余热发电基础知识
- 格式:ppt
- 大小:7.00 MB
- 文档页数:180
水泥余热发电电气部分复习题1、宁国水泥厂1线余热发电机组的发电机视在功率是多少?最大有功出力是多少?该发电机的额定电压是多少?定子的输出电流不得超过多少安培?正在建设的3线余热发电的发电机有功功率是多少?答:宁国水泥厂1线余热发电的发电机视在功率为8100kV A,最大有功出力为7200kW,该发电机的额定电压为6.3kV,定子的最大输出电流不得超过742A;正在建设的3线余热发电发电机有功出力为9100 kW;2、具体说明余热发电的电气主接线的特点。
答:余热发电的电气主接线的特点是:电站的吸收功率与发电机同期并列后输送功率,用的是同一电缆及其线路上开关设备。
具体是:在余热发电站未发电之前,通过总降的52F开关闭合,通过电缆,将电能从总降的母线送至余热电站的52P、52H开关,供电站启动各设备;当电站的发电机发电并由52G开关同期合闸与总降并列后,通过52P 开关、及两开关之间的电力电缆、52F开关向总降母线输送功率,同时也通过52G开关及52H开关,供余热电站自用电。
3、汽轮发电机的主要构造有哪些,其转子构造有哪些特点,与电动机转子相比较,有哪些不同?答:汽轮发电机的构造主要有这几大部分:发电机的定子及固定定子的压板和机座、转子、冷却器等几部分构成。
汽轮发电机的定子是由导磁的铁心和导电的定子绕组组成。
铁心是用0.35~0.5mm 硅钢片叠制成的,直径小的电机定子,由整张硅钢片冲制叠成,直径大的电机铁心,则由硅钢片冲成扇形,然后拼成一个整圆叠成。
每片硅钢片的两面都涂有绝缘漆,以减少铁心的蜗流损耗。
定子铁心的硅钢片之间留有通风孔,铁心用压板压紧,固定在机座上。
三相绕组用云母或玻璃丝带做绝缘,以120°电角度分布在定子铁心槽中,用槽楔压紧。
其输出端三个头及中性点的三个头全部抽出来。
机座是用来固定定子铁心。
箱式发电机的冷却器在发电机的上方,国产发电机的冷却器均放置在发电机下部。
汽轮发电机发电机的转子,是由高机械强度和导磁率高的合金纲锻造而成的,然后在进行机械加工。
水泥余热发电电气部分复习题1、宁国水泥厂1线余热发电机组的发电机视在功率是多少?最大有功出力是多少?该发电机的额定电压是多少?定子的输出电流不得超过多少安培?正在建设的3线余热发电的发电机有功功率是多少?答:宁国水泥厂1线余热发电的发电机视在功率为8100kV A,最大有功出力为7200kW,该发电机的额定电压为6.3kV,定子的最大输出电流不得超过742A;正在建设的3线余热发电发电机有功出力为9100 kW;2、具体说明余热发电的电气主接线的特点。
答:余热发电的电气主接线的特点是:电站的吸收功率与发电机同期并列后输送功率,用的是同一电缆及其线路上开关设备。
具体是:在余热发电站未发电之前,通过总降的52F开关闭合,通过电缆,将电能从总降的母线送至余热电站的52P、52H开关,供电站启动各设备;当电站的发电机发电并由52G开关同期合闸与总降并列后,通过52P 开关、及两开关之间的电力电缆、52F开关向总降母线输送功率,同时也通过52G开关及52H开关,供余热电站自用电。
3、汽轮发电机的主要构造有哪些,其转子构造有哪些特点,与电动机转子相比较,有哪些不同?答:汽轮发电机的构造主要有这几大部分:发电机的定子及固定定子的压板和机座、转子、冷却器等几部分构成。
汽轮发电机的定子是由导磁的铁心和导电的定子绕组组成。
铁心是用0.35~0.5mm 硅钢片叠制成的,直径小的电机定子,由整张硅钢片冲制叠成,直径大的电机铁心,则由硅钢片冲成扇形,然后拼成一个整圆叠成。
每片硅钢片的两面都涂有绝缘漆,以减少铁心的蜗流损耗。
定子铁心的硅钢片之间留有通风孔,铁心用压板压紧,固定在机座上。
三相绕组用云母或玻璃丝带做绝缘,以120°电角度分布在定子铁心槽中,用槽楔压紧。
其输出端三个头及中性点的三个头全部抽出来。
机座是用来固定定子铁心。
箱式发电机的冷却器在发电机的上方,国产发电机的冷却器均放置在发电机下部。
汽轮发电机发电机的转子,是由高机械强度和导磁率高的合金纲锻造而成的,然后在进行机械加工。
余热发电基础理论知识80题余热发电是利用生产过程中多余的热能转换为电能的技术。
余热发电不仅节能,还有利于环境保护。
余热发电的重要设备是余热锅炉。
它利用废气、废液等工质中的热或可燃质作热源,生产蒸汽用于发电。
由于工质温度不高,故锅炉体积大,耗用金属多。
用于发电的余热主要有:高温烟气余热,化学反应余热,废气、废液余热,低温余热(低于200℃)等。
此外,还有用多余压差发电的;例如,高炉煤气在炉顶压力较高,可先经膨胀汽轮发电机继发电后再送煤气用户使用。
水泥行业的余热发电:为了克服带补燃锅炉的中低温余热发电系统存在的缺点,采用补汽式汽轮机组,充分回收200℃以下的废气余热,同时补燃锅炉应当以煤矸石等劣质煤或垃圾为燃料,除节约优质煤外,还可为水泥生产提供原料,降低发电成本,进一步提高经济效益。
目前,从事水泥工业技术工作的人员,致力于如何降低熟料热耗及水泥电耗的研究工作,而从事余热发电技术工作的人员致力于如何提高余热利用率,提高余热发电量的研究工作。
目前还没有哪一个部门研究如何将水泥工艺技术与余热发电技术有机地结合起来,以寻求最低的水泥综合能耗及最佳的经济效益问题。
笔者经过分析、研究认为,水泥工艺技术与余热发电技术最佳结合的方式应当为:缩减水泥窑预热器级数或者改变预热器废气及物料流程,使出预热器的废气温度能够达到550℃~650℃,这样余热发电系统可以取消补燃锅炉,采用余热发电窑的二级余热发电系统。
这种结合方式,水泥熟料热耗虽然有所增加(对于五级预热器,废气温度由320℃~350℃提高至550℃~650℃后,每千克熟料热耗预计增加1000~1200千焦),但发电系统可以取消补燃锅炉而不存在由于补燃锅炉容量小、效率低的问题,同时能够保持余热锅炉生产高压高温蒸汽,使发电系统仍然具有较高的运行效率,吨熟料余热发电量可以提高90千瓦小时以上,水泥综合能耗将低于目前的预分解窑水平,经济效益则显著提高。
从中国的国情考虑,这种方式的水泥窑及发电系统,以其最低的投资、更低的综合能耗、更高的经济效益应当成为今后水泥工业发展的主要方向,这是水泥工业需要认真研究与探讨的重大课题。