当前位置:文档之家› 三角函数的图象与性质练习题及答案

三角函数的图象与性质练习题及答案

三角函数的图象与性质练习题及答案
三角函数的图象与性质练习题及答案

三角函数的图象与性质练习题

一、选择题

1.函数f (x )=sin x cos x 的最小值是

( ) A .-1

B .-12

C.12

D .1

2.如果函数y =3cos(2x +φ)的图象关于点? ??

??

4π3,0中心对称,那么|φ|的最小值为 ( )

A.π6

B.π4

C.π3

D.π2

3.已知函数y =sin πx

3在区间[0,t ]上至少取得2次最大值,则正整数t 的最小值是 ( ) A .6

B .7

C .8

D .9

4.已知在函数f (x )=3sin πx

R

图象上,相邻的一个最大值点与一个最小值点恰好在x 2+y 2=R 2上,则f (x )

的最小正周期为 ( ) A .1

B .2

C .3

D .4

5.已知a 是实数,则函数f (x )=1+a sin ax 的图象不可能是 `( D )

6.给出下列命题:

①函数y =cos ? ????

23x +π2是奇函数; ②存在实数α,使得sin α+cos α=32;

③若α、β是第一象限角且α<β,则tan α

?

???2x +5π4的一条对称轴方程;

⑤函数y =sin ? ????2x +π3的图象关于点? ????

π12,0成中心对称图形.

其中正确的序号为

( )

A .①③

B .②④

C .①④

D .④⑤

7.将函数y =sin 2x 的图象向左平移π

4

个单位,再向上平移1个单位,所得图象的函数解析式是 ( )A .y

π4) D.y=cos 2x

=2cos2x B.y=2sin2x C.y=1+sin(2x+

8.将函数y =sin ? ?

???2x +π4的图象上各点的纵坐标不变,横坐标伸长到原来的2倍,再向右平移π4个单位,所

得到的图象解析式是 ( )

A .f (x )=sin x

B .f (x )=cos x

C .f (x )=sin 4x

D .f (x )=cos 4x

9.若函数y =A sin(ωx +φ)+m 的最大值为4,最小值为0,最小正周期为π2,直线x =π

3是其图象的一条对称

轴,则它的解析式是 ( ) A .y =4sin ?

?

???4x +π6

B .y =2sin ? ?

???2x +π3+2

C .y =2sin ?

?

???4x +π3+2

D .y =2sin ?

?

???4x +π6+2

10.若将函数y =tan ? ????ωx +π4(ω>0)的图象向右平移π6个单位长度后,与函数y =tan ? ????ωx +π6的图象重合,则ω的最小值为 ( ) A.1

6

B.14

C.13

D.12

11.电流强度I(安)随时间t(秒)变化的函数 I=Asin(ωt+φ)(A>0,ω>0,0<φ<2

π

)的图象如右图所示, 则当t=

100

1

秒时,电流强度是

( )

A .-5安

B .5安

C .53安

D .10安

12.已知函数f (x )=sin(ωx +π

4)(x ∈R ,ω>0)的最小正周期为π,为了得到函数g (x )=cos ωx 的图象,只要将y

=f (x )的图象

( )

A .向左平移π8个单位长度

B .向右平移π

8个单位长度

C .向左平移π4个单位长度

D .向右平移π

4个单位长度

二、填空题(每小题6分,共18分)

13.函数y =12sin ? ??

??

π4-23x 的单调递增区间为______________.

14.已知f (x )=sin ? ????ωx +π3 (ω>0),f ? ????π6=f ? ????π3,且f (x )在区间? ??

??

π6,π3上有最小值,无最大值,则ω=________.

15.关于函数f (x )=4sin ? ????2x +π3(x ∈R ),有下列命题:

①由f (x 1)=f (x 2)=0可得x 1-x 2必是π的整数倍; ②y =f (x )的表达式可改写为y =4cos ?

?

???2x -π6;

③y =f (x )的图象关于点? ??

??

-π6,0对称;

④y =f (x )的图象关于直线x =-π

6

对称.

其中正确的命题的序号是________.(把你认为正确的命题序号都填上)

16.若动直线x =a 与函数f (x )=sin x 和g (x )=cos x 的图象分别交于M 、N 两点,则|MN |的最大值为________. 三、解答题(共40分)

17.设函数f (x )=sin ()2x +φ (-π<φ<0),y =f (x )图象的一条对称轴是直线x =π

8.

(1)求φ; (2)求函数y =f (x )的单调增区间.

18.已知函数f (x )=2cos 2ωx +2sin ωx cos ωx +1 (x ∈R ,ω>0)的最小正周期是π

2

.

(1)求ω的值; (2)求函数f (x )的最大值,并且求使f (x )取得最大值的x 的集合.

19.设函数f (x )=cos ωx (3sin ωx +cos ωx ),其中0<ω<2. (1)若f (x )的周期为π,求当-π6≤x ≤π

3时f (x )的值域;

(2)若函数f (x )的图象的一条对称轴为x =π

3,求ω的值.

20.已知函数f(x)=Asin(ωx+φ)+ b (ω>0,|φ|<

2

π

)的图象的一部分如图所示: (1)求f(x)的表达式; (2)试写出f(x)的对称轴方程.

21.函数y =A sin(ωx +φ) (A >0,ω>0,|φ|<π

2

)的一段图象如图所示.

(1)求函数y =f (x )的解析式;

(2)将函数y =f (x )的图象向右平移π

4个单位,得到y =g (x )的图象,求直线y =6与函数y =f (x )+g (x )的图象

在(0,π)内所有交点的坐标.

22.已知函数f (x )=A sin(ωx +φ) (A >0,ω>0,|φ|<π

2

,x ∈R )的图象的一部分如图所示.

(1)求函数f (x )的解析式;

(2)当x ∈?

??

???-6,-23时,求函数y =f (x )+f (x +2)的最大值与最小值及相应的x 的值.

三角函数的图象与性质练习题及答案

一、选择题

1.函数f (x )=sin x cos x 的最小值是

( B ) A .-1

B .-12

C.12

D .1

2.如果函数y =3cos(2x +φ)的图象关于点? ??

??

4π3,0中心对称,那么|φ|的最小值为 ( A )

A.π6

B.π4

C.π3

D.π2

3.已知函数y =sin πx

3在区间[0,t ]上至少取得2次最大值,则正整数t 的最小值是 ( C )

A .6

B .7

C .8

D .9

4.已知在函数f (x )=3sin πx

R

图象上,相邻的一个最大值点与一个最小值点恰好在x 2+y 2=R 2上,则f (x )

的最小正周期为 ( D ) A .1

B .2

C .3

D .4

5.已知a 是实数,则函数f (x )=1+a sin ax 的图象不可能是 `( D )

6.给出下列命题:

①函数y =cos ? ????

23x +π2是奇函数; ②存在实数α,使得sin α+cos α=32;

③若α、β是第一象限角且α<β,则tan α

?

???2x +5π4的一条对称轴方程;

⑤函数y =sin ? ????2x +π3的图象关于点? ????

π12,0成中心对称图形.

其中正确的序号为

( C )

A .①③

B .②④

C .①④

D .④⑤

7.将函数y =sin 2x 的图象向左平移π

4个单位,再向上平移1个单位,所得图象的函数解析式是 ( A )

A .y =2cos 2

x

B .y =2sin 2

x C .y =1+sin(2x +π

4

)

D .y =cos 2x

8.将函数y =sin ? ????2x +π4的图象上各点的纵坐标不变,横坐标伸长到原来的2倍,再向右平移π4个单位,所

得到的图象解析式是 ( A )

A .f (x )=sin x

B .f (x )=cos x

C .f (x )=sin 4x

D .f (x )=cos 4x

9.若函数y =A sin(ωx +φ)+m 的最大值为4,最小值为0,最小正周期为π2,直线x =π

3是其图象的一条对称

轴,则它的解析式是 ( D ) A .y =4sin ?

?

???4x +π6

B .y =2sin ? ?

???2x +π3+2

C .y =2sin ?

?

???4x +π3+2

D .y =2sin ?

?

???4x +π6+2

10.若将函数y =tan ? ????ωx +π4(ω>0)的图象向右平移π6个单位长度后,与函数y =tan ? ?

???ωx +π6的图象重合,则ω

的最小值为 ( D ) A.1

6

B.14

C.13

D.12

11.电流强度I(安)随时间t(秒)变化的函数

I=Asin(ωt+φ)(A>0,ω>0,0<φ<2

π

)的图象如右图所示, 则当t=

100

1

秒时,电流强度是

( A )

A .-5安

B .5安

C .53安

D .10安

12.已知函数f (x )=sin(ωx +π

4)(x ∈R ,ω>0)的最小正周期为π,为了得到函数g (x )=cos ωx 的图象,只要将y

=f (x )的图象

( A )

A .向左平移π8个单位长度

B .向右平移π

8个单位长度

C .向左平移π4个单位长度

D .向右平移π

4个单位长度

二、填空题(每小题6分,共18分)

13.函数y =12sin ? ????π4-23x 的单调递增区间为______________.????

??

98π+3k π,21π8+3k π (k ∈Z )

14.已知f (x )=sin ? ????ωx +π3 (ω>0),f ? ????π6=f ? ????π3,且f (x )在区间? ??

??

π6,π3上有最小值,无最大值,则ω=________.

3

14

15.关于函数f (x )=4sin ? ?

???2x +π3(x ∈R ),有下列命题:

①由f (x 1)=f (x 2)=0可得x 1-x 2必是π的整数倍; ②y =f (x )的表达式可改写为y =4cos ?

?

???2x -π6;

③y =f (x )的图象关于点? ??

??

-π6,0对称;

④y =f (x )的图象关于直线x =-π

6

对称.

其中正确的命题的序号是________.(把你认为正确的命题序号都填上) ②③

16.若动直线x =a 与函数f (x )=sin x 和g (x )=cos x 的图象分别交于M 、N 两点,则|MN |的最大值为________. 2

三、解答题(共40分)

17.设函数f (x )=sin ()2x +φ (-π<φ<0),y =f (x )图象的一条对称轴是直线x =π

8

.

(1)求φ;(2)求函数y=f(x)的单调增区间.

解 (1)令2×π8+φ=k π+π

2,k ∈Z ,

∴φ=k π+π4,又-π<φ<0,则-54

4,

∴k =-1, 则φ=-3π

4

.

(2)由(1)得:f (x )=sin ? ?

???2x -3π4, 令-π2+2k π≤2x -3π4≤π2+2k π,

可解得π8+k π≤x ≤5π

8

+k π,k ∈Z ,

因此y =f (x )的单调增区间为????

??

π8+k π,5π8+k π,k ∈Z .

18.已知函数f (x )=2cos 2ωx +2sin ωx cos ωx +1 (x ∈R ,ω>0)的最小正周期是π

2

.

(1)求ω的值; (2)求函数f (x )的最大值,并且求使f (x )取得最大值的x 的集合. 解 (1)f (x )=21+cos 2ωx

2

+sin 2ωx +1=sin 2ωx +cos 2ωx +2

=2? ????sin 2ωx cos π4+cos 2ωx sin π4+2 =2sin ? ?

???2ωx +π4+2.

由题设,函数f (x )的最小正周期是π2,可得2π2ω=π

2, 所以ω=2.

(2)由(1)知,f (x )=2sin ? ?

???4x +π4+2.

当4x +π4=π2+2k π,即x =π16+k π

2

(k ∈Z )时,

sin ?

?

???4x +π4取得最大值1,所以函数f (x )的最大值是2+2,

此时x 的集合为??????

???

?x |x =π16+k π2,k ∈Z .

19.设函数f (x )=cos ωx (3sin ωx +cos ωx ),其中0<ω<2. (1)若f (x )的周期为π,求当-π6≤x ≤π

3时f (x )的值域;

(2)若函数f (x )的图象的一条对称轴为x =π

3

,求ω的值.

解 f (x )=

32sin 2ωx +12cos 2ωx +12=sin ?

?

???2ωx +π6+12.

(1)因为T =π,所以ω=1. ∴f (x )=sin ?

?

???2x +π6+12,

当-π6≤x ≤π3时,2x +π6∈??????-π6,5π6, 所以f (x )的值域为??????

0,32.

(2)因为f (x )的图象的一条对称轴为x =π3,

所以2ω? ????π3+π

6

=k π+π2(k ∈Z ),

ω=32k +12 (k ∈Z ), 又0<ω<2,所以-13

所以k =0,ω=1

2

.

20.已知函数f(x)=Asin(ωx+φ)+ b (ω>0,|φ|<

2

π

)的图象的一部分如图所示: (1)求f(x)的表达式; (2)试写出f(x)的对称轴方程. 解 (1)由图象可知,函数的最大值M=3,最小值m=-1, 则A=

,12

1

3,22)1(3=-==--b , 又π)6

π3

2(2=-=π

T ,∴2π

π2π2===

T ω,∴f(x)=2sin(2x+φ)+1, 将x=6π,y=3代入上式,得1)3π(=+? ∴π22π

3πk +=+?,k ∈Z , 即φ=

6π+2k π,k ∈Z ,∴φ=6π, ∴f(x)=2sin )6π2(+x +1. (2)由2x+

6π=2π+k π,得x=6π+2

1

k π,k ∈Z , ∴f(x)=2sin )6π2(+

x +1的对称轴方程为 2

1

6π+=x k π,k ∈Z. 21.函数y =A sin(ωx +φ) (A >0,ω>0,|φ|<π

2

)的一段图象如图所示.

(1)求函数y =f (x )的解析式;

(2)将函数y =f (x )的图象向右平移π

4

个单位,得到y =g (x )的图象,求直线y =6与函数y =f (x )+g (x )的图象

在(0

,π)内所有交点的坐标.

解 (1)由题图知A =2,T =π,于是ω=2π

T

=2,

将y =2sin 2x 的图象向左平移π

12个单位长度,得y =2sin(2x +φ)的图象.

于是φ=2×π12=π6, ∴f (x )=2sin ? ?

???2x +π6.

(2)依题意得g (x )=2sin ??????2? ????x -π4+π6=-2cos ? ?

???2x +π6.

故y =f (x )+g (x )=2sin ? ????2x +π6-2cos ? ????2x +π6 =22sin ? ?

???2x -π12.

由22sin ? ????2x -π12=6,得sin ?

?

???2x -π12=32.

∵0

3,

∴x =524π或x =38π, ∴所求交点坐标为? ????5π24,6或? ??

??

3π8,6.

22.已知函数f (x )=A sin(ωx +φ) (A >0,ω>0,|φ|<π

2

,x ∈R )的图象的一部分如图所示.

(1)求函数f (x )的解析式;

(2)当x ∈???

???-6,-23时,求函数y =f (x )+f (x +2)的最大值与最小值及相应的x 的值.

解 (1)由图象知A =2,T =8, ∵T =2πω=8,∴ω=π

4.

又图象过点(-1,0),∴2sin ? ??

??

-π4+φ=0. ∵|φ|<π2,∴φ=π4.

∴f (x )=2sin ? ??

??

π4x +π4.

(2)y =f (x )+f (x +2)=2sin ? ????π4x +π4+2sin ? ????π4x +π2+π4=22sin ? ??

??

π4x +π2=22cos π4x .

高中数学三角函数的图象与性质题型归纳总结

三角函数的图象与性质题型归纳总结 题型归纳及思路提示 题型1 已知函数解析式确定函数性质 【思路提示】一般所给函数为y =A sin(ω x +φ)或y =A cos(ω x +φ),A>0,ω>0,要根据 y =sin x ,y =cos x 的整体性质求解。 一、函数的奇偶性 例1 f (x )=sin ()x ?+(0≤?<π)是R 上的偶函数,则?等于( ) A.0 B . 4π C .2 π D .π 【评注】由sin y x =是奇函数,cos y x =是偶函数可拓展得到关于三角函数奇偶性的重要结论:sin()(); y A x k k Z ??π=+=∈(1)若是奇函数,则 sin()+ (); 2 y A x k k Z π ??π=+=∈(2)若是偶函数,则 cos()(); 2 y A x k k Z π ??π=+=+ ∈(3)若是奇函数,则 cos()(); y A x k k Z ??π=+=∈(4)若是偶函数,则 tan()().2k y A x k Z π ??=+= ∈(5)若是奇函数,则 .()sin ||a R f x x a a ∈=-变式1已知,函数为奇函数,则等于( ) A.0 B .1 C .1- D .1 ± 2.0()cos()()R f x x x R ???∈==+∈变式设,则“”是“为偶函数”的( ) A 充分不必要条件 B .必要不充分条 C .充要条件 D .无关条件 3.()sin()0()f x x f x ω?ω=+>变式设,其中,则是偶函数的充要条件是( ) A.(0)1f = B .(0)0f = C .'(0)1f = D .'(0)0 f = 2.()sin(2)()()2f x x x R f x π =-∈例设,则是( ) A.π最小正周期为的奇函数 B .π最小正周期为的偶函数 C .2π 最小正周期为 的奇函数 D .2π 最小正周期为的偶函数 2()sin 1()()f x x x R f x =-∈变式1.若,则是( ) A.π最小正周期为的奇函数 B .π最小正周期为的偶函数 C .π最小正周期为2的奇函数 D .π最小正周期为2的偶函数

知识讲解_三角函数的图象和性质_基础

正弦、余弦的图象和性质 编稿:李霞 审稿:孙永钊 【考纲要求】 1、会用“五点法”画出正弦函数、余弦函数的简图;熟悉基本三角函数的图象、定义域、值域、奇偶性、单调性及其最值;理解周期函数和最小正周期的意义. 2、理解正弦函数、余弦函数在区间[0,2]π的性质(如单调性、最大和最小值、与x 轴交点等),理解正切函数在区间(,)22 ππ -的单调性. 【知识网络】 【考点梳理】 考点一、“五点法”作图 在确定正弦函数sin y x =在[0,2]π上的图象形状时,最其关键作用的五个点是(0,0),( ,1)2 π , (,0)π,3( ,-1)2 π ,(2,0)π 考点二、三角函数的图象和性质 名称 sin y x = cos y x = tan y x = 定义域 x R ∈ x R ∈ {|,} 2 x x k k Z π π≠+ ∈ 值 域 [1,1]- [1,1]- (,)-∞+∞ 图象 奇偶性 奇函数 偶函数 奇函数 单调增区间: 单调增区间: 单调增区间: 应用 三角函数的图象与性质 正弦函数的图象与性质 余弦函数的 图象与性质 正切函数的 图象与性质

要点诠释: ①三角函数性质包括定义域、值域、奇偶性、单调性、周期性、最大值和最小值、对称性等,要结合图象记忆性质,反过来,再利用性质巩固图象.三角函数的性质的讨论仍要遵循定义域优先的原则,研究函数的奇偶性、单调性及周期性都要考虑函数的定义域. ②研究三角函数的图象和性质,应重视从数和形两个角度认识,注意用数形结合的思想方法去分析问题、解决问题. 考点三、周期 一般地,对于函数()f x ,如果存在一个不为0的常数T ,使得当x 取定义域内的每一个值时,都有 (+)=()f x T f x ,那么函数()f x 就叫做周期函数,非零常数T 叫做这个函数的周期,把所有周期中存在的 最小正数,叫做最小正周期(函数的周期一般指最小正周期). 要点诠释: 应掌握一些简单函数的周期: ①函数sin()y A x ω?=+或cos()y A x ω?=+的周期2T π ω = ; ②函数tan()y A x ω?=+的周期T πω = ; ③函数sin y x =的周期=T π;

三角函数的图象与性质

三角函数的图象与性质 1.(2020·全国Ⅰ卷)设函数f (x )=cos ? ? ???ωx +π6在[-π,π]的图象大致如图,则f (x )的 最小正周期为( ) A.10π 9 B.7π6 C.4π3 D.3π2 解析 由图象知π

解析 T =2π 1=2π,故①正确. 当x +π3=π2+2k π(k ∈Z ),即x =π 6+2k π(k ∈Z )时,f (x )取得最大值,故②错误. y =sin x 的图象 y =sin ? ?? ?? x +π3的图象,故③正确.故选B. 答案 B 3.(2019·全国Ⅱ卷)下列函数中,以π2为周期且在区间? ???? π4,π2单调递增的是( ) A.f (x )=|cos 2x | B.f (x )=|sin 2x | C.f (x )=cos|x | D.f (x )=sin|x | 解析 易知A ,B 项中函数的最小正周期为π 2;C 中f (x )=cos|x |=cos x 的周期为2π,D 中f (x )=sin|x |=?????sin x ,x ≥0, -sin x ,x <0,由正弦函数图象知,在x ≥0和x <0时,f (x ) 均以2π为周期,但在整个定义域上f (x )不是周期函数,排除C ,D. 又当x ∈? ????π4,π2时,2x ∈? ?? ?? π2,π, 则y =|cos 2x |=-cos 2x 是增函数,y =|sin 2x |=sin 2x 是减函数,因此A 项正确,B 项错误. 答案 A 4.(2020·江苏卷)将函数y =3sin ? ? ???2x +π4的图象向右平移π6个单位长度,则平移后的 图象中与y 轴最近的对称轴的方程是________. 解析 将函数y =3sin ? ? ???2x +π4的图象向右平移π6个单位长度,所得图象的函数解析式为y =3sin ?????? 2? ????x -π6+π4=3sin ? ????2x -π12.令2x -π12=k π+π2,k ∈Z ,得对称轴的方程为x =k π2+7π24,k ∈Z ,分析知当k =-1时,对称轴为直线x =-5π 24,与y 轴最近. 答案 x =-5π 24 5.(2020·北京卷)若函数f (x )=sin(x +φ)+cos x 的最大值为2,则常数φ的一个取值

三角函数的图象与性质

三角函数的图象与性质 ——正弦函数、余弦函数的性质 【教学目标】 1.理解正、余弦函数的定义域、值域、最值、周期性、奇偶性的意义; 2.会求简单函数的定义域、值域、最小正周期和单调区间; 3.掌握正弦函数的周期及求法。(n )si y A x ω?=+ 【教学重点】 正、余弦函数的性质。 【教学难点】 正、余弦函数性质的理解与应用。 【教学过程】 一、讲解新课: (1)定义域: 正弦函数、余弦函数的定义域都是实数集[或], R (,)-∞+∞分别记作: sin y x x ∈R =,cos ,y x x =∈R (2)值域 ,1sin 1x ≤≤--1cos 1 x ≤≤也就是说,正弦函数、余弦函数的值域都是。[ ]-1,1其中正弦函数,sin y x =x ∈R (1)当且仅当,时,取得最大值1。 x 2k 2π π=+k ∈Z (2)当且仅当,时,取得最小值。 x 2k 2π π=+k ∈Z 1-

而余弦函数,cos y x =x ∈R 当且仅当,时,取得最大值1,时,取得最小值。 2x k π=k ∈Z (21)x k π=+k ∈Z 1-(3)周期性 由,()知: sin(2)sin x k x π+=cos(2)cos x k x π+=k ∈Z 正弦函数值、余弦函数值是按照一定规律不断重复地取得的。 一般地,对于函数,如果存在一个非零常数,使得当取定义域内的每一个值()f x T x 时,都有,那么函数f(x)就叫做周期函数,非零常数叫做这个函数的周()()f x T f x +=T 期。 由此可知,,,…,,,…(且)都是这两个函数的周期。2π4π2π-4π-2k πk ∈Z 0k ≠对于一个周期函数 ,如果在它所有的周期中存在一个最小的正数,那么这个最小正()f x 数就叫做 的最小正周期。()f x 注意: 1.周期函数定义域,则必有,且若则定义域无上界;则定义域x ∈M x T M +∈0T >0T <无下界; 2.“每一个值”只要有一个反例,则就不为周期函数(如) ()f x ()()001f x t f x +3.往往是多值的(如,,,…,,,…都是周期)周期中最T sin y x =2π4π2π-4π-T 小的正数叫做的最小正周期(有些周期函数没有最小正周期) ()f x 根据上述定义,可知:正弦函数、余弦函数都是周期函数,(且)都是它的2k πk ∈Z 0k ≠周期,最小正周期是2π (4)奇偶性 由sin()sin x x -=-可知:为奇函数 ()cos x cosx -=sin y x =为偶函数 cos y x =∴正弦曲线关于原点O 对称,余弦曲线关于y 轴对称

三角函数及解三角形测试题(含答案)-精品.pdf

三角函数及解三角形 一、选择题:1.设 是锐角 ,223) 4 tan( ,则cos () A. 22 B. 32 C. 33 D. 63 2.一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看 见一灯塔在船的南偏西60°,另一灯塔在船的南偏西 75°,则这艘船的速度是每小时 (A ) A .5海里 B .53海里 C .10海里 D .103海里 3.若函数 )0(sin )(x x f 在区间3 , 0上单调递增,在区间 2 , 3上单调递减,则() A .3 B .2 C.32 D. 23 4.已知函数)(),0(cos sin 3) (x f y x x x f 的图象与直线2y 的两个相邻交点的距离等于,则 )(x f 的单调递增区间是 ( ) A. Z k k k ,12 5,12 B. Z k k k ,1211,12 5 C. Z k k k ,6 ,3 D.[Z k k k ,3 2,6 5.圆的半径为 c b a ,,,4为该圆的内接三角形的三边,若 ,216abc 则三角形的面积为( ) A.2 2 B.8 2 C. 2 D. 22 6.已知5 4cos 且 ,,2 则4 tan 等于(C ) A .- 1 7B .-7 C . 17 D .7 7.锐角三角形 ABC 中c b a ,,,分别是三内角C B A ,,的对边设,2A B 则 a b 的取值范围是( D ) A .(﹣2,2) B .(0,2) C .( ,2)D .(,) 8.已知函数y =Asin(ωx+φ)+m(A>0,ω>0)的最大值为4,最小值为0,最小正周期为π2,直线x =π 3是其图象的一条对称轴,则符合条件的函数解析式是(D ) A .y =4sin 4x + π 6 B .y =2sin 2x +π 3 +2 C .y =2sin 4x +π 3 +2 D .y =2sin 4x +π 6 +2

三角函数的图像与性质

三角函数的图像与性质 1.三角函数中的值域及最值问题 a .正弦(余弦、正切)型函数在给定区间上的最值问题 (1)(经典题,5分)函数f (x )=sin ????2x -π4在区间????0,π 2上的最小值为( ) A .-1 B .- 22 C.22 D .0 答案:B 解析:∵x ∈????0,π2,∴-π4≤2x -π4≤3π 4,∴函数f (x )=sin ????2x -π4在区间????0,π2上先增后减.∵f (0)=sin ????-π4=-22, f ????π2=sin ????3π4=2 2, f (0)

三角函数的图像与性质优秀教案

三角函数图像与性质复习 教案目标: 1、掌握五点画图法,会画正余弦、正切函数图象以及相关的三角函数图象及性质。 2、深刻理解函数的定义和正弦、余弦、正切函数的周期性。 重点:五点作图法画正余弦函数图象,及正余弦函数的性质,及一般函数) sin(?ω+=x A y 的图象。 难点:一般函数)sin(?ω+=x A y 的图象与性质。 【教案内容】 1、引入: 有个从未管过自己孩子的统计学家,在一个星期六下午妻子要外出买东西时,勉强答应照看一下4个年幼好动的孩子。当妻子回家时,他交给妻子一张纸条,上写:“擦眼泪11次;系鞋带15次;给每个孩子吹玩具气球各5次,每个气球的平均寿命10秒钟;警告孩子不要横穿马路26次;孩子坚持要穿过马路26次;我还想再过这样的星期六0次。” 2、三角函数知识体系及回忆正余弦函数的概念和周期函数: 正弦函数: 余弦函数: 周期函数: 注意: 最小正周期: 一般函数)sin(?ω+=x A y 中:A 表示 ,ω表示 及频率: ,相位: 。 正切函数: 3、三角函数的图象:

值域:tan ;tan .2 2 22 x x x x x x π π π π < → →+∞>- →-→-∞当且时,当且时, 单调性:对每一个k Z ∈,在开区间(,)22 k k π π ππ- +内,函数单调递增. 对称性:对称中心:( ,0)()2 k k Z π ∈,无对称轴。 五点作图法的步骤: (由诱导公式画出余弦函数的图象) 【例题讲解】

例1 画出下列函数的简图 (1)1sin y x =+[0,2]x π∈(2)cos y x =-[0,2]x π∈ (3)2sin y x =[0,2]x π∈ 例2 (1)方程lg sin x x =解得个数为( ) A. 0 B. 1 C. 2 D. 3 (2)3[, ]22x ππ ∈- 解不等式3 sin 2 x ≥- 4([,])33x ππ∈- 例3已知函数()cos(2)2sin()sin()3 4 4 f x x x x π π π =-+-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程; (Ⅱ)求函数()f x 在区间[,]122 ππ - 上的值域。 例4已知函数()sin(),f x A x x R ω?=+∈(其中0,0,02 A π ω?>><< )的周期为π, 且图象上一个最低点为2( ,2)3 M π -. (Ⅰ)求()f x 的解读式;(Ⅱ)当[0, ]12 x π∈,求()f x 的最值. 例5写出下列函数的单调区间及在此区间的增减性: (1)1tan()26 y x π=-;(2)tan(2)4y x π =-. 【过手练习】 1、函数sin(2)3 y x π =+ 图像的对称轴方程可能是() A .6x π =- B .12 x π =- C .6x π = D .12 x π = 2、已知函数)0)(sin(2>+=ωφωx y 在区间[0,2π]的图像 如下,那么ω=() A. 1 B. 2 C. 1/2 D. 3 1 3、函数()cos 22sin f x x x =+的最小值和最大值分别为

三角函数的图象与性质

三角函数的图象与性质 一、选择题 1.在函数①y =cos|2x |,②y =|cos x |,③y =cos ? ? ???2x +π6,④y = tan ? ? ???2x -π4中,最小正周期为π的所有函数为( ) A.①②③ B.①③④ C.②④ D.①③ 解析 ①y =cos|2x |=cos 2x ,最小正周期为π; ②由图象知y =|cos x |的最小正周期为π; ③y =cos ? ? ???2x +π6的最小正周期T =2π2=π; ④y =tan ? ? ???2x -π4的最小正周期T =π2,因此选A. 答案 A 2.(2017·石家庄模拟)函数f (x )=tan ? ? ???2x -π3的单调递增区间是( ) A.?????? k π2-π12,k π2+5π12(k ∈Z) B.? ???? k π2-π12,k π2+5π12(k ∈Z) C.? ?? ???k π-π12,k π+ 5π12(k ∈Z) D.? ? ???k π+π6,k π+ 2π3(k ∈Z) 解析 由k π-π2<2x -π3<k π+π2(k ∈Z),解得k π2-π12<x <k π2+ 5π 12(k ∈Z),所以函数y =tan ? ????2x -π3的单调递增区间是? ???? k π2-π12,k π2+5π12(k ∈Z),故选B. 答案 B 3.(2017·成都诊断)函数y =cos 2x -2sin x 的最大值与最小值分别为( ) A.3,-1 B.3,-2 C.2,-1 D.2,-2 解析 y =cos 2x -2sin x =1-sin 2x -2sin x =-sin 2x -2sin x +1, 令t =sin x ,则t ∈[-1,1],y =-t 2-2t +1=-(t +1)2+2,

高一三角函数测试题及答案

高一(三角函数)测试题 (本试卷共20道题,总分150 时间120分钟) 一、选择题(本题有10个小题,每小题5分,共50分) 1.下列转化结果错误的是 ( ) A . 0367'ο 化成弧度是π83rad B. π3 10 -化成度是-600度 C .ο150-化成弧度是π6 7 rad D. 12π化成度是15度 2.已知α是第二象限角,那么 2 α 是 ( ) A .第一象限角 B. 第二象限角 C. 第二或第四象限角 D .第一或第三象限角 3.已知0tan ,0sin ><θθ,则θ2sin 1-化简的结果为 ( ) A .θcos B. θcos - C .θcos ± D. 以上都不对 4.函数)2 2cos(π +=x y 的图象的一条对称轴方程是 ( ) A .2 π - =x B. 4 π - =x C. 8 π= x D. π=x 5.已知)0,2(π - ∈x ,5 3 sin -=x ,则tan2x= ( ) A .247 B. 247- C. 724 D. 7 24- 6.已知31)4tan(,21)tan(-=-=+παβα,则)4 tan(π β+的值为 ( ) A .2 B. 1 C. 2 2 D. 2 7.函数x x x x x f sin cos sin cos )(-+= 的最小正周期为 ( ) A .1 B. 2π C. π2 D. π 8.函数)3 2cos(π --=x y 的单调递增区间是 ( ) A .)(322,342Z k k k ∈??????+- ππππ B. )(324,344Z k k k ∈?????? +-ππππ C .)(382,322Z k k k ∈????? ? ++ ππππ D. )(384,324Z k k k ∈????? ? ++ππππ

三角函数的图像与性质题型归纳总结

三角函数的图像与性质题型归纳总结 题型归纳及思路提示 题型1 已知函数解析式确定函数性质 【思路提示】一般所给函数为y =A sin(ωx +φ)或y =A cos(ωx +φ),A>0,ω>0,要根据 y =sin x ,y =cos x 的整体性质求解。 一、函数的奇偶性 例1 f (x )=sin ()x ?+(0≤?<π)是R 上的偶函数,则?等于( ) A.0 B . 4πC .2 π D .π 【评注】由sin y x =是奇函数,cos y x =是偶函数可拓展得到关于三角函数奇偶性的重要结论:sin()(); y A x k k Z ??π=+=∈(1)若是奇函数,则 sin()+ (); 2 y A x k k Z π ??π=+=∈(2)若是偶函数,则 cos()(); 2 y A x k k Z π ??π=+=+ ∈(3)若是奇函数,则 cos()(); y A x k k Z ??π=+=∈(4)若是偶函数,则 tan()().2k y A x k Z π ??=+= ∈(5)若是奇函数,则 .()sin ||a R f x x a a ∈=-变式1已知,函数为奇函数,则等于( ) A.0 B .1 C .1-D .1 ± 2.0()cos()()R f x x x R ???∈==+∈变式设,则“”是“为偶函数”的( ) A 充分不必要条件 B .必要不充分条 C .充要条件 D .无关条件 3.()sin()0()f x x f x ω?ω=+>变式设,其中,则是偶函数的充要条件是( ) A.(0)1f =B .(0)0f =C .'(0)1f =D .'(0)0 f = 2.()sin(2)()()2f x x x R f x π =-∈例设,则是( ) A.π最小正周期为的奇函数B .π最小正周期为的偶函数 C .2π 最小正周期为 的奇函数D .2π 最小正周期为的偶函数 2()sin 1()()f x x x R f x =-∈变式1.若,则是( ) A.π最小正周期为的奇函数 B .π最小正周期为的偶函数 C .π最小正周期为2的奇函数D .π最小正周期为2的偶函数

三角函数的图像与性质

一、选择题 1.函数y =sin 2x +sin x -1的值域为( ) A .[-1,1] B .[-5 4,-1] C .[-5 4,1] D .[-1,5 4 ] [答案] C [解析] 本题考查了换元法,一元二次函数闭区间上的最值问题,通过sin x =t 换元转化为t 的二次函数的最值问题,体现了换元思想和转化的思想,令t =sin x ∈[-1,1],y =t 2 +t -1,(-1≤t ≤1),显然-5 4 ≤y ≤1,选C. 2.(2011·山东理,6)若函数f (x )=sin ωx (ω>0)在区间[0,π 3]上单调递增, 在区间[π3,π 2 ]上单调递减,则ω=( ) A .3 B .2 C.32 D.2 3 [答案] C [解析] 本题主要考查正弦型函数y =sin ωx 的单调性 依题意y =sin ωx 的周期T =4×π3=43π,又T =2π ω, ∴2πω=43π,∴ω=32 .

故选C(亦利用y =sin x 的单调区间来求解) 3.(文)函数f (x )=2sin x cos x 是( ) A .最小正周期为2π的奇函数 B .最小正周期为2π的偶函数 C .最小正周期为π的奇函数 D .最小正周期为π的偶函数 [答案] C [解析] 本题考查三角函数的最小正周期和奇偶性. f (x )=2sin x cos x =sin2x ,最小正周期T =2π 2=π, 且f (x )是奇函数. (理)对于函数f (x )=2sin x cos x ,下列选项中正确的是( ) A .f (x )在(π4,π 2)上是递增的 B .f (x )的图像关于原点对称 C .f (x )的最小正周期为2π D .f (x )的最大值为2 [答案] B [解析] 本题考查三角函数的性质.f (x )=2sin x cos x =sin2x ,周期为π,最大值为1,故C 、D 错;f (-x )=sin(-2x )=-2sin x ,为奇函数,其图像关 于原点对称,B 正确;函数的递增区间为???? ??k π-π4,k π+π4,(k ∈Z)排除A. 4.函数y =sin2x +a cos2x 的图像关于直线x =-π 8对称,则a 的值为 ( )

高中三角函数测试题及答案(供参考)

高一数学必修4第一章三角函数单元测试 班级 姓名 座号 评分 一、选择题:共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的.(48 分) 1、已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( ) A .B=A ∩C B .B ∪C= C C .A C D .A=B=C 2、将分针拨慢5分钟,则分钟转过的弧度数是 ( ) A .3 π B .-3π C .6π D .-6π 3、已知 sin 2cos 5,tan 3sin 5cos αα ααα-=-+那么的值为 ( ) A .-2 B .2 C .2316 D .-2316 4、已知角α的余弦线是单位长度的有向线段;那么角α的终边 ( ) A .在x 轴上 B .在直线y x =上 C .在y 轴上 D .在直线y x =或y x =-上 5、若(cos )cos2f x x =,则(sin15)f ?等于 ( ) A .3 2- B .3 2 C .1 2 D . 12- 6、要得到)42sin(3π+ =x y 的图象只需将y=3sin2x 的图象 ( )A .向左平移 4π个单位 B .向右平移4π个单位C .向左平移8π个单位D .向右平移8 π个单位 7、如图,曲线对应的函数是 ( ) A .y=|sin x | B .y=sin|x | C .y=-sin|x | D .y=-|sin x | 8、化简1160-?2sin 的结果是 ( ) A .cos160? B .cos160-? C .cos160±? D .cos160±? 9、A 为三角形ABC 的一个内角,若12sin cos 25 A A +=,则这个三角形的形状为 ( ) A. 锐角三角形 B. 钝角三角形 C. 等腰直角三角形 D. 等腰三角形 10、函数)32sin(2π +=x y 的图象 ( )

三角函数的图像与性质 教案

三角函数的图象与性质   教学目标 1.熟练掌握正弦函数、余弦函数、正切函数、余切函数的性质,并能用它研究复合函数的性质. .熟练掌握正弦函数、余弦函数、正切函数、余切函数图象的形状、 2 重点难点 重点是通过复习,能运用四种三角函数的性质研究复合三角函数的性质及图象的特点,特别是三角函数的周期性,是需要重点明确的问题. 难点是,在研究复合函数性质时,有些需要先进行三角变换,把问题转化到四种三角函数上,才能进行研究,这就增加了问题的综合性和难度. 教学过程 三角函数的图象与性质是三角函数的核心问题,要熟练、准确地掌握.特别是三角函数的周期性,反映了三角函数的特点,在复习“三角函数的性质与图象”时,要牢牢抓住“三角函数周期性”这一内容,认真体会周期性在三角函数所有性质中的地位和作用.这样才能把性质理解透彻. 一、三角函数性质的分析 .三角函数的定义域 1 函数y=cotx的定义域是x≠π或(kπ,kπ+π)(k∈Z),这两种表示法都需要掌握.即角x不能取终边在x轴上的角. (2)函数y=secx、y=cscx的定义域分别与y=tanx、y=cotx相同. 求下列函数的定义域: 例1

π](k∈Z) . 形使函数定义域扩大. 到.注意不要遗漏.

. (3)满足下列条件的x的结果,要熟记(用图形更便于记住它的结果)

是 [ ] 所以选C. 2.三角函数的值域 (1)由|sinx|≤1、|cosx|≤1得函数y=cscx、y=secx的值域是 |cscx|≥1、|secx|≥1. (2)复合三角函数的值域问题较复杂,除了代数求值域的方法都可以适用外,还要注意三角函数本身的特点,特别是经常需要先进行三角变换再求值域.

《三角函数》单元测试题(含答案)

《三角函数》单元测试题 一、 选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一个是符合要求的,把正确答案的代号填在括号内.) 1、 600sin 的值是( ) )(A ;21 )(B ;23 )(C ; 23- )(D ;21- 2、下列说法中正确的是( ) A .第一象限角都是锐角 B .三角形的内角必是第一、二象限的角 C .不相等的角终边一定不相同 D .},90180|{},90360|{Z k k Z k k ∈?+??==∈?±??=ββαα 3、已知cos θ=cos30°,则θ等于( ) A. 30° B. k ·360°+30°(k ∈Z) C. k ·360°±30°(k ∈Z) D. k ·180°+30°(k ∈Z) 4、若θθθ则角且,02sin ,0cos <>的终边所在象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限( ) 5、已知21 tan -=α,则α ααα2 2cos sin cos sin 2-的值是( ) A .3 4- B .3 C .34 D .3- 6.若函数x y 2sin =的图象向左平移4π 个单位得到)(x f y =的图象,则( ) A .x x f 2cos )(= B .x x f 2sin )(= C .x x f 2cos )(-= D .x x f 2sin )(-= 7、9.若?++?90cos()180sin(αa -=+)α,则)360sin(2)270cos(αα-?+-?的值是( ) A .32a - B .23a - C .32a D .2 3a 8、圆弧长度等于圆内接正三角形的边长,则其圆心角弧度数为 ( ) A . 3 π B. 3 2π C. 3 D. 2 9、若x x f 2cos 3)(sin -=,则)(cos x f 等于( ) A .x 2cos 3- B .x 2sin 3- C .x 2cos 3+ D .x 2sin 3+

知识讲解_三角函数的图象和性质_基础

高考复习正弦、余弦的图象和性质 【考纲要求】 1、会用“五点法”画出正弦函数、余弦函数的简图;熟悉基本三角函数的图象、定义域、值域、奇偶性、单调性及其最值;理解周期函数和最小正周期的意义. 2、理解正弦函数、余弦函数在区间[0,2]π的性质(如单调性、最大和最小值、与x 轴交点等),理解正切函数在区间(,)22 ππ -的单调性. 【知识网络】 【考点梳理】 考点一、“五点法”作图 在确定正弦函数sin y x =在[0,2]π上的图象形状时,最其关键作用的五个点是(0,0),( ,1)2 π, (,0)π,3( ,-1)2 π ,(2,0)π 考点二、三角函数的图象和性质 名称 sin y x = cos y x = tan y x = 定义域 x R ∈ x R ∈ {|,} 2 x x k k Z π π≠+ ∈ 值 域 [1,1]- [1,1]- (,)-∞+∞ 图象 奇偶性 奇函数 偶函数 奇函数 单 单调增区间: 单调增区间: 单调增区间: 应用 三角函数的图象与性质 正弦函数的图象与性质 余弦函数的 图象与性质 正切函数的 图象与性质

要点诠释: ①三角函数性质包括定义域、值域、奇偶性、单调性、周期性、最大值和最小值、对称性等,要结合图象记忆性质,反过来,再利用性质巩固图象.三角函数的性质的讨论仍要遵循定义域优先的原则,研究函数的奇偶性、单调性及周期性都要考虑函数的定义域. ②研究三角函数的图象和性质,应重视从数和形两个角度认识,注意用数形结合的思想方法去分析问题、解决问题. 考点三、周期 一般地,对于函数()f x ,如果存在一个不为0的常数T ,使得当x 取定义域内的每一个值时,都有 (+)=()f x T f x ,那么函数()f x 就叫做周期函数,非零常数T 叫做这个函数的周期,把所有周期中存在的 最小正数,叫做最小正周期(函数的周期一般指最小正周期). 要点诠释: 应掌握一些简单函数的周期: ①函数sin()y A x ω?=+或cos()y A x ω?=+的周期2T π ω = ; ②函数tan()y A x ω?=+的周期T πω = ; ③函数sin y x =的周期=T π;

三角函数的图象与性质

三角函数的图象与性质(1) 教学目标 1、能借助正弦函数画出正弦函数的图象,并在此基础上由诱导公式画出余弦函数的图象; 2、借助图象理解正弦函数、余弦函数的性质. 重点难点 重点:正弦函数、余弦函数的图象及其性质; 难点:借助正弦函数画出正弦函数的图象. 教学过程 ]2,0[,sin π∈=x x y 的图象→R x x y ∈=,sin 的图象→余弦函数的图象→五点作图法 问题情境 学习函数我们需要研究它的图象和性质。借助三角函数线,我们已经得到了正弦、余弦函数的哪些性质? “为了更加直观地研究三角函数的性质,可以先作出它们的图象.”怎样作出正弦函数的图象? 学生活动 问题1:直接作出y = sinx ,x ∈ R 的图象有困难,我们该怎么作图呢? 根据周期性,可以先作出y = sinx ,x ∈ [0,2π]的图象,再由周期性得到整个图象. 问题2:描点法的基本步骤是什么?在[0,2π]上需要找几个点? ————列表描点连线。 比比看 ,看谁画的最快,最准确! 归纳出1、列表描点法 建构数学 (一)正弦函数的图像 问题3:如何比较精确的作出这些点并且可以准确的反映函数的变化趋势呢?利用正弦线可以实现吗? ————演示几何描点法和电脑描点法。 基本步骤详细化:(2、几何描点法) 先作单位圆,把⊙O1十二等分(当然分得越细,图象越精确); 十二等分后得对应于0,6π, 3π,2π ,…2π等角,并作出相应的正弦线; 将x 轴上从0到2π一段分成12等份(2π≈6.28),若变动比例,今后图象将相应“变形”; 取点,平移正弦线,使起点与轴上的点重合; 描图(连接)得y=sinx x ∈[0,2π];

必修4三角函数的图像与性质

§1.4.1正弦函数、余弦函数的图象 学习目标:1.能借助正弦线画出正弦函数的图象,并在此基础上由诱导公式画出余弦函数的图象. 2.能熟练运用“五点法”作图. 学习重点:运用“五点法”作图 学习难点:借助于三角函数线画y=sinx的图象 学习过程: 一、情境设置 遇到一个新的函数,画出它的图象,通过观察图象获得对它的性质的直观认识是研究函数的基本方法,那么,一般采用什么方法画图象? 二、探究研究 问题1. 在直角坐标系内把单位圆十二等分,分别画出对应角的正弦线. 问题2. 在相应坐标系内,在x轴表示12个角(实数表示),把单位圆中12个角的正弦线进行右移. 问题3. 通过刚才描点(x0,sinx0),把一系列点用光滑曲线连结起来,能得到什么? 问题4. 观察所得函数的图象,五个点在确定形状是起关键作用,哪五个点? 问题5.如何作y=sinx,x∈R的图象(即正弦曲线)? 问题6.用诱导公式cosx=________(用正弦式表示),y=cosx的图象(即余弦曲线)怎样得到? 问题7. 关键五个点.三、例题精讲 例1:用“五点法”画下列函数的简图 (1)y=1+sinx ,x∈[]π2,0 (2) y=-cosx,x∈[]π2,0 思考:(1)从函数图象变换的角度出发,由y=sinx,x∈[]π2,0的图象怎样得到y=1+sinx ,x∈[]π2,0的图像?由y=cosx,x∈[]π2,0的图象怎样得到y=-cosx, ,x∈[]π2,0的图像? 四、巩固练习 1、在[0,2π]上,满足 1 sin 2 x≥的x取值范围是( ). A.0, 6 π ?? ?? ?? B.5, 66 ππ ?? ?? ?? C.2, 63 ππ ?? ?? ?? D.5, 6 π π ?? ?? ?? 2、 用五点法作) y=1-cosx, x∈[]π2,0的图象. 3、结合图象,判断方程x sinx=的实数解的个数. 五、课堂小结 在区间] 2,0 [π上正、余弦函数图象上起关键作用的五个点分别是它的最值点及其与坐标轴的交点(平衡点).函数的图象可通过描述、平移、对称等手段得到. 六、当堂检测 1、观察正弦函数的图象,以下4个命题: (1)关于原点对称(2)关于x轴对称(3)关于y轴对称(4)有无数条对称轴其中正确的是

三角函数基础测试题及答案

三角函数单元测试题 一、选择题:(12ⅹ5分=60分) 1.若点P 在角α的终边的反向延长线上,且1=OP ,则点P 的坐标为( ) A )sin ,cos (αα- B )sin ,(cos αα C )sin ,(cos αα- D );sin ,cos (αα-- 2.已知角α的终边经过点P (-3,-4),则)2 cos(απ +的值为( ) A.54- B.53 C.54 D.5 3 - 3.已知α、β是第二象限的角,且βαcos cos >,则 ( ) A.βα<; B.βαsin sin >; C.βαtan tan >; D.以上都不对 4.函数)6 2sin(5π +=x y 图象的一条对称轴方程是( ) )(A ;12 π - =x )(B ;0=x )(C ;6π = x )(D ; 3π = x 5.已知函数sin()y A x B ω?=++的一部分图象如右图所示, 如果0,0,||2 A π ω?>>< ,则( ) A.4=A B.1ω= C.6 π ?= D.4=B 6.已知函数()2sin()f x x ω?=+对任意x 都有( )(),66 f x f x ππ+=-则()6f π 等于( ) A. 2或0 B. 2-或2 C. 0 D. 2-或0 7.设()f x 是定义域为R ,最小正周期为32π的函数,若cos ,(0) (),2 sin ,(0) x x f x x x ππ? -≤

高中数学《三角函数的图像和性质》教案

基础梳理 1.“五点法”描图 (1) y =sin x 的图象在[0,2π]上的五个关键点的坐标为 (3 (0,0), ( ,1) ,(π,0), 2 , 1) ,(2π,0). 2 (2) y =cos x 的图象在[0,2π]上的五个关键点的坐标为 (0,1), 0) ,(π,-1), (3 0) ,(2π,1). ( , , 2 2 2.三角函数的图象和性质 [-1,1] [-1,1] R

(k+0)k ∈Z , 2( k 0)k ∈Z , 2 单调增区间 [2k-2k+k ∈Z; , ] 2 2 单调减区间 [2k+2k+3 k ∈Z , ] 2 2 单调增区间 (k-k+k ∈Z , ) 2 2

) ) 1 . 函数 y = cos(x + ,x ∈R ( ). 双基自测 3 A .是奇函数 B .是偶函数 C. 既不是奇函数也不是偶函数 D .既是奇函数又是偶函数 y = - x ) 2. 函数 tan( 4 的定义域为( ). {x | x ≠ k - A . 4 ∈ Z } B .{x | x ≠ 2k - , k ∈ Z } 4 C .{x | x ≠ k + 4 ∈ Z } D .{x | x ≠ 2k + 4 ∈ Z } 3. y = sin(x - 的图象的一个对称中心是( ). 4 A .(-π,0) B . (- 3 C . (3 4 D. ,0) 2 ( ,0) 2 4. 函数 f (x )=cos (2x + 的最小正周期为 . ) 6 考向一 三角函数的周期 【例 1】?求下列函数的周期: y = - x ) (1) sin( 3 2 ;(2) y = tan(3x - ) 6 考向二 三角函数的定义域与值域 (1) 求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解. (2)求解三角函数的值域(最值)常见到以下几种类型的题目: ①形如 y =a sin 2x +b sin x +c 的三角函数,可先设 sin x =t ,化为关于 t 的二次函数求值域(最值); ②形如 y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设 t =sin x ±cos x ,化为关于 t 的二次函数求值域(最值). , k , k , k ,0)

相关主题
文本预览
相关文档 最新文档