验Static var compensation (SVC) 静止无功补偿 Dispatcher 调度员Flexible AC transmission system(FACTS) 灵活交流输电系统Supervisory control and data acquisition (SCADA) 监控与数据采集EMC (electromagnetic compatibility) 电磁兼容ISO (international standardization organization) 国际标准化组织GIS (gas insulated substation, geographic information system) 气体绝缘变电站,地理信息系统IEC (international Electrotechnical Commission) 国际电工(技术)委员会IEEE (Institute of Electrical and Electronic Engineers) 电气与电子工程师学会(美)IEE (Institution of Electrical Engineers) 电气工程师学会(英)scale 刻度,量程 calibrate 校准rated 额定的 terminal 接线端子fuse 保险丝,熔丝 humidity 湿度resonance 谐振,共振 moisture 潮湿,湿气analytical 解析的 operation amplifier 运算放大器numerical 数字的 amplitude modulation (AM) 调幅frequency-domain 频域 frequency modulation (FM) 调频time-domain 时域 binary 二进制operation amplifier 运算放大器 octal 八进制active filter 有源滤波器 decimal 十进制passive filter 无源滤波器 hexadecimal 十六进制。
中文2068字外文资料翻译Reliability of Lightning ResistantOverhead Distribution LinesLighting continues to be the major cause of outages on overhead power distribution lines. Through laboratory testing and field observations and measurements, the properties of a lightning stroke and its effects on electrical distribution system components are well-understood phenomena. This paper presents a compilation of 32 years of historical records for outage causes, duration, and locations for eight distribution feeders at the Oak Ridge National Laboratory (ORNL) .Distribution type lightning arresters are placed at dead-end and angle structures at pole mounted wormer locations and at high points on the overhead line. Station class lightning arresters are used to protect underground cable runs, pad mounted switchgear and unit substation transformers. Resistance to earth of each pole ground is typically 15 ohms or less. At higher elevations in the system, resistance to earth is substantially greater than 15 ohms, especially during the dry summer months. At these high points, ground rods were riven and bonded to the pole grounding systems in the 1960's in an attempt to decrease lightning outages. These attempts were only partially successful in lowering the outage rate. From a surge protection standpoint the variety of pole structures used (in-line, corner, angle, dead end, etc.) and the variety of insulators and hardware used does not allow each 13.8 kV overhead line to be categorized with a uniform impulse flashover rating (170 kV, etc.) or a numerical BIL voltage class (95 kV BIL; etc.). For simplicity purposes in the analysis, each overhead line was categorized with a nominal voltage construction class (15 kV, 34 kV, or 69 KV). Six of the eight overhead lines (feeders 1 through 6) were built with typical REA Standard horizontal wood cross arm construction utilizing single ANSI Class55-5 porcelain pin insulators (nominal 15 kV insulation). The shield angle of the overhead ground wire to the phase conductors is typically 45 degrees. One overhead line (feeder 7) was built with transmission type wood pole construction because the line extended to a research facility which was to have generated electrical power to feed back into the grid. Pole structure of this line are of durable wood cross a construction which utilize double ANSI 52-3 porcelain suspension insulators to support the conductors (nominal 34 kV insulation). The shield angle of the overhead ground wire to the phase conductors for feeder 7 is typically 30 degrees. In 1969, an overhead line (feeder 8) was intentionally built with "lightning resistant" construction in an attempt to reduce lightning caused outages. Pole structures of the line have phase over phase 24-inch long fiberglass suspension brackets with double ANSI 52-3 porcelain suspension insulators to support the conductors (nominal 69 kV insulation). The shield angle of the overhead ground wire to the phase conductors for feeder 8 is typically 30 degrees. The failure data was compiled for each of the eight 13.8 kV feeders and is presented in Table, along with pertinent information regarding feeder construction, elevation, length, and age.A key finding of the failure analysis is that weather-related events account for over half (56%) of the feeder outages recorded. Fifty-seven of the 76 weather-related outages were attributed to lightning. Insulation breakdown damage due to lightning is also suspected in at least a dozen of the equipment failures observed. The data indicates overhead lines which pass over high terrain are less reliable because of the greater exposure to lightning. For example, feeder 3 had the most recorded outages (48), of which two-thirds were due to weather-related events; this feeder is also the highest line on the plant site, rising to an elevation of 450 above the reference valley elevation. Overhead lines that are longer and to which more substations and equipment are attached were also observed to be less reliable (more exposure to lightning and more equipment to fail). The age of the line does not appear to significantly lessen its reliability as long as adequate maintenance isperformed; none of the lines have had a notable increase in the frequency of outages as the lines have aged. As would be expected, the empirical data presented in Table I confirms the two overhead lines which have been insulated to a higher level (34 or 69 KV) have significantly better reliability records than those utilizing 15 kV class construction. Feeder 7 (insulated to 34 KV) and feeder 8 (insulated to 69 kV) have bad only 3 outages each over their 32 and 23 year life spans, respectively. These lines follow similar terrain and are comparable in length and age to the 15 kV class lines, yet they have a combined failure rate of 0.22 failures per year versus 4.32 failures per year for the remaining feeders.On typical 15 kV insulated line construction, lightning flashovers often cause 60 cycle power follow and feeder trip. With the higher insulation construction, outage rates are reduced by limiting the number of flashovers and the resultant power follow which causes an over current device to trip. This allows lightning arresters to perform their duty of dissipating lightning energy to earth. The number of re closer actions and their resultant momentary outages are also reduced. This is beneficial for critical facilities and processes which cannot tolerate even momentary outages. An additional benefit is that outages due to animal contact are also reduced because of the greater distance from phase conductor to ground on pole structures. Distribution line equipment to increase line insulation values are "off the shelf" items and proven technology. New lightning resistant construction typical by utilizes horizontal line posts, fiberglass standoff brackets or any other method which world increase the insulation value. The replacement of standard pin insulators with line post insulators of greater flashover value is an effective means to retrofit existing wood cross arm construction. The doubling and tripling of dead end and suspension insulators is also a means of increasing flashover values on existing angle and dead-end structures. Current fiberglass, polymer, and epoxy technologies provide an affordable means to increase line insulation.While the use of increased insulation levels to reduce lightning flashoversand the resultant outages on overhead distribution lines has been thoroughly tested and demonstrated in laboratory and experimental tests [5], long term history field data has positively demonstrated that the use of "lightning resistant" construction can greatly reduce outages. Field use at ORNL has shown that in areas which are vulnerable to lightning, the use of increased insulation and a smaller shielding angle is an impressive and cost effective means to appreciably increase the reliability of overhead distribution lines. This reliability study clearly illustrates that the insulation requirements for high-reliability distribution feeders should be determined not by the 60 Hz operating voltage but rather by withstand requirements for the lightning transients or other high voltage transients that are impressed upon the line. Electrical equipment (switchgear, insulators, transformers, cables, etc.) have a reserve (BE level or flashover value) to handle momentary over voltages, and by increasing that reserve, the service reliability is appreciably increased. As the electrical industry gradually moves away from standard wood cross arm construction and moves toward more fiberglass, polymer and epoxy construction, increased insulation methods can be applied as part of new construction or as part of an upgrade or replacement effort. In considering new or upgraded overhead line construction, the incremental increased cost of the higher insulation equipment is d in proportion to the total costs of construction (labor, capital equipment, cables, electric poles, right-of-way acquisition), Its cost effectiveness varies with the application and the conditions to which it is be applied. Economic benefits include increased electrical service reliability and its inherent ability to keep manufacturing processes and critical loads in service. Other more direct benefits include less repair of overhead distribution lines, which can have a significant reduction in maintenance cost due to less replacement materials and a large reduction in overtime hours for maintenance crews.抗雷击架空配电线路的可靠性闪电仍然是架空配电线路上的中断1的主要原因。
Additional useful expressionsflashover 闪络, 飞弧,跳火line voltage 线[间]电压overhead ground wire 避雷线,架空线路impulse wave 冲击波surge voltage 冲击电压wave front 波阵面,波前,冲击波头corona loss 电晕损失line insulator 线路绝缘子nominal value 标称值lightning arrester 避雷针,避雷器,避雷装置incoming line 进线spark gap 火花隙,火花放电器,避雷器insulation Co-ordination 绝缘配合Arcing Horn 角形避雷器sparkover voltage 跳火电压,火花放电电压de-energization 断开,去能,失励applied voltage 外加电压negative polarity 负极性impulse withstand level 耐冲击水平overhead shielding wire 架空屏蔽线steep-front wave 陡前沿波,前陡波,雷电波gap length 气隙长度gap adjustment 间隙调整non-linear-resistor-type arrester 非线性电阻器型避雷器BIL 1. (basic impulse level) 基本脉冲电平 2. (basic impulse insulation level) 冲击绝缘标准,标准冲击绝缘 3. (basic insulation level) 绝缘基本冲击耐压水平power-flow 功率潮流;电力潮流follow current 跟踪电流;继(电)流;残余电流breakdown 击穿,导通,开启构词法1. –ility 性adaptability 适应性capability 能力,本领compatibility 形容性,一致性compressibility 可压缩性2. –meter 计,表,仪voltmeter 电压表,伏特计photometer 光度计spectrometer 分光仪interferometer 干涉仪3. –fold 加上数词,表示“~倍的”、“~重的”。
半导体一些术语的中英文对照离子注入机ion implanterLSS理论Lindhand Scharff and Schiott theory 又称“林汉德—斯卡夫—斯高特理论".沟道效应channeling effect射程分布range distribution深度分布depth distribution投影射程projected range阻止距离stopping distance阻止本领stopping power标准阻止截面standard stopping cross section 退火annealing激活能activation energy等温退火isothermal annealing激光退火laser annealing应力感生缺陷stress-induced defect择优取向preferred orientation制版工艺mask—making technology图形畸变pattern distortion初缩first minification精缩final minification母版master mask铬版chromium plate干版dry plate乳胶版emulsion plate透明版see—through plate高分辨率版high resolution plate,HRP超微粒干版plate for ultra-microminiaturization 掩模mask掩模对准mask alignment对准精度alignment precision光刻胶photoresist又称“光致抗蚀剂”。
负性光刻胶negative photoresist正性光刻胶positive photoresist无机光刻胶inorganic resist多层光刻胶multilevel resist电子束光刻胶electron beam resistX射线光刻胶X-ray resist刷洗scrubbing甩胶spinning涂胶photoresist coating后烘postbaking光刻photolithographyX射线光刻X-ray lithography电子束光刻electron beam lithography离子束光刻ion beam lithography深紫外光刻deep-UV lithography光刻机mask aligner投影光刻机projection mask aligner曝光exposure接触式曝光法contact exposure method接近式曝光法proximity exposure method光学投影曝光法optical projection exposure method 电子束曝光系统electron beam exposure system分步重复系统step-and—repeat system显影development线宽linewidth去胶stripping of photoresist氧化去胶removing of photoresist by oxidation等离子[体]去胶removing of photoresist by plasma 刻蚀etching干法刻蚀dry etching反应离子刻蚀reactive ion etching, RIE各向同性刻蚀isotropic etching各向异性刻蚀anisotropic etching反应溅射刻蚀reactive sputter etching离子铣ion beam milling又称“离子磨削”。
河南科技Henan Science and Technology电气与信息工程总第818期第24期2023年12月收稿日期:2023-07-05作者简介:胡利(1982—),女,本科,工程师,研究方向:过电压与绝缘配合。
通信作者:任勇(1984—),男,本科,工程师,研究方向:过电压与绝缘配合。
雷电冲击作用下表面污染对微型传感器闪络电压的影响胡利任勇(国网伊犁伊河供电有限责任公司,新疆伊犁835000)摘要:【目的】为了发挥微型传感器作为配电网中的重要监测设备的功能,有必要对污秽条件下微型传感器的闪络特性进行分析。
【方法】以微型传感器绝缘件环氧树脂为研究对象,利用固体层法模拟不同程度污秽,用冲击发生器产生雷电波,并进行了500多次雷电冲击试验。
【结果】得到不同盐密(ρESDD )、灰密(ρNSDD )与雷电冲击闪络电压的关系,结果表明,ρESDD 和ρNSDD 均会对雷电冲击电压产生影响,即雷电冲击闪络电压会随二者的增加而降低。
【结论】灰密的闪络电压分布和清洁条件下的分散度基本一致,盐密的闪络电压分散性显著增大。
盐密和灰密的影响特征指数分别为0.17、0.12,即盐密的影响特征指数大于灰密。
关键词:微型传感器;污秽条件;绝缘特性;雷电冲击中图分类号:TM216文献标志码:A文章编号:1003-5168(2023)24-0004-04DOI :10.19968/ki.hnkj.1003-5168.2023.24.001Effect of Surface Contamination on Flashover Voltage of Micro-SensorUnder Lightning ImpulseHU Li REN Yong(State Grid Yili Yihe Power Supply Co.,Ltd.,Yili 835000,China)Abstract:[Purposes ]In order to give full play to the function of micro sensors as an important monitor⁃ing equipment in the distribution network,it is necessary to analyze the flashover characteristics ofmicro-sensors under polluted conditions.[Methods ]Taking the epoxy resin of micro-sensor insulationas the research object,the solid layer method was used to simulate different degrees of contamination,and the lightning wave was generated by the impact generator,and more than 500lightning impulse tests were carried out.[Findings ]The relationship between different salt density (ρESDD ),gray density (ρNSDD )and lightning impulse flashover voltage was obtained.The results show that both ρESDD and ρNSDD will affect the lightning impulse voltage,which means that the lightning impulse flashover voltage will decrease with the increase of the two.[Conclusions ]The distribution of flashover voltage in gray density was basi⁃cally consistent with the dispersion under clean conditions,and the dispersion of flashover voltage in salt density increased significantly.The influence characteristic indexes of salt density and gray density are 0.17and 0.12,respectively,meaning that the influence characteristic index of salt density is greater than that of gray density.Keywords:micro sensors;pollution condition;insulation characteristics;lightning impulse0引言近年来,随着输配电网络覆盖范围越来越广,对电网安全要求也越来越高,建立全景智能感知的配电网络成为数字电网发展的必然要求[1]。
A 安培ampere磁性灭弧 magnetic blowout磁滞消耗 hysteresis loss安装,固定 mount大略的 rough安装 install淬火,熄 quenching按键开关 key switch D大坝,水坝damB 把变换为convert into大功率容量 bulk-power百分比 percentage大概上 substantially摇动 swing大概的 approximately半导体 semiconductor带电 energize磅,平方英寸 psi带电导体 live conductor保险丝,熔断器 fuse弹簧 spring爆炸 explosion挡板 barrier备用,备份 back-up导电率 c onductivity备用 standby等面积 equal-area泵,泵入 pump等效电路 equivalent circuit比值比率 ratio低熔点 low-melting-point避雷 lightning shielding低位差 low head避雷器 lightning arrester抵消作用 cancellation effect编组的 marshalling底座 footing变电站 substation地线 ground wire更改 modification典型的 typical变换变换 convert电磁力 electromagnetic变压器 transformer电功率 electric power变压器油箱 tank电弧 are变质老化,变坏 deterioration电解 electrolysis标称电压 nominal voltage电抗 capacitance标么值 per unit system电抗 reactance冰雪 sleet电缆管,输水管 raceway并联赔偿 shunt compensation电离,游离 ionization不带电的 deenergized电离 ionize不行接受的 unacceptable电离反响 ionizing effect不行预示的 unpredictable电力系统 power system不足的 insufficient电流 current部署 layout电流表 ammeter部署安装 arrangement电流互感器 current transformer 步骤举措 procedure电能 electric energy部分 component电势 potentialC参照坐标reference frame电压表 voltmeter电压不足 undervoltage槽 slot电压互感器 potential transformer 测定 determine电压应力 voltage stress插座 receptacle电源 power source差分保护 differential protection电晕 corona高出 exceed电阻 resistance连续不停的 sustained电阻率 resistivity尺寸,方面 dimension定子 stator冲击 shock动触头 moving contact冲击式水轮机 impulse turbine动能 kinetic energy臭氧 ozone动向模型 dynamic model除尘器 precipitator短连续时间 short-duration触电死亡 electrocute短路 short circuit传导电流 conduction current断开 break up传动轴,轴 shaft断路器 breaker传输 delivery断路器件 circuit breaker传输电平 transmission level断续器 interrupter串连赔偿 series compensation聚积云 cumulus clouds串连绕组 series winding对称的,均匀的 symmetrical瓷绝缘子 porcelain insulator对流 convection磁场 field E额定功率rating磁场 magnetic field磁芯,死心 core二次绕组 secondary windingF 发电机generator阀valve反响堆 reactor非峰期 off-peak废气 exhaust分段 section分接 tap分解 decomposition分别的 parting峰荷 peak-load伏特 volt幅值 ,量值,振幅magnitude 辐射状的radial辐射状系统radial system辐条型的spoked协助的 auxiliary负荷密度load density负载 load附着物 attachment复杂的 complicatedG感抗inductance扰乱,阻碍interference高度海拔elevation高幅值的high-magnitude高位差 high head隔走开关disconnect switch 给馈电feed更新 update公用绕组common winding功率均衡power balance构件组件member估量 rate故障 fault封闭,断开switch out惯性 inertia惯性矩 moment of inertia光电效应photovoltaic effect 锅炉 boiler过热器 superheaterH行波traveling-wave核反响堆nuclear reactor核燃料 fissionable material恒定的 constant横臂 cross-arm互联 interconnection户外的 open-air环网系统loop system黄铜 brass火花放电隙spark gap火线 lineJ 击穿breaking down击穿 strike机械功率mechanical power 机械力 mechanical force基本负荷base-loading激发 initiate级联,串列连结tandem极,电极pole 极大地,强烈的intense极性 polarity极性变换reversal几分之一 a fraction of技术要求specification继电器 relay加长 lengthen架空电缆overhead cable尖部,端部,小费tip间隔,距离interval空隙 clearance监督监督仪monitor减少 a lleviate成立 establish沟通发电机alternator焦化 charring角动量 angular momentum角速度 angular velocity绞合的 stranded接触 contact节俭的 sparingly联合混淆combine截面 cross section介电强度dielectric strength介电系数k-factor介质 agent金属涟漪管metal bellows金属的 metallic紧迫状况emergency静触头 stationary contact静电的 electrostatic局部 in local regions局部过热local overheating巨大的 enormous聚乙烯 polyethylene绝缘 insulation绝缘带 tape绝缘漆 insulating varnish绝缘体 , 绝缘的 dielectric绝缘子 insulator绝缘子串insulatorstringK 开关设施switchgear开路 open-circuit抗拉张的tensile靠谱性 reliability可裂变的fissionable缝隙 voidL 雷电lightning雷击 lightning stroke离心力 centrifugal force离子偶 ion-pair理想的 desirable力矩 torque励磁电流field current连结的关系的associated联机,联网点on-line双重的 duplicate临界的,极限的critical邻近处 vicinity零序电流zero sequence current此外 in addition漏磁通 leakage flux漏电 creepage炉膛,焚烧室furnace裸导线 bare conductorM埋地电缆underground cable灭弧的 arc-suppressing民用的 residential敏感的 susceptible模拟计算机analog computer磨煤机 mill磨煤机 pulverizer尾端的终端的terminal母联 bus-coupler母线 busbarN内部的internal内电压 internal voltage内燃机 internal combustion engine逆弧,再次点燃电弧reignite凝汽器 c ondenserO欧姆ohmP 排定安排schedule排放 release旁路 bypass旁路位移电流 shunt displacement current 配电盘,开关屏 switchboard配电网 distribution network配电线路distribution circuit喷管 nozzle喷溅喷洒spray频闪仪 stroboscope平方 square均衡状态equilibrium state均匀负荷average load损坏性要素destructive agency破碎 ruptureQ启动initiation启动装置trigger起反响,起反作用react起作用 function气泡 bubble汽包炉筒drum汽轮发电机turbine-generator汽轮机 steam-driven turbine牵线式的guyed切断 deenergizes切换 transfer氢hydrogen消除 clear去离子效应deionizing effect去能 deenergizeR焚烧combustion扰动 disturbance绕组 winding热互换器heat exchanger热效率 thermal efficiency 人工的手动的manually日负荷曲线daily load-demand curve软导线 cord软延伸线extension cordsS 三相电three-phase三相沟通电流three phase alternating current 删除 eliminate闪光,生气花flash闪络 ,飞弧flashover设施 appliance设施 facility设施外壳enclosure射流 jet辨别,辨识distinction使成环 loop使共振,谐振resonate表示图,方式scheme表示图 schematic diagram事故电路removal of fault合用的 adaptable室,腔 chamber开释,松开断开 ,trip输出的 outgoing输电线 transmission line竖向的,垂直的vertical衰减振荡响应damped oscillatory response 水电厂 hydroelectric power plant水斗式水轮机pelton wheel水库 reservoir水龙头 kitchen faucet水轮机 hydraulic turbine瞬时的 momentarily刹时额定值momentary rating刹时功率instantaneous power瞬态稳固度transient stability伺服机构,追踪装置servomechanism随时刹时from minute to minute所规定的prescribedT 炭化char套管 bushing特色,特色feature特色特征characteristic代替代替supersede调动员 dispatcher调动 transpose调理器 regulator铁壳的 metal-clad停断 cease停电 outage通风 ventilation通风管 stack通路 corridor同步 synchronism同步转速synchronous speed同时的 simultaneous铜损 copper loss凸极式转子salient pole rotor图,简图diagram图讲解明illustrate退火 annealingW曲折flex完整的 radically网孔 mesh网络系统network system危害 damage危险 hazard微秒 microsecond维修检修maintenance尾沟渠 tail race稳固的 stable稳态条件steady-state condition涡流 eddy current涡流消耗eddy current loss涡轮机 turbine蜗壳 spiral casing污染 contaminate没法使用的inoperative无功功率表varmeter不论何种原由for any reason无刷励磁brushless excitation无损失 lossless无穷长母线infinite busX 熄灭extinguish显示测定sense现象 phenomena线圈 coil线性的 linearly相角 phase angle相量 phasor相邻的 adjacent向中心,向内inward谐波的 harmonic泄漏 spilling星形连结wye-connected星型轮 spider悬挂 suspension旋转转动rotationY 烟囱chimney阳极塔 positive遥控 remote control叶片 blade一次绕组primary winding一捆 bundle一匝线圈turn已电离的ionized以速度at r ate以热离子形式thermionically异样的,不规则的 a bnormal易熔的 fusible阴极辉点cathode spot引入的 incoming引入线箱service(entrance) box应用,使用application永远的 permanent用电设施utilization equipment油浸纸介质oil-impregnated paper 有功功率表wattmeter有益的 advantageous有气空的porous 有时 on occasion余量 excess与同相位in phase with预示到 anticipate原动机 prime云母 micaZ 匝数比turns ratio再热器 reheater在某些状况下in some cases临时的 temporary真空 vacuum振荡 oscillation蒸发,气化evaporate蒸馏 extract正极阳极anode正弦波 sinusoid正弦的 sinusoidal正弦稳态sinusoidal steady state支撑构造supporting structure直径 diameter直流沟通回路dc/ac circuit值得考虑的相当大的considerable 值守值班station滞后 lag置入,嵌入embed中间的 intermediate中性点 ,中性线neutral重合闸 reclosing重要的主要的significant四周 periphery轴axis转而。
20I6 International Conference on Condition Monitoring and Diagnosis -Xi'an -ChinaImpulse and DC surface flashover ofLDPE/Ti02nanocomposites in VacuumWeiwang Wang', Shengtao Li, Yongjie Nie and Lu ChengState Key Laboratory of Electrical Insulation and Power Equipment,Xi'an Jiaotong University,Xi'an 710049, China• weiwwang@Abstract-This paper focuses on the impulse and DC surface flashover performance of LDPE/Ti02 nanocomposites, which is beneficial to the improvement of electric discharge in power equipment. The results point out that both impulse and DC surface flashover voltages initially increase and then decrease with the increase of nanoparticle loading (DC flashover voltage is higher than that of impulse). Samples with slight nanoparticles present higher flashovervoltages. Moreover, the permittivity exhibits an opposite variation with respect to surface flashover voltage. Slight nanoparticles reduce the relative permittivity, which is responsible for the high flashover voltage by suppressing the electric field distortion near cathode-sam p ie-vacuum triple point. In addition, the surface conductivity significantly decreases in 0.5 wt% and 1 wt% sample, which is beneficial for the reduction of surface charge, causing a high flashover voltage. DC surface flashoverprobably depends on the surface layer characteristics (polarization and trapping/detrapping), while impulse surface flashover is mainly dominated by the secondary electron emission characteristics.Keywords-suiface fl ashover; impulse; DC; nanocompositesI. INTRODUCTIONSurface flashover is the electrical breakdown occurring along the surface of a solid ually it occurs at a gassolid interface, particularly at reduced pressure[1-4]. Considerable work has been done to improve the vacuum surface flashover properties of the insulating materials. Conventionally three different kinds of ways are employed. Firstly, insulator geometry was changed to increase the flashover voltage. Thus it was found that the maximum flashover voltage occurs at an insulator angle (half-angle acrossconical insulators) around 45°[5], and multilayeredinsulation with permittivity and conductivity gradients was used to increase the flashover voltage[6].Secondly, surface treatments were employed to improve the flashover performance, such as roughening of the insulator surface, especially near the cathode, surface coating, spark discharge and chemical etching [7, 8]. Thirdly, an external magnetic field may greatly influence surface flashover. The most successful approach seems to be the application of a magnetic field oriented parallel to the insulator surface and perpendicular to the electric field [9].It has been suggested that some of the physical characteristics of the dielectric material can influence its surface flashover, e.g., permittivity and homogeneity[1O]. Some authors reported that addition of microfillers can modify the material characteristics, causing increased resistance to flashover[lI, I2].However, such doping usually degrades other electrical properties, e.g., bulk breakdown and conductivity.Recently, nanodielectric materials have attracted considerable interest, since they exhibit not only excellent insulation properties, e.g., high breakdown strength, reduced space charge accumulation, high partial discharge resistivity and reduction of electrical aging [13], but also improved surface flashover performance [13]. The results suggested that incorporation of nanoparticles or a combination of nano-and microparticles increased the surface flashover voltage of polymers.This work mainly reports vacuum impulse and DC surface flashover properties of LDPE/Ti02 nanocomposites, and tries to clarify the flashover improvement by nanofillers. It is interesting that the impulse and DC flashover voltages can be enhanced by slight nanofillers, and they depend on the material characteristics modified by nanofillers, such as permittivity and surface conductivity. The surface images after impulse and DC flashovers indicate different mechanisms exist between impulse and DC flashover. The latter is closely related to the surface polarization and detrapping.A. SamplesII. SAMPLE AND EXPERIMENTSThe Ti02nanoparticles were firstly surface treated by a coupling agent [3-propyl methylerichlorosilane (KH560)]. Next, the Ig dry Ti02nanoparticies were added to 60ml of toluene to form a suspension, and the suspension was ultrasonically stirred until the nanoparticles were well dispersed. Then KH560 with a dosage of 6ml was added to the suspension (at 110°C), and the suspension was ultrasonically dispersed and stirred in nitrogen (N2) for 20h. After that, the suspension was centrifuged and washed 6 times with pure ethanol to completely remove the toluene. Consequently, the treated nanofillers were separated completely by heating the solvent at 70°C for 24 h.The LDPE/Ti02nanocomposites were prepared by melt blending method, and the tested samples were prepared by hot pressing at I35°C[I4].Specimens with nanoTi02particle loadings of 0.1, 0.5, 1,2,5 and 10 % by weight were prepared. Neat LDPE specimens were also prepared as a reference. T he sample thickness is about 0.2 mm.B. ExperimentsImpulse surface flashover was conducted by a JTK-200 vacuum high voltage experimental equipmentand a vacuum system. An IVT-5 Impulse Voltage Generator produce the impulse voltage (l.2/50IlS). The vacuum degree was kept at 5 x1O-3Pa during the experiment. Finger shaped electrodeswere used and the distance between electrodes is 15 nun. The tested produces were described in the previous works [6, 15]. The voltage rising step is 0.6�0.8 kV. Finally, the fIrst flashover voltage (Uj ), the conditioned voltage (Ue) and the hold-off voltage (Uh) were obtained to evaluate the surface flashover perfonnance. This paper mainly usesUc to study the influence of nanofIllers on surface flashover properties. DC surface flashover was described as follows: a 20 MQresistance is series connected in the terminal of high voltage to restrict the large flashover current. Firstl �, the sample was subjected a low voltage (10 kV) for 2?s tWIce to conduct a qusi-predischarge treatment. Then, applymg voltage from low to high value, and the rising step is about 4�5kV. At each step, the voltage was kept for 20�30s. When a flashover occurs at a certain voltage step, this voltage was recorded as Uj . The Ucwas obtained when a continuous 4 flashovers can be observed at a certain voltage step.Figure 1 shows the electric fIeld calculation results of fInger shaped electrode structure. It presents that the elec .tricfIeld was signifIcantly enhanced at the cathode or anode tnple junctions.This will lead to the fIeld emission from triple junctions, which can be regarded as the initiation of surface flashover. The fIeld enhancement factor of triple point wasestimated k=EmaxlEav=3.5 (Ema x and Eav is the maximum electricfIeld and the average electric fIeld, respectively). This electrode structure is easy for observing flashover phenomena and studying the flashover physics, such as electron emission, luminescence, surface charge, and surface plasma.Novocontrol broadband dielectric spectrometer was used to measure the pennittivity of LDPE/Ti02 nanocomposites underroom temperature. The tested frequency ranges from 10-2_106HZ.Before measurement, the sample surface was sputtered by gold. The diameter of the gold electrode is 30 nun.A three-electrode system and 6517 A electrometer were used to measure the surface conductivity of samples. The applied voltage is 1 kV. The diameter of sample is 50 nun and thickness is 0.2nun. At least three samples of each type of nanocomposites were tested.Electric field (Vim)• 3.2295x107 2.51.50.5Fig. 1. Electric field calculation of figner shaped electrodesIII.RESULTS AND DISCUSSIONFigure 2 shows the impulse surface flashover voltage andthe relationship between permittivity and flashover voltage. It shows that the flashover voltage initially increases and then decreases with the increase of nanoparticle loading. The 1 wt% sample presents the highest flashover voltage (24 kV) wh �ch can be increased by 16% compared to that of LDPE. HIgh loading samples (5 wt% and 10 wt%) shows a low flashover voltage, which is still higher than that of LDPE. Moreover, the permittivity (high frequency) presents fIrstly decreases and the increases with the increase of nanoparticle loading. The 0.5 wt% sample presents the minimum value, while the 5 wt% and 10 wt% samples show a signifIcant increase in permittivity. It can be concluded that the reduction of permittivity corresponds to the enhanced impulse flashover voltage of LDPE/Ti02 nanocomposites.Similarly, the DC surface flashover performance and the pennittivity as a function of nanoparticle loading is shown in Figure 3. The DC flashover voltage variation trend with the nanoparticle loading is same with the impulse flashover voltage. However, the 0.5 wt% sample presents the highest flashover voltage (50 kV), which can be increased by 40% compared to that of LDPE. In addition, the permittivity (low frequency) shows a decrease at 0.5 wt% and then an obvious increase trend at high loadings (> 1 wt%). The change of permittivity can well correspond to the DC surface flashover voltage, which indicates that low permittivity leads to high DC flashover voltage.It can be demonstrated that the decrease of pennittivity can reduce the electric fIeld distortion near triple junction, which restricts the fIeld electron emission. This is more benefIcial to the improvement of impulse surface flashover. On th � ot �er hand, the reduced permittivity can leads to a low polanzatlOn effect in sample layer. This may cause less localized charges (trapped) and polarization energy, resulting in a less energy release or charge detrapping. Consequently, the DC surface flashover voltage increases.Table I shows the surface conductivity of LDPE/Ti02 nanocomposites. It indicates that addition of 0.5 and 1 wt%Fig. 2. Impulse surface flashover and its dependence of permittivity innanocomposites3.470-0-flashover voltage3.2 -�-permittivity at 10·2Hz65 ----�603.0 55 2.850 W452.640 2.4 35 \ /30 2.2252.0200 246 8 10Filler loading (wt%)Fig. 3. DC surface flashover and its dependence of permittivity innanocompositesTi02 nanofillers can significant decrease the surface conductivity (nearly three orders of magnitudes lower than that of LDPE). While, high loading samples (5 wt% and lO wt%) present high surface conductivity. It can be inferred that high surface conductivity can lead to less surface charge accumulation, which can reduce the electric filed concentration on sample surface. This would restrict the secondary electron emission and gas desorption, resulting in a high surface flashover voltage.TABLE T.SURFACE CONDUCTIVITY OF TI02/LDPE NANOCOMPOSITESSampleSurface conductivity (s/cm)LOPE 5.9925xlO·17 Ti02-O.5 wt% 1.5719x I 0,'4 Ti02-1 wt% 2.7061xlO·13 Ti02-5 wt% 5.1297xlO·'6 Ti02-10 wt%4.0683xlO·17The permittivity and surface conductivity can combinetogether to influence the impulse and DC surface flashover performance of LDPE/Ti02 nanocomposites. The fonner plays dominated role in impulse surface flashover, while the latter dominates the DC surface flashover. However, lots of factors affect the surface flashover perfonnance, more studies should be focused besides the permittivity and surface conductivity.It is interesting that the DC surface flashover voltage is higher than that of impulse flashover. They have different properties and processes that can be verified in previous works [3, lO ]. Figure 4 shows surface morphology of I wt% sample after impulse and DC surface flashovers. The results show that the impulse surface flashover has a slight damage to sample surface, while DC surface flashover presents a large damage to sample surface. The surface morphology between electrodes is little changed after several impulse flashovers. Some small erosion traces are observed. However, for DC surface flashover, largeelectric arc erosions are clearly observed on sample surface, and some carbonizationchannels with much carbon and degraded material are fonned.(a)Fig. 4. Surface images of I wt% sample after impulse and DC surfaceflashover (results from polarizing microscope, image boosted 100 times). (a) impulse flashover; (b) DC flashoverFrom these results, we can conclude that the different mechanisms exist between impulse and DC surface flashover. The former is mostly likely a surface breakdown phenomenon, while the latter is closely related to the surface layer characteristics of material. Impact ionization and secondary electron emission are key factors during impulse surface flashover [16]. In this case, the time is very short. Charge trapping and energy accumulation become small, while the electron emission and electron mUltiplication develop very fast. In other words, a relative small energy from applied impulse voltage can lead to a low flashover voltage.As for DC surface flashover, the duration of applied DC voltage is long. In this situation, the charge transport in the surface layer plays an important role in the development of surface flashover. The electron injection from cathode can transport in surface layer, which can be trapped to form a negative space charge accumulation. This can reduce the electric field near triple point and restrict the secondary electron emission. In other hands, the sample surface layer can accumulate large energy through polarization and trapping [17], which is responsible for the energy release under a small disturbance, such as electron impact, ionization, light and temperature, causing a flashover. This process will need high energy from DC applied voltage, resulting in a higher surface flashover voltage than that of impulse flashover voltage.IV. CONCLUSIONThis paper reported the vacuum impulse and DC surface flashover performance of LDPE/Ti02 nanocomposites. The results pointed out that slight nano Ti02 increased both impulse and DC surface flashover voltages, decreased the permittivity and increased the surface conductivity. The low permittivity and high surface conductivity could reduce the electric field distortion and surface charge accumulation, which were beneficial for the flashover properties. Impulse surface flashover is mostly likely a surface breakdown phenomenon, which dominated by impact ionization and secondary electron emission. While, DC surface flashover is closely related to the surface layer characteristics of material, such as polarization and detrapping, causing a higher surface flashover voltage than that of DC flashover voltage.ACKNOWLEDGMENTThis work is supported by the National Natural Science Foundation of China (Grant No. 51337008 and No. 51221005).REFERENCES[I] A. S. Pillai and R. Hackam, "Surface Flashover of Solid Dielectric inVacuum," J. Appl. Phys.,Vol. 53, N o.4, p p. 2983-2987,1982.[2] J. M. Wetzer, "Vacuum insulator flashover mechanisms, d iagnostics anddesign implications," IEEE Trans. Dielectr. Electr. Insul.,Vol. 4, No.4, pp. 349-357, 1997.[3] H. C. Miller, "Flashover of insulators in vacuum: the last twenty years,"Dielectrics and Electrical Insulation, I EEE Transactions on, V ol. 22, N o.6, p p. 3641-3657, 2015.[4] S. T. Li, w. W. Wang, S. H. Yu and J. Y. Li, "Degradation of CrossLinked Polystyrene by Repetitive Impulse Surface Flashovers in Vacuum," IEEE Trans. Dielectr. Electr. Insul.,Vol. 20, N o.5, pp. 1934-1941,2013.[5] C. H. De Tourreil and K. D. Srivastava, "Mechanism of SurfaceCharging of High-Voltage Insulators in Vacuum," IEEE Trans. Electr.Insul.,Vol. EI-8, N o.1, p p. 17-21, 1973. [6] Q. F. Huang, S. T. Li, T. Zhang, F. Y. Ni and J. Y. Li, "Improvement ofSurface Flashover Characteristics about 45 degrees Insulator Configuration in Vacuum by a New Organic Insulation Structure," IEEE Trans. Dielectr. Electr.lnsul.,Vol. 18, N o.6, p p. 2115-2122, 2011.[7] L. L. Hatfield, E. R. Boerwinkle, G. R. Leiker, H. Krompholz, R.Korzekwa, M. Lehr and M. Kristiansen, "Methods of increasing the surface flashover potential in vacuum," IEEE Trans. Electr. Insul.,Vol.24, N o.6, p p. 985-990,1989.[8] O. Yamamoto, T. Hara, T. Nakae, M. Hayashi and I. Ueon, "Effects ofspark conditioning, insulator angle and length on surface flashover in vacuum," IEEE Trans. Electr.lnsul.,Vol. 24, N o.6, p p. 991-994,1989. [9] M. Lehr, R. Korzekwa, H. Krompholz and M. Kristiansen, "Magneticfield effects on vacuum insulator flashover," J. Appl. Phys.,Vol. 71, N o.I, p p. 389-394, 1992.[10] H. C. Miller, "Surface flashover of insulators," IEEE Trans. Electr.Insul.,Vol. 24, N o.5, p p. 765-786, 1989.[11] H. Brettschneider, "Improving the high-voltage quality of aluminainsulators in vacuum by surface doping," IEEE Trans. Electr. Insul.,Vol.23, N o.1, p p. 33-36, 1988.[12] W. B. Zhao, G. J. Zhang, Y. Yang and Z. Yan, "Correlation betweentrapping parameters and surface insulation strength of solid dielectric under pulse voltage in vacuum," IEEE Trans. Dielectr. Electr. Insul.,Vol.14, N o.1, p p. 170-178,2007.[13] S. T. Li, G. L. Yin, G. Chen, J. Y. Li, S. N. Bai, L. S. Zhong, Y. X.Zhang and Q. Q. Lei, "Short-term Breakdown and Long-term Failure in Nanodielectrics: A Review," IEEE Trans. Dielectr. Electr. Insul., V ol. 17, No.5, p p. 1523-1535,2010.[14] S. T. Li, W. W. Wang, S. H. Yu and H. G. Sun, "Influence ofHydrostatic Pressure on Dielectric Properties of Polyethylene/Aluminum Oxide Nanocomposites," IEEE Trans. Dielectr. Electr. Insul.,Vol. 21, No.2, p p. 519-528,2014.[15] W. W. Wang, S. T. Li, F. Tang and J. Y. Li, "Characteristics on surfaceflashover of polyethylene nanocomposites film in vacuum," 2012 IEEE International Conference on Condition Monitoring and Diagnosis (CMD 2012), p p. 1055-1058,2012.[16] K. D. Bergeron, "Theory of the secondary electron avalanche atelectrically stressed insulator vacuum interfaces," J. Appl. Phys., V ol. 48, No.7, p p. 3073-3080,1977.[17] G. Blaise and C. Le Gressus, "Charging and flashover induced bysurface polarization relaxation process," J. Appl. Phys.,Vol. 69, No.9, pp. 6334-6339, 1991.。