7__压力容器焊接接头设计
- 格式:doc
- 大小:416.50 KB
- 文档页数:18
焊接接头相关要求焊接接头是指将两个或多个金属材料通过焊接过程连接在一起的方法。
焊接接头在工业生产中广泛应用,如汽车制造、船舶建造、建筑结构等领域。
为确保焊接接头的质量和可靠性,有一些重要的要求需要遵守。
首先,焊接接头的材料选择是非常重要的。
要确保焊接材料与被焊件的材料具有足够的相容性,以确保焊接接头的连接强度和耐腐蚀性。
同时,也要考虑被焊件的使用环境条件,选择能够适应高温、低温、腐蚀等特殊环境的焊接材料。
其次,焊接接头的设计要满足强度要求。
焊接接头的设计应符合应力分布的要求,合理安排焊缝的形状和尺寸,确保焊接接头的承载能力和强度满足工程要求。
在设计时还需要考虑到焊接残余应力的问题,避免焊接接头出现破裂、变形等问题。
第三,焊接接头的准备工作也是非常关键的。
在进行焊接前,需要对被焊件进行表面处理,以去除油脂、氧化物、尘埃等杂质,保证焊接接头的质量和可靠性。
此外,还需要注意对焊接区域的预加热,保持适当的焊接温度,以提高焊接接头的质量。
第四,焊接接头的焊接工艺要合理选择。
合适的焊接方法和工艺参数的选择对于焊接接头的质量有着重要影响。
需要根据被焊件的材料、壁厚和焊接位置选择适当的焊接方法,如手工电弧焊、气体保护焊、电子束焊等,并合理调整焊接电流、电压、速度、保护气体用量等参数,以确保焊接接头的质量和可靠性。
最后,对于焊接接头的检测和验收也是非常重要的。
焊接接头的质量检测可以通过可视检查、无损检测等方法进行,以判断焊缝的质量、缺陷等情况。
验收时需要根据相关标准和规范对焊接接头进行评定,以确定焊接接头是否符合要求。
总之,焊接接头的质量和可靠性直接影响到焊接结构或零部件的使用寿命和安全性。
在进行焊接接头时,需注意材料选择、设计要求、准备工作、焊接工艺以及检测和验收等方面的要求,确保焊接接头的质量和可靠性。
只有这样,才能确保焊接接头在使用中能够发挥其应有的作用,提高焊接结构的安全性和可靠性。
压力容器焊接技术要求压力容器焊接技术要求概述1、焊接是压力容器制造的重要工序,焊接质量在很大程度上决定了压力容器的制造质量;2、影响焊接质量包含诸多方面内容:焊接接头尺寸偏差、焊缝外观、焊接缺陷、焊接应力与变形、以及焊接接头的使用性能等;3、容器产品的设计是获得性能优良的焊接接头的基础:焊接母材的、焊接坡口形式、焊接位置、焊材、无损检测、焊后热处理等的选择,直接关系到焊接质量。
一、压力容器焊接的基本概念1、焊缝形式与接头形式:从焊接角度看,容器是由母材和焊接接头组成的;焊缝是焊接接头的组成部分。
焊缝有5种:对接焊缝、角焊缝、端接焊缝、塞焊缝和槽焊缝。
焊接接头有12种:对接接头、T型接头、十字接头、搭接接头、角接接头等。
2、焊缝区、熔合区和热影响区3、焊接性能、焊接工艺评定和焊接工艺规程--压力容器焊接的三个重要环节焊接性能是焊接工艺评定的基础,焊接工艺评定是焊接工艺规程的依据,焊接工艺规程是确保压力容器焊接质量的行动准则。
3.1、焊接性能:材料对焊接加工的适应性和使用可靠性。
3.2、焊接工艺因素:重要因素;补加因素;次要因素。
3.3、焊接工艺评定:JB4708《钢制压力容器焊接工艺评定》JB/T4734《铝制焊接容器》JB/T4745《钛制焊接容器》3.4、焊接工艺规程:二、常用焊接方法及特点1、手工电弧焊(SMAW)2、埋弧焊(SAW)3、钨极气体保护焊(GTAW)?4、熔化极气体保护焊(GMAW)?5、药芯焊丝电弧焊(FCAW)?6、等离子弧焊(PAW)7、电渣焊(ESW)三、焊接材料按JB/T4709选用焊材。
1、焊条:GB/T983《不锈钢焊条》、GB/T5177《碳钢焊条》;2、焊丝3、焊剂4、保护气体四、压力容器焊接设计焊接设计是压力容器设计的一个重要组成部分,包括:钢材、焊接方法、焊接材料、焊接坡口、焊接接头形式、预热、层间温度、后热、焊后热处理以及检验、检测等;压力容器焊接设计的原则:1、选用焊接性能良好的材料;2、尽量减少焊接工作量;3、合理分布焊缝;4、焊接施工及焊接检验方便;5、有利于生产组织和管理。
压力容器焊接标准压力容器是一种用于存储液体或气体的设备,常见于化工、石油、制药等行业。
由于其特殊的使用环境和工作要求,压力容器的焊接工艺十分重要。
正确的焊接标准不仅可以保证压力容器的安全可靠运行,还能延长其使用寿命,减少事故发生的可能性。
因此,压力容器焊接标准的制定和执行至关重要。
首先,焊接材料的选择是影响焊接质量的关键因素之一。
焊接材料必须符合压力容器的使用要求和工作环境,具有足够的强度和耐腐蚀性。
在选择焊接材料时,要充分考虑其与基材的匹配性,避免出现焊接接头强度不足或者容易产生裂纹的情况。
其次,焊接工艺的规范和操作要求也是至关重要的。
焊接工艺应符合国家相关标准和规范,包括焊接前的准备工作、焊接参数的设置、焊接过程的控制等。
操作人员必须经过专业的培训和考核,具备一定的焊接技术和经验,严格按照焊接工艺规范进行操作,确保焊接质量和安全。
另外,焊接接头的质量检测也是不可或缺的环节。
在焊接完成后,必须对焊接接头进行全面的检测和评估,包括外观检查、尺寸测量、非破坏检测等。
只有确保焊接接头的质量符合标准要求,才能保证压力容器的安全可靠运行。
此外,焊接过程中的质量记录和追溯也是十分重要的。
在焊接过程中,要对焊接材料、焊接工艺参数、操作人员等进行详细的记录和管理,确保焊接质量的可追溯性。
一旦出现质量问题,能够及时追溯到具体的焊接过程和环节,采取有效的措施进行处理和改进。
综上所述,压力容器的焊接标准是保证其安全可靠运行的重要保障。
只有严格执行焊接标准,选择合适的焊接材料,规范焊接工艺,严格质量检测和记录追溯,才能确保压力容器的焊接质量和安全性。
希望相关行业单位能够高度重视压力容器焊接标准,加强管理和监督,确保压力容器的安全运行,为生产和人员安全提供有力保障。
压力容器的焊接技术随着工程焊接技术的迅速发展,现代压力容器也已发展成典型的全焊结构。
压力容器的焊接成为压力容器制造过程中最重要最关键的一个环节,焊接质量直接影响压力容器的质量。
第一节碳钢、低合金高强钢压力容器的焊接一、压力容器用碳钢的焊接碳钢根据含碳量的不同,分为低碳钢(C≤0.25%)、中碳钢(C= 0.25%~ 0.60%)、高碳钢(C≥0.60%)。
压力容器主要受压元件用碳钢,主要限于低碳钢。
在《容规》中规定:“用于焊接结构压力容器主要受压元件的碳素钢和低合金钢,其含碳量不应大于0.25%。
在特殊条件下,如选用含碳量超过0.25%的钢材,应限定碳当量不大于0.45%,由制造单位征得用户同意,并经制造单位压力容器技术总负责人批准,并按相关规定办理批准手续”。
常用的压力容器用碳钢牌号有Q235-B、Q235-C、10、20、20R 等。
(一)低碳钢焊接特点低碳钢含碳量低,锰、硅含量少,在通常情况下不会因焊接而引起严重组织硬化或出现淬火组织。
这种钢的塑性和冲击韧性优良,其焊接接头的塑性、韧性也极其良好。
焊接时一般不需预热和后热,不需采取特殊的工艺措施,即可获得质量满意的焊接接头,故低碳钢钢具有优良的焊接性能,是所有钢材中焊接性能最好的钢种。
(二)低碳钢焊接要点(1)埋弧焊时若焊接线能量过大,会使热影响区粗晶区的晶粒过于粗大,甚至会产生魏氏组织,从而使该区的冲击韧性和弯曲性能降低,导致冲击韧性和弯曲性能不合格。
故在使用埋弧焊焊接,尤其是焊接厚板时,应严格按经焊接工艺评定合格的焊接线能量施焊。
(2)在现场低温条件下焊接、焊接厚度或刚性较大的焊缝时,由于焊接接头冷却速度较快,冷裂纹的倾向增大。
为避免焊接裂纹,应采取焊前预热等措施。
二、压力容器用低合金高强钢及其焊接特点①热轧、正火钢屈服强度在294Mpa ~ 490MPa之间,其使用状态为热轧、正火或控轧状态,属于非热处理强化钢,这类钢应用最为广泛。
②低碳调质钢屈服强度在490Mpa ~ 980Mpa之间,在调质状态下使用,属于热处理强化钢。
压力容器筒体拼接规定为了使锅炉、压力容器上焊缝分布均匀、避免焊接残余应力相互叠加,有关锅炉、压力容器规程中对焊缝的数量和布置做了具体的规定。
(1)筒体拼接时,最短筒节的长度:对于中低压锅炉不应小于300mm,对于高压锅炉不应小于600mm;每节筒体,纵向焊缝的数量:筒体内径Di1800mm时,拼接焊缝不多于2条,Di>1800mm时,拼接焊缝不多于3条;每节筒体两条纵焊缝中心线间的外圆弧长,对于中低压锅炉不应小于300mm,对于高压锅炉不应小于600mm;相邻筒节的纵向焊缝应相互错开,两焊缝中心线间的外圆弧长不得小于钢板厚度的3倍,且不得小于100mm。
(2)封头和管板应尽量用整块钢板制成。
如必须拼接,封头、管板的内径Di2200mm时,拼接焊缝不多于1条,Di>2200mm时,拼接焊缝不多于2条;封头拼接焊缝离封头中心线距离应不超过0.3Di,并不得通过扳边人孔,且不得布置在人孔扳边圆弧上;管板上整条拼接焊缝不得布置在扳边圆弧上,且不得通过扳边孔;由中心圆板和扇形板组成的凸形封头,焊缝的方向只允许是径向和环向的。
径向焊缝之间的最小距离应不小于壁厚的3倍,且不小于100mm。
(3)炉胆拼接焊缝的要求同于筒体。
U形下脚圈的拼接焊缝必须径向布置,两焊缝中心线间最短弧长不应小于300mm。
(4)管子对接焊缝不应布置在管子的弯曲部分。
对于中低压锅炉,受热面管子直段上的对接焊缝的中心线至管子弯曲起点(或锅筒、集箱外壁,或管子支架边缘)的距离。
至少为50mm,对高压锅炉,上述距离至少为70mm;锅炉范围内管道焊缝中心线至管道弯曲起点之间的距离不应小于管道的外径,且不小于100mm;受热面管子直段上,对接焊缝间的距离不得小于150mm。
(5)受压元件主要焊缝及其邻近区域,应避免焊接零件。
如不能避免时,焊接零件的焊缝可穿过主要焊缝,而不要在焊缝及其邻近区域中止。
(6)开孔、焊缝和转角要错开。
开孔边缘与焊缝的距离应不小于开孔处实际壁厚的3倍,且不小于100mm。
培训考核题2013年压力容器设计取证培训考核试题姓名:得分:一.填空题1.压力容器的()、()、()、()、()、()和()等环节均应严格执行TSGR0004-2009的规定。
2..换热管与管板采用强度胀接时,换热管材料的硬度一般须()管板材料的硬度值。
3.用于壳体的厚度大于()的Q245R钢板,应在正火状态下使用。
4.复合钢板的使用温度范围应()使用温度范围的规定。
5.GB150规定奥氏体不锈钢在温度高于()℃下长期使用,钢中含碳量应不小于(),这是因为奥氏体不锈在使用温度高于500-550℃时,若含碳量太低,强度及抗氧化性会显著()。
6.机动车辆VIN代码执行标准()7.压力容器的对接焊接接头的无损检测比例一般分()和(),对铁素体钢制低温容器,局部无损检测的比例应大于等于()。
8..GB150规定,钢材许用应力的确定,应同时考虑材料的抗强度,()、()和蠕变极限。
9.危险货物运输车标志应符合()的规定10.内压圆筒计算公式δ=P C Di/(2[σ]tφ-Pc)的理论依据是(),公式的适用范围为(),其中Pc为()。
11.压力容器失效形式有:()、()、()、()12.提高奥氏体不锈钢抗晶间腐蚀能力的措施有()、()、()等方法13.《移动容规》规定,压力容器安全附件包括()、()、()、()、()、()、()等。
14.对于同时承受两个室压力作用的受压元件,其设计参数中的()应考虑两室间可能出现的最大压力差。
15.低速汽车及拖拉机的比功率应大于(),其他机动车比功率应大于()16.外压及真空容器的主要破坏形是();低温压力容器的主要破坏形式是()。
17.一般来说压力容器的热处理按目的(作用)分为四种(),(),(),()。
18罐式汽车和罐式挂车在满载、静态状态下最大侧倾稳定角应大于()。
19.汽车和挂车轴核和质量参数应符合()的规定,驱动轴轴核应大于总质量的()20.牵引车头为6X4,6x4的含义()21.危险品运输车车速不大于()22.某罐式集装箱尺寸与箱型标识为32T7,其中3、2的含义()23.低温液体罐式集装箱夹层低温吸附剂用量与()()()等因素有关。
压力容器焊接标准规范目录 JB 4708---2000《钢制压力容器焊接工艺评定》标准释义一、前言...................................................................... ... 2 二、标准原理.................................................................. ..... 3 三、范围 ................................................................. ......... 8 四、术语.................................................................. ........ 9 五、总则.................................................................. ....... 10 六、对接焊缝、角焊缝焊接工艺评定规则 ................................................. 12 七、耐蚀堆焊工艺评定规则 (30)八、试验要求和结果评价 ...............................................................31 九、附录A 不锈钢复合钢焊接工艺评定 ................................................. 41 十、型式试验评定方法 .................................................................43 十一、焊接工艺评定一般过程 ........................................................... 45 十二、附录B“焊接工艺指导书”和“焊接工艺评定报告”表格 ............................ 47 JB/T 4709—2000《钢制压力容器焊接规程》.................................................................... ..... 65 二、焊接材标准释义一、前言料.................................................................. ....... 66 三、焊接评定.................................................................. ....... 77 四、焊接工艺.................................................................. ....... 79 五、焊后热处理.................................................................. ..... 83 六、焊接返A 不锈钢复合钢焊接规修...................................................................... ... 94 七、附录程 ..................................................... 99 八、附录B 接头焊接工艺规程表格推荐格式 ............................................ 101 JB 4744—2000《钢制压力容器产品焊接试板的力学性能检验》标准释义 JB 4709-2000 标准释义 1 JB 4708---2000 《钢制压力容器焊接工艺评定》标准释义 JB 4709-2000 标准释义2 一、前言 JB 708—1992《钢制压力空器焊接工艺评定》发布之日起便结束了我国压力容器行业各方面没有一致认可的焊接工艺评定标准的忆局面它的实施为确保压力容器焊接质量起到了积极推动作用。
无损检测相关知识复习题一、单项选择题1、下述指标中,哪个不属于材料的力学性能?(D)A、强度B、塑性C、韧性D、热稳定性2、长期承受交变应力的构件,最可能产生的破坏形式是(C)A、脆性断裂破坏B、失稳破坏C、疲劳破坏D、蠕变破坏3、衡量材料抵抗冲击载荷作用时断裂的力学性能指标是(C)A、强度B、塑性C、韧性D、硬度4、因应力腐蚀而产生的缺陷通常是(A )A.表面裂纹;B.密集蚀孔;C.导致严重减薄的蚀坑;D.以上都是;5、制造承压类特种设备所用的低碳钢属于(C)A.共析钢;B.过共析钢;C.亚共析钢;D.以上都对;6、钢的C曲线位置右移即意味着(A )A.淬硬组织更容易出现;B.等温转变所需时间更短;C.转变组织的塑性韧性相对较好;D.以上都不对;7、淬火加高温回火的热处理称为(C )A.退火;B.正火;C.调质;D.消氢处理;8、含碳量小于或等于多少的碳素钢称为低碳钢(C )A.0.15%;B.0.20%;C.0.25%;D.0.3%;9、如欲使工件具有一定的强度,同时又有较高的塑性和冲击韧性,即有良好的综合机械性能,应采用的热处理方法是(D)A.退火;B.不完全退火;C.正火;D.调质;10、合金总量在多少以下的合金钢称为低合金钢(C )A.0.5%;B.2%;C.5%;D.10%;11、低碳钢中不属于杂质的元素是(A)A. Fe和CB. Mn和Si;C. S和P;D. N和H;12、以下哪一元素加入钢中能显著提高钢的高温强度,减少回火脆性(D )A. Mn;B. Si;C. Ni;D. Mo;13、低合金钢焊接减少热影响区淬硬倾向的有效措施是(B)A 烘烤焊条B 预热焊件C 提高焊速D 焊后热处理14、下列哪一因素不是导致冷裂纹产生的原因(D)A 焊缝和热影响区的含氢量B热影响区的淬硬程度C 焊接应力的大小D焊缝中低熔点共晶物的含量15、电渣焊焊缝进行超声波探伤应在(D)A 焊接36小时后B焊接24小时后C消除应力热处理后D正火处理后16、下列焊缝缺陷中属于面积性缺陷的有(C)A 气孔B 夹渣C 裂纹D夹钨17、下列哪一种缺陷危害性最大( D)A 圆形气孔B 未焊透C 未熔合D 裂纹18、下述有关焊接变形和焊接应力的叙述,错误的是(B)A 使焊件上的热量尽量均匀可减小焊接变形和焊接应力B 减少对焊缝自由收缩的限制可减小焊接变形和焊接应力C 焊接线能量越大,产生的焊接变形或焊接应力亦增大D 采用焊前预热和合理的装配焊接顺序可减小焊接变形和焊接应力19、下述有关咬边缺陷产生原因的叙述,哪一条是错误的(C)A 焊接电流太大B 焊条与工件角度不对C 运条速度太快D 直流焊时发生磁偏吹20、坡口不清洁,有水、油、锈,最有可能导致的焊接缺陷是(A )A、气孔B、夹渣C、未熔合D、裂纹二、填空题1、过冷度是结晶的必要条件。
压力容器设计中焊接接头系数Υ值的选取李业勤3 尤爱珍 (宜兴市洪流集团公司)(常州化工设备有限公司) 摘 要 对压力容器设计中几处焊接接头系数Υ值的选取,论述了自己的观点。
关键词 压力容器 焊接接头系数 在学习贯彻GB150-1998、GB151-1999以及国家质量技术监督局《压力容器安全技术监察规程》(下简称《容规》)的过程中,有几处焊接接头系数Υ值的选取易引起争议,为此,笔者谈一下自己的看法,供参考。
1 开孔处计算厚度∆计算式中Υ值的选取 GB150-1998中的81511款给出了对内压容器开孔所需补强面积的计算式:A=d∆+2∆∆et(1-f r)(1)式中∆为开孔处计算厚度。
显然,要求取∆值,就必需解决开孔处焊接接头系数Υ值如何选取的问题。
当壳体的焊接接头系数Υ=1时,任意开孔处Υ=1。
若有人提出,当开孔正好在B类焊接接头上,而B类Υ值又不为1,怎么办?笔者认为,由于B类Υ值不会小于015,不会对开孔处Υ值造成影响。
当壳体Υ值小于1时,开孔处Υ如何选取?这个问题比较复杂,现分析如下: (1)开孔处有效补强范围内,计算截面为母材,此时Υ=1。
(2)开孔处有效补强范围内,计算截面穿过B类焊接接头,由于B类Υ值不小于015,故对计算截面(对圆筒体为轴向截面)而言,其Υ值可取1。
(3)开孔处有效补强范围内,计算截面正好穿过A类焊接接头,而A类Υ值又小于1,例如0185等,笔者认为可仍取1。
理由是:根据GB150-1998第10181212c)款以及10181411 b)和10181412b)款,以开孔中心为圆心、115倍开孔直径为半径的圆中所包容的焊接接头应全部检测,射线检测、超声检测合格的级别分别为不低于 级和不低于 级,即与壳体相一致,《容规》亦有同样规定,因此有人认为Υ值应等同于壳体的Υ值。
从合理的角度考虑,Υ值取小于1的值,有一定道理,但是,由于设计人员在进行设计计算时是无法预先知道这一情况的,更何况计算截面正好位于A类焊接接头上的情形十分少,如果连这一比较特殊的情形也要分清Υ=1还是Υ<1,对设计人员而言未免太苛刻了。
制压力容器焊接的重要性及工装设计摘要:压力容器制造对材料选择以及焊接技术要求极高,本文重点介绍压力容器制造材料性质,以及焊接过程中的技术方法选择。
在整理焊接处理重要性基础上,分析工装设计开展要点,以及需要特别注意的部分,帮助提升焊接接头部分处理稳定性,为压力容器的生产使用提供安全依据。
关键词:压力容器;焊接处理;工装设计一、压力容器制造材料及其焊接性能1、制作材料压力容器选择耐高温材料制作而成,合金耐热钢材是最常使用到的,该种材料在高温环境下性质稳定,压力容器对焊接工艺要求十分高,因此焊接处理中接缝部分温度会在短时间内明显升高。
为避免合金压力容器壁发生形变通常会降低材料中的碳含量比例,将其控制在0.2%以内,保证其强度不会降低的前提下提升合金耐高温与耐腐蚀性能,更好的满足压力容器在不同环境下使用需求。
合金材料生产是以普通碳钢为原料,在其中添加一些合金材料来增强稳定性,材料需要满足长时间处于压力环境下的使用稳定标准。
2、接头等强性所选择的合金材料,使用中要保障与压力容器壁其他部位强度一致,尤其是焊接接头部分,由于处理工序更加复杂,受压后很容易出现裂缝。
保障其等强性特征可以规避这一问题,压力容器投入使用后,接头部分与其制作合金材料在受压能力上保持一致,使用中发生压力变化也不会影响到最终的接头性能。
由此可见,对焊接部分接头进行处理关系到压力容器使用功能实现。
3、接头抗氧化性合金钢材抗氧化性与耐腐蚀性均能够达到使用标准,但经过焊接处理的接头部分却很容易发生性质改变,在焊接开展前应该计算出最高温度与持续时间,判断在温度急剧升高环境下接头部分材料是否存在性质改变。
焊接处理后的抗氧化性能研究还需要考虑焊锡自身的稳定性,压力容器使用中可能会受到腐蚀氧化的威胁,只有焊接部分材料具备抗氧化性,与压力容器壁在稳定性与强度上保持一致才能更安全使用。
4、接頭抗脆断性压力容器大部分使用在高温环境下,长时间处于高温状态下一旦温度降低后反复升高很容易造成脆性断裂,在接头部分最为常见。
7 承压设备焊接接头设计焊接接头由焊缝金属、热影响区及相邻母材三部分组成。
在压力容器、锅炉和管道等过程设备中,焊接接头不仅是重要的连接元件,而且与所连接部件一起承受工作压力、其它载荷、温度和化学腐蚀介质的作用。
焊接接头作为整个受压部件或承压设备不可分割的组成部分,对运行可靠性和工作寿命起着决定性的影响。
因此,焊接接头的正确设计对于保证产品的质量具有十分重要的意义。
7.1 焊接接头设计基础7.1.1 焊接接头的基本类型与特点焊接接头主要起两个作用:一是连接作用,即把被焊件连成一个整体;二是承力作用,即承受被焊工件所受的载荷。
焊接与被焊工件并联的接头,焊缝仅承担很小的载荷,即使焊缝断裂,结构也不会立即失效,这种接头中的焊缝称为联系焊缝,如图7-1a所示。
焊缝与被焊工件串联的接头,焊缝承受全部载荷,一旦焊缝断裂,结构会立即失效,这种焊缝称为承载焊缝,如图7-1b所示。
设计时联系焊缝不一定要求焊透或全长焊接,也不必计算焊缝强度,而承载焊缝必须计算强度,且必须采用全熔透焊接。
过程设备中常用的典型焊接接头类型有对接接头、T形或十字接头、搭接接头和角接接头等,如图7-2所示。
(a) (b)图7-1 联系和承载焊缝a)联系焊缝b)承载焊缝对接接头较其它接头受力状况好,应力集中程度小,焊接时易保证质量,是优先广泛应用的接头。
对于不同厚度的焊件,为了保证焊透,大多都要把焊件的对接边缘加工成各种形式的坡口。
对接接头焊前对工件的边缘加工和装配要求较高。
通常设备壳体上的纵、环焊缝均为对接接头。
T形及十字形接头能承受各种方向的力和力矩,其接头亦有不同类型,有不焊透和焊透的,有不开坡口和开坡口的。
不开坡口者通常均为不焊透的,其应力集中很大,不适用于重载或动载荷。
开坡口焊透的T形或十字形接头其应力集中显著减小,适用于承受动载荷及重载荷。
接管、人孔等与设备壳体或封头相连的多为T形或角接接头。
搭接接头的应力分布很不均,受力状况不好,疲劳强度较低,不宜承受动载荷。
7 承压设备焊接接头设计焊接接头由焊缝金属、热影响区及相邻母材三部分组成。
在压力容器、锅炉和管道等过程设备中,焊接接头不仅是重要的连接元件,而且与所连接部件一起承受工作压力、其它载荷、温度和化学腐蚀介质的作用。
焊接接头作为整个受压部件或承压设备不可分割的组成部分,对运行可靠性和工作寿命起着决定性的影响。
因此,焊接接头的正确设计对于保证产品的质量具有十分重要的意义。
7.1 焊接接头设计基础7.1.1 焊接接头的基本类型与特点焊接接头主要起两个作用:一是连接作用,即把被焊件连成一个整体;二是承力作用,即承受被焊工件所受的载荷。
焊接与被焊工件并联的接头,焊缝仅承担很小的载荷,即使焊缝断裂,结构也不会立即失效,这种接头中的焊缝称为联系焊缝,如图7-1a所示。
焊缝与被焊工件串联的接头,焊缝承受全部载荷,一旦焊缝断裂,结构会立即失效,这种焊缝称为承载焊缝,如图7-1b所示。
设计时联系焊缝不一定要求焊透或全长焊接,也不必计算焊缝强度,而承载焊缝必须计算强度,且必须采用全熔透焊接。
过程设备中常用的典型焊接接头类型有对接接头、T形或十字接头、搭接接头和角接接头等,如图7-2所示。
(a) (b)图7-1 联系和承载焊缝a)联系焊缝b)承载焊缝对接接头较其它接头受力状况好,应力集中程度小,焊接时易保证质量,是优先广泛应用的接头。
对于不同厚度的焊件,为了保证焊透,大多都要把焊件的对接边缘加工成各种形式的坡口。
对接接头焊前对工件的边缘加工和装配要求较高。
通常设备壳体上的纵、环焊缝均为对接接头。
T形及十字形接头能承受各种方向的力和力矩,其接头亦有不同类型,有不焊透和焊透的,有不开坡口和开坡口的。
不开坡口者通常均为不焊透的,其应力集中很大,不适用于重载或动载荷。
开坡口焊透的T形或十字形接头其应力集中显著减小,适用于承受动载荷及重载荷。
接管、人孔等与设备壳体或封头相连的多为T形或角接接头。
搭接接头的应力分布很不均,受力状况不好,疲劳强度较低,不宜承受动载荷。
压力容器制造焊接相关技术标准及要求摘录川化集团有限责任公司化工设备厂《钢制化工容器制造技术要求》摘录5.焊接和切割5.1 切割5.1.1采用火焰切割下料时,应清除熔渣及有害杂质,并采用砂轮或其它工具将坡口加工平整。
当切割材料为标准规定的抗拉强度σb>540MPa的高强度钢或铬钼合金钢时,火焰切割表面应采用打磨或机械加工的方法清除热影响区和淬硬区,并进行磁粉或渗透探伤。
不锈钢的碳弧气刨表面应采用砂轮打磨,清除渗碳层。
5.1.2火焰切割时的预热与否,一般应符合钢材焊接时的预热要求。
受压元件气割的开孔边缘或剪切下料的端部如未经焊接者(如安放式接管的开孔边缘或内伸式接管的端部),应采用打磨等方法去除3mm以上。
5.2 焊缝位置5.2.1壳体上的开孔应尽量不安排在焊缝及邻近区域,但符合下列情况之一者,允许在上述区域开孔:1.符合GB150开孔补强要求的开孔可在焊缝区域开孔。
2.符合GB150规定的允许不另行补强的开孔,可在环焊缝区域开孔。
但此时应以开孔中心为圆心,对直径为3倍开孔直径长度的圆所包括的焊缝进行100%射线或超声波探伤,并符合要求。
凡因开孔而可予去除的焊缝可不受探伤质量的影响。
3.符合GB150规定的允许不另行补强的开孔,当壳体板厚小于等于40mm时,开孔边缘距主焊缝的边缘应大于等于13mm。
但若按5.2.1条第一款对主焊缝进行射线或超声波探伤并符合要求者,可不受此限。
5.2.2 外部附件与壳体的连接焊缝,如与壳体主焊缝交叉时,应在附件上开一槽口,以使连接焊缝跨越主焊缝。
槽口的宽度应足以使连接焊缝与主焊缝边缘的距离在1.5倍壳体壁厚以上。
5.3 焊接准备5.3.1 焊接坡口及其两侧至少15mm内的母材表面应消除铁锈、油污、氧化皮及其它杂质。
铸钢件应去除铸态表面以显露金属光泽。
5.3.2 气割坡口的表面质量至少应符合下表的要求。
5.3.3 坡口上的分层缺陷应予以清除,清除深度为分层深度或10mm(取小者),并予以补焊。
压力容器焊接接头分类2009-05-28 14:41目的:为对口错边量、热处理、无损检测、焊缝尺寸等方面有针对性地提出不同的要求,GB150根据位置,根据该接头所连接两元件的结构类型以及应力水平,把接头分成A、B、C、D四类,如图。
图压力容器焊接接头分类A类:圆筒部分的纵向接头(多层包扎容器层板层纵向接头除外)、球形封头与圆筒连接的环向接头、各类凸形封头中的所有拼焊接头以及嵌入式接管与壳体对接连接的接头。
B类:壳体部分的环向接头、锥形封头小端与接管连接的接头、长颈法兰与接管连接的接头。
但已规定为A、C、D类的焊接接头除外。
C类:平盖、管板与圆筒非对接连接的接头,法兰与壳体、接管连接的接头,内封头与圆筒的搭接接头以及多层包扎容器层板层纵向接头。
D类:接管、人孔、凸缘、补强圈等与壳体连接的接头。
但已规定为A、B类的焊接接头除外。
A类焊缝是容器中受力最大的接头,因此一般要求采用双面焊或保证全焊透的单面焊缝;B类焊缝的工作应力一般为A类的一半。
除了可采用双面焊的对接焊缝以外,也可采用带衬垫的单面焊;在中低压焊缝中,C类接头的受力较小,通常采用角焊缝联接。
对于高压容器,盛有剧毒介质的容器和低温容器应采用全焊透的接头。
D类焊缝是接管与容器的交叉焊缝。
受力条件较差,且存在较高的应力集中。
在后壁容器中这种焊缝的拘束度相当大,残余应力亦较大,易产生裂纹等缺陷。
因此在这种容器中D类焊缝应采取全焊透的焊接接头。
对于低压容器可采用局部焊透的单面或双面角焊。
注意:焊接接头分类的原则仅根据焊接接头在容器所处的位置而不是按焊接接头的结构形式分类,所以,在设计焊接接头形式时,应由容器的重要性、设计条件以及施焊条件等确定焊接结构。
这样,同一类别的焊接接头在不同的容器条件下,就可能有不同的焊接接头形式。
以下无正文仅供个人用于学习、研究;不得用于商业用途。
For personal use only in study and research; not for commercial use.仅供个人用于学习、研究;不得用于商业用途。
焊接接头形式主要有哪几种?对锅炉压力容器的焊接接头形式有哪些要求?焊接接头形式是由相焊的两焊件相对位置所决定的,主要有对接接头、搭接接头和角接接头等。
对接接头所形成的结构基本上是连续的,能承受较大的静载荷和动载荷,是焊接结构中最完善和最常用的结构形式。
搭接接头、角接接头所形成的焊缝都是角焊缝,承压后,角焊缝及其附近应力状态比较复杂。
所以锅炉、压力容器的主体焊接接头中不采用搭接接头和角接接头。
接头形式一般根据焊缝在结构中的受力状态及部位选择。
对锅炉、压力容器上的焊接接头形式主要有以下要求:(1)锅炉、压力容器主要受压元件的主焊缝(锅筒、炉胆和集箱的纵向和环向焊缝,封头、管板和下脚圈的拼接焊缝等)应采用全焊透的对接接头形式。
(2)对于额定蒸汽压力大于或等于3.82MPa的锅炉,集中下降管管接头与筒体的连接必须采用全焊透的接头形式。
对于额定蒸汽压力大于或等于9.81MPa的锅炉,管子或管接头与锅筒、集箱、管道角焊连接时,应在管端或锅筒、集箱、管道上开坡口,以利焊透。
(3)当凸形封头与筒体的连接因条件限制不得不采用搭接时,应双面搭接,搭接的长度不应小于封头厚度的3倍,且不应小于25mm。
(4)当必须采用角焊结构时,要选用合理的焊接坡口形式,尽量双面焊接,保证焊透。
在任何情况下,焊角尺寸都不得小于6mm。
对平封头和管板,还应采用必要的加强结构。
(5)压力容器接管(凸缘)与筒体(封头)、壳体连接,平封头与筒体连接,有下列情况之一的,原则上采用全焊透形式:介质为易燃或毒性程度为极度危害和高度危害的压力容器;作气压试验的压力容器;第三类压力容器;低温压力容器;按疲劳准则设计的压力容器;直接受火焰加热的压力容器。
焊接接头系数在压力容器设计中的选取摘要:文章针对压力容器设计计算过程中的焊接接头系数,分析了焊接接头系数的实质,探讨了各种常见结构焊接接头系数的选取。
关键词:压力容器;焊接接头系数;选取焊接接头是焊接压力容器结构中最重要的连接部位,它是由焊缝区、熔合面、热影响区和基本母材四部分组成。
一般情况下,压力容器的焊接接头采用要求焊接接头的最低抗拉强度应不小于母材的标准抗拉强度的等强度设计原则,但焊接接头在由液态到固态凝固过程中,总是存在着各种裂纹、气孔、夹渣、未焊透、未熔合等焊接缺陷,局部的不均匀冶金过程导致焊接接头内部组织不均匀,这些因素都会影响到焊接接头的强度。
由此可见,焊接接头是压力容器结构中比较薄弱的环节,它的性能将直接影响压力容器的质量和安全。
因此,在压力容器设计计算过程中,引入焊接接头系数φ的概念,定义为焊接接头的强度与母材强度之比,用以反映由于焊接原因使焊接接头强度被削弱的程度。
在压力容器设计过程中,正确地选择焊接接头系数φ,不仅涉及到容器安全性和可靠性,还涉及到容器设计制造过程中的经济性。
文章依据《固定式压力容器安全技术监察规程》、GB150和相关规范标准,以焊制压力容器为讨论对象,探讨压力容器设计过程中如何正确选取焊接接头系数φ。
1焊接接头的分类和焊接接头系数的选取分析我国在国家标准GB150中对压力容器焊接接头的分类有明确的规定,根据接头的位置和形式,分为A、B、C、D四种类型(如图1所示)。
其中A类主要指圆筒部分的纵向接头,凸形封头的拼焊接头等;B类主要指壳体部分的环向接头;C类包括平盖、管板、法兰与圆筒的非对接接头;D类包括接管、人孔、凸缘、补强圈与圆筒的连接接头。
从JB/T4730《承压设备无损检测》与之对应的无损检测方法来看,对A、B 类接头规定采用射线或超声检测,C、D类接头采用磁粉或渗透检测可知,A、B 类接头应为对接接头,C、D类接头应为角接接头。
而根据规则设计的强度计算一般考虑受压元件承受一次的最大薄膜应力,即起控制作用的一次应力进行设计计算的。
压力容器焊接接头分类2009-05-28 14:41目的:为对口错边量、热处理、无损检测、焊缝尺寸等方面有针对性地提出不同的要求,GB150根据位置,根据该接头所连接两元件的结构类型以及应力水平,把接头分成A、B、C、D四类,如图。
图压力容器焊接接头分类A类:圆筒部分的纵向接头(多层包扎容器层板层纵向接头除外)、球形封头与圆筒连接的环向接头、各类凸形封头中的所有拼焊接头以及嵌入式接管与壳体对接连接的接头。
B类:壳体部分的环向接头、锥形封头小端与接管连接的接头、长颈法兰与接管连接的接头。
但已规定为A、C、D类的焊接接头除外。
C类:平盖、管板与圆筒非对接连接的接头,法兰与壳体、接管连接的接头,内封头与圆筒的搭接接头以及多层包扎容器层板层纵向接头。
D类:接管、人孔、凸缘、补强圈等与壳体连接的接头。
但已规定为A、B类的焊接接头除外。
A类焊缝是容器中受力最大的接头,因此一般要求采用双面焊或保证全焊透的单面焊缝;B类焊缝的工作应力一般为A类的一半。
除了可采用双面焊的对接焊缝以外,也可采用带衬垫的单面焊;在中低压焊缝中,C类接头的受力较小,通常采用角焊缝联接。
对于高压容器,盛有剧毒介质的容器和低温容器应采用全焊透的接头。
D类焊缝是接管与容器的交叉焊缝。
受力条件较差,且存在较高的应力集中。
在后壁容器中这种焊缝的拘束度相当大,残余应力亦较大,易产生裂纹等缺陷。
因此在这种容器中D类焊缝应采取全焊透的焊接接头。
对于低压容器可采用局部焊透的单面或双面角焊。
注意:焊接接头分类的原则仅根据焊接接头在容器所处的位置而不是按焊接接头的结构形式分类,所以,在设计焊接接头形式时,应由容器的重要性、设计条件以及施焊条件等确定焊接结构。
7 承压设备焊接接头设计焊接接头由焊缝金属、热影响区及相邻母材三部分组成。
在压力容器、锅炉和管道等过程设备中,焊接接头不仅是重要的连接元件,而且与所连接部件一起承受工作压力、其它载荷、温度和化学腐蚀介质的作用。
焊接接头作为整个受压部件或承压设备不可分割的组成部分,对运行可靠性和工作寿命起着决定性的影响。
因此,焊接接头的正确设计对于保证产品的质量具有十分重要的意义。
7.1 焊接接头设计基础7.1.1 焊接接头的基本类型与特点焊接接头主要起两个作用:一是连接作用,即把被焊件连成一个整体;二是承力作用,即承受被焊工件所受的载荷。
焊接与被焊工件并联的接头,焊缝仅承担很小的载荷,即使焊缝断裂,结构也不会立即失效,这种接头中的焊缝称为联系焊缝,如图7-1a所示。
焊缝与被焊工件串联的接头,焊缝承受全部载荷,一旦焊缝断裂,结构会立即失效,这种焊缝称为承载焊缝,如图7-1b所示。
设计时联系焊缝不一定要求焊透或全长焊接,也不必计算焊缝强度,而承载焊缝必须计算强度,且必须采用全熔透焊接。
过程设备中常用的典型焊接接头类型有对接接头、T形或十字接头、搭接接头和角接接头等,如图7-2所示。
(a) (b)图7-1 联系和承载焊缝a)联系焊缝b)承载焊缝对接接头较其它接头受力状况好,应力集中程度小,焊接时易保证质量,是优先广泛应用的接头。
对于不同厚度的焊件,为了保证焊透,大多都要把焊件的对接边缘加工成各种形式的坡口。
对接接头焊前对工件的边缘加工和装配要求较高。
通常设备壳体上的纵、环焊缝均为对接接头。
T形及十字形接头能承受各种方向的力和力矩,其接头亦有不同类型,有不焊透和焊透的,有不开坡口和开坡口的。
不开坡口者通常均为不焊透的,其应力集中很大,不适用于重载或动载荷。
开坡口焊透的T形或十字形接头其应力集中显著减小,适用于承受动载荷及重载荷。
接管、人孔等与设备壳体或封头相连的多为T形或角接接头。
搭接接头的应力分布很不均,受力状况不好,疲劳强度较低,不宜承受动载荷。
压力容器上的补强圈或支座与壳体和封头的连接一般为搭接接头。
搭接接头T形和十字形接头角接接头图7-2 焊接接头基本类型角接接头是两被焊件端部间构成大于30o,但小于135o夹角的接头。
其承载能力与其连接形式和坡口类型有关。
法兰、平封头、管板等与筒身和封头的连接一般为角接接头。
7.1.2 焊接接头设计的内容与准则焊接接头与其它连接形式,如铆接、胀接和螺栓连接相比具有令人注目的优点,如减轻结构重量,受力均衡,制造成本低、生产周期短等,但也不可忽视其各区组织不均一性、性能不均一性和存在各种焊接缺陷等缺点。
焊接结构设计师尤其应重视上述缺点,从设计上采取有效的措施,尽量克服或减小其不利的影响,以确保设备的可靠性。
焊接接头设计的基本内容为:①确定接头型式和位置;②设计坡口形式和尺寸;③制定对接头质量的具体要求,如探伤要求等。
接头设计的基本准则是:①焊接接头与母材的等强性等强性的含意应包括常温、高温短时强度,高温持久强度,静载和交变载荷下的强度。
②焊接接头与母材的等塑性接头的塑性与母材的塑性不同。
接头塑性主要是指接头在结构中的整体变形能力,能经受受压部件在制造过程中和运行过程中复杂的受力条件。
③焊接接头的工艺性焊接接头应布置在便于施工,焊接和检查(包括无损探伤)的部位,焊接坡口形状和尺寸应适应所采用的焊接工艺,具有较高的抗裂性并能防止焊接变形,应易于形成全焊透的焊缝并能避免形成其他焊接缺陷。
④焊接接头的经济性焊接是一种消耗能量和优质焊材的工艺过程,故应尽量减小焊接接头的数量,在保证接头强度的前提下减薄焊缝的厚度。
在设计焊接坡口形状时,应在保证工艺性的前提下,尽量减小坡口的倾角和截面。
对于壁厚较薄的受压部件应尽可能采用不开坡口的先进焊接工艺。
7.1.3 焊接接头设计注意要点在设计焊接接头时,设计人员一般除了依据上述基本设计准则,注意正确合理地选择焊接接头类型,坡口形状和尺寸外,还必须注意接头的可焊到性、可探伤性以及为防止或减小腐蚀等问题。
①接头的可焊到性熔焊接头焊接时,为保证获得理想的接头质量,必须保证焊条、焊丝或电极能方便地到达欲焊部位,这就是熔焊接头设计时要考虑的可焊到性问题。
如图7-3所示,左边箭头所指不便于焊接,质量难以保证;中间便于焊接,但为角焊缝,受载时焊缝根部会产生较大的应力集中;右边改为对接焊缝,不但便于焊接,受力状况好,而且也便于无损探伤检验。
另外,有的结构只能在一侧进行焊接,另一侧由于空间狭小无法进入。
例如各类管道和直径小于500mm的压力容器,均存在不能由内侧施焊的问题;大直径容器最后组装的封头与筒体连接环焊缝,若无人孔也无法进入内部焊接。
这种情况设计时应注意将坡口开在外侧,便于在外面进行单面焊双面成型工艺。
图7-3 可焊到性接头比较②尽可能改善施焊环境在注意可焊到性的同时,还应重视尽可能地改善焊接施工的环境。
对于能在内外两侧进行焊接的设备,应注意在壳内进行焊接时大多会有烟尘等有害气氛的影响,其焊接环境较外面差。
特别是在内部空间狭小,排气不良和预热条件下,其施焊环境就更差,不但有害焊工健康,而且对确保焊接质量也会产生相当的不利影响。
为此,可采用内小外大的双面坡口或开在外侧的单面坡口,使大部焊接工作量在外面完成。
同时也要注意尽可能选择施焊环境好的焊接方法,如埋弧焊放出的有害气体较手工电弧焊少,又没有明弧的有害作用,劳动强度也小。
③接头的可探伤性主要是指无损探伤的可能性与方便性。
焊接质量要求越高的接头越要重视接头的可探伤性,特别是射线和超声波的可探伤性。
对于射线探伤,探伤前要根据工件形状和接头形式来选择照射方向和底片的安放位置。
一般来说,对接接头最适于射线探伤,通常一次照射即可;而T形接头和角接头的角焊缝有时需从不同方向多次照射才不至于漏检。
图7-4左面所示接头均不适于X射线探伤,而改为右面所示接头就可以了。
其中图a是压力容器上的插入式接管角焊缝接头,其焊缝的下方即不能平放也不能弯曲放置胶片。
图b是平封头与筒体之间的连接接头,图b1不宜射线探伤,图b2虽有改善,也不合适,只有图b3才适宜射线探伤。
图c为T型接头,图c1不宜射线探伤,图c2才能进行射线探伤。
从构件截面过渡考虑,图d1过渡陡峭,使射线探伤变得困难,图d2过滤平缓,但局部的壁厚差别仍会影响探伤,图d3将接头移到过渡段以外,虽然加工复杂,但最宜于射线探伤。
图e1是未熔透的对接接头,由于存在未熔合间隙,不可能进行探伤,只有图e2那样的熔透接头,才可进行射线探伤。
图f为三通式管接头,只有如图f2那样设计,才能便于进行射线探伤。
插入式接管接头图g1,由于厚度差别加上空间曲率,也不宜进行射线探伤,改成图g2的形式,射线探伤就方便了。
超声波探伤对接头检测面要求具有可接近性和可移动性。
但是,所有存在间隙的T型接头和未熔透的对接接头,都不能或者只能有条件地进行超声波检测。
所以接头的根部处理与焊透是采用超声波探伤的先决条件。
此外,对奥氏体不锈钢焊缝,目前一般不能采用超声波探伤,按射线探伤考虑即可。
从缺陷扫查、缺陷定量定位以及探伤的可靠性出发,超声波探伤往往要求尽量进行双向探测,而且应有探头移动区。
这是因为有些缺陷从某个方向进行显示,要比从另一个方向显示容易。
因此,对于板厚不等和管壁与底座的对接接头,应该选择适当的板(壁)厚过渡区。
图7-5所示压力容器不等厚对接接头和图7-6所示接头焊缝超声波探伤的探头移动区最小尺寸la,可分别参照表7-1和表7-2确定。
图7-5 不同厚度对接接头超声波探伤的探头移动区l图7-6 几种压力容器壳体焊接接头超声波探伤的探头移动区L表7-1 不同厚度对接接头焊缝超声波探伤移动区最小尺寸l④提高焊接接头的抗腐蚀性首先要对所设计的结构在给定工况条件下可能产生的腐蚀类型有个确切了解,在此基础上有针对性地正确选择相应的耐腐蚀结构材料和焊接材料。
在结构上要避免在应力集中和高应力区布置焊缝,尽量降低对腐蚀特别敏感部位的刚度和避免可能引起过大残余应力的结合点或区域,避免图7-7所示妨碍液体流动和排放的不合理结构死区。
焊接时尽可能采用对接接头和连续焊,而不采用搭接接头和间断焊,以免形成缝隙加剧腐蚀。
图7—7 防腐焊接结构比较7-2 压力容器焊接接头设计7.2.1 压力容器焊接接头的分类锅炉锅筒、管道和各种压力容器均为受压壳体,其焊接接头的结构和要求具有同类性。
其壳体上的焊接接头按受力状态及所处的部位可分为A、B、C、D、E、F六类,如图7-8所示。
其中A、B、C、D四类均为受压壳体上直接承受压力载荷的接头;E类是非受压元件与受压壳体间的接头,不承受压力载荷;F类是受压元件表面上的堆焊接头,起耐磨或防腐蚀作用,一般不计入承压厚度。
图7-8 压力容器壳体焊接接头分类A类接头包括圆柱形壳体筒节(包括接管)的纵向接头,球形容器和凸形封头瓜片之间的对接接头,球形容器的环向对接接头及球形封头与筒体相接的环向对接接头,镶嵌式锻制接管与筒体或封头的对接接头,大直径焊接三通支管与母管相接的对接接头。
B类接头系指圆柱形、锥形筒节间的环向接头,接管筒节间及其高颈法兰相接的环向对接接头,除球形封头以外的各种凸形封头与筒身相接的环向接头。
属于C 类接头的有法兰、平封头、端盖、管板与筒身、封头和接管相连的角接接头,内凹封头与筒身间的搭接接头以及多层包扎容器层板间的纵向接头等。
D 类接头是指接管、人孔、手孔、补强圈、凸缘与筒身及封头相接的T 形或角接接头。
E 类接头包括吊耳、支撑、支座及各种内件与筒身或封头相接的角接接头。
F 类接头是在筒身、封头、接管、法兰和管板表面上的堆焊接头。
7.2.2 压力容器焊接接头的特点与设计要求上述压力容器各类焊接接头,由于其结构型式和受力状态不同,其焊接和检验等要求也有所差异。
现作如下重点分析(1)A 、B 类接头压力容器上的A 、B 类焊接接头,主要是壳体上的纵、环向对接接头,是受压壳体上的主承力焊接接头。
这类接头要求采用全焊透结构,且如图7-9a 所示,应尽量采用双面焊的全焊透对接接头。
如因结构尺寸限制,只能从单面焊接时,也可采用单面坡口的接头,但必须保证能形成相当于双面焊的全焊透对接接头。
为此,采用氩弧焊之类的焊接工艺完成全熔透的打底焊道,或在焊缝背面加衬板来保焊缝根部完全熔透或成型良好,如图7-9b 、c 所示。
当对接接头二侧壁厚不等且厚度差大于较薄壳壁厚度的1/4或3mm 时,则应将较厚壳壁接头边缘削薄。
其斜度至少为1:3。
为避免相邻焊接接头焊接残余应力的叠加和热影响区的重叠,压力容器壳体上的A 类或B 类接头之间的距离至少应为壁厚的3倍,且不小于100mm 。
同时不应采用十字焊缝,且A 、B 类接头及其附近不得开设管孔。
若因管子密集必须开在A 、B 类接头上时,则要对开孔部位焊缝作100%射线或超声波探伤,对超标缺陷妥善处理后再焊接接管。