线面面面垂直
- 格式:ppt
- 大小:635.00 KB
- 文档页数:33
本周知识小结:直线与平面垂直的判定和性质:线线垂直⇔线面垂直⇔面面垂直线面垂直的判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。
面面垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。
线面垂直的性质定理:垂直于同一个平面的两条直线平行。
面面垂直的性质定理:两个平面垂直,则一个平面内垂直于交线的直线例3、.(2012·广东高考)如图所示,在四棱锥P-ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB的中点,F是CD上的点,且DF=21AB,PH为△PAD中AD边上的高.(1)证明:PH⊥平面ABCD.(2)若PH=1,AD= 2,FC=1,求三棱锥E-BCF的体积.(3)证明:EF⊥平面PAB.例4、(09一模东城)如图,ABCD是边长为2a的正方形,ABEF是矩形,且二面角C AB F--是直二面角,AF a=,G是EF的中点.(Ⅰ)求证:平面AGC⊥平面BGC;(Ⅱ)求GB与平面AGC所成角的大小;例5、(09年崇文一模)在直四棱柱1111ABCD A B C D-中,AB CD∥,1AB AD==,12D D CD==,AB AD⊥.(Ⅰ)求证:BC⊥平面1D DB;(Ⅱ)求1D B与平面11D DCC所成角的大小.例6、如图,在三棱锥P-ABC中,△PAC和△PBC角形,AB=2,O是AB中点.(1)在棱PA上求一点M,使得OM∥平面PBC;(2)求证:平面PAB⊥平面ABC.课后练习:B1、若一个三角形,采用斜二测画法作出其直观图,则其直观图的面积是原三角形面积的( )A.倍B.2倍C.倍D.倍2、(2013·惠州高一检测)某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8、高为5的等腰三角形,侧视图是一个底边长为6、高为5的等腰三角形.则该几何体的体积为( )A.24B.80C.64D.2403、(2013·宿州高一检测)如图,四边形BCC1B1是圆柱的轴截面.AA1是圆柱的一条母线,已知AB=2,AC=2,AA1=3.(1)求证:AC⊥BA1.(2)求圆柱的侧面积4、如图,四棱锥P-ABCD的底面ABCD是边长为a的正方形,侧棱PA=a,PB=PD=a,则PC=5、对于直线m,n和平面α,β,能得出α⊥β的一个条件是( )A.m⊥n,m∥α,n∥βB.m⊥n,α∩β=m,n⊂αC.m∥n,n⊥β,m⊂αD.m∥n,m⊥α,n⊥β6、(2012·上海高考)一个高为2的圆柱,底面周长为2π,则该圆柱的表面积为.。
知识梳理:1.线面垂直的证明:()1判定定理;()2如果两条平行线中一条垂直于一个平面,那么另一条也垂直于这个平面;()3一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面;2.线面垂直的性质定理:①a l a l ⊥⇒⎩⎨⎧⊂⊥αα ②b a b a //⇒⎩⎨⎧⊥⊥αα③ βαβα//⇒⎩⎨⎧⊥⊥a a ④两个唯一性:过一点垂直于同一平面的直线有且只有一条过一点垂直于同一直线的平面有且只有一个3.线线垂直的证明:① 定义 ② 线面垂直证明线线垂直 ③ 三垂线定理及逆定理(一面四线三垂直) ④等腰三角形中线即为高;菱形对角线互相垂直;直径所对的圆周角为直角;数量上的勾股定理.4.线面角:(线射角)求法:①找线射构成直角三角形(斜线,垂线,射影) ②21cos cos cos θθθ∙=③ABh=θsin (h 为斜线AB 上A 到面的距离) 步骤:一作,二证,三求 知识点一:线线,线面,及面面的位置关系1.设b a ,是两条直线,βα,是两个平面,则能推出b a ⊥的是( C )A.βαβα⊥⊥,//,b aB.βαβα//,,⊥⊥b aC.βαβα//,,⊥⊂b aD.βαβα⊥⊂,//,b a 2. 已知直线m 、n 及平面α、β,则下列命题正确的是D A.m n //////αβαβ⎫⎬⎭⇒ B.αα//////n n m m ⇒⎭⎬⎫C. m m ⊥⊥⎫⎬⎭⇒ααββ//D. m n m n ⊥⎫⎬⎭⇒⊥αα//3.已知n m ,为异面直线,⊥m 平面α,⊥n 平面β.直线l 满足,,,l m l n l l αβ⊥⊥⊄⊄,则 ( D )A .βα//,且α//lB .βα⊥,且β⊥lC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l4.设,αβ是两个不同的平面,l 是一条直线,以下命题正确的是( C )A .若,l ααβ⊥⊥,则l β⊂ B .若//,//l ααβ,则l β⊂ C .若,//l ααβ⊥,则l β⊥ D .若//,l ααβ⊥,则l β⊥5. 设α、β、γ为平面,,a b 为直线,给出下列条件① αββα//,//,,b a b a ⊂⊂; ② γβγα//,//;③ γβγα⊥⊥,;④ b a b a //,,βα⊥⊥ 其中能使βα//成立的条件是( C ) A.①② B.②③ C.② ④ D. ③④ 6.设α和β为不重合的两个平面,给出下列命题:(1)若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;(2)若α外一条直线与α内的一条直线平行,则和α平行;(3)设α和β相交于直线l ,若α内有一条直线垂直于l ,则α和β垂直;(4)直线l 与α垂直⇔l 与α内的两条直线垂直。
线面垂直、面面垂直及其证明一 线面垂直的判定定理(1)线面垂直定义:如果一条直线和一个平面内的任何一条直线都垂直,那么这条直线和这个平面垂直.(2(3)三垂线定理及其逆定理①三垂线定理:如果平面内一条直线和穿过该平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影.②三垂线逆定理:在平面内的一条直线,如果它和这个平面的一条斜线垂直,那么它也和这条斜线在平面内的射影垂直. (4)线面垂直的证明例1例2例3SDD 1ODBA C 1B 1A 1C例4在正方体1111ABCD A BC D -中,M 为1CC 的中点,AC 交BD 于点O ,求证:1AO ⊥平面MBD .练习1 在正方体1111ABCD A BC D -中. (1)求证:AC ⊥平面11B D BD .(2)求证:1BD ⊥平面1ACB .练习2在三棱锥A BCD -中,BC AC =,AD BD =,作BE CD ⊥,E 为垂足,作AH BE ⊥于H .求证:AH ⊥平面BCD .在四棱锥P ABCD -中,PA ⊥底面ABCD ,AB AD ⊥,AC CD ⊥,60ABC ︒∠=,PA AB BC ==,E 是PC 的中点.(1)求证:CD AE ⊥. (2)求证:PD ⊥面ABE .二 面面垂直(1条直线叫做二面角的棱,每个半平面叫做二面角的面,若棱为l ,两个面分别为,,αβ二面角记作为l αβ--.(2)二面角的平面角定义:在二面角l αβ--棱l 上取一点O ,在半平面α和β内,从点O 分别作垂直于棱l 的射线,OA OB ,射线组成AOB ∠.则AOB ∠叫做二面角的平面角.二面角的取值范围为[0,180]︒︒.(3)面面垂直定义:若两个平面的二面角为直二面角(平面角是直角的二面角),则这两个平面互相垂直.(4)面面判定定理:一个平面过另一个平面,则这两个面相互垂直. (5)面面垂直的正面即:面面垂直→线面垂直→线线垂直. 例1如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点.(1)求证:1//AC 平面BDE ; (2)求证:平面1A AC ⊥平面BDE . .例2如图,直三棱柱111C B A ABC -中,侧棱垂直于底面,90ACB ︒∠=121AA BC AC ==,D 是棱1AA 的中点,求证:平面1BDC 平面BDC .AC B1B 1A D1C练习 如图,过S 引三条长度相等但不共面的线段,,SA SB SC ,且60ASB ASC ︒∠=∠=,90BSC ︒∠=,求证:平面ABC ⊥平面BSC .三 立体几何高考证明例1(2013江苏)如图,在三棱锥中,平面平面,,,过作,垂足为,点分别是棱的中点.求证:(1)平面平面; (2).例2(2012江苏)如图,在直三棱柱111ABC A B C -中,1111A B A C =,D E,分别是棱1BC CC ,上的点(点D 不同于点C ),且AD DE F⊥,为11B C 的中点.求证:(1) 平面ADE ⊥平面11BCC B ; (2) 直线1//A F 平面ADE .ABC S -⊥SAB SBC BC AB ⊥AB AS =A SB AF ⊥F G E ,SC SA ,//EFG ABC SA BC ⊥ABCSGFE例3如图,四棱锥P ABCD -中,底面ABCD 为平行四四边形,60DAB ︒∠=,2AB AD =,PD ⊥底面ABCD .(1)证明:PA BD ⊥(2)设1PD AD ==,求棱锥D PBC -的高.练习1如图,几何体E ABCD -是四棱锥,ABD 为正三角形,,CB CD EC BD =⊥.(Ⅰ)求证:BE DE =;(Ⅱ)若∠120BCD =︒,M 为线段AE 的中点,求证:DM ∥平面BEC .练习2(2011天津)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,45ADC ∠=︒,1AD AC ==,O 为AC 的中点,PO ABCD ⊥平面,2PO =,M为PD 的中点.(Ⅰ) 证明://PB ACM 平面;MP(Ⅱ)(Ⅲ)。
空间中的垂直关系1.线面垂直直线与平面垂直的判定定理:如果 ,那么这条直线垂直于这个平面。
推理模式:直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线 。
2.面面垂直两个平面垂直的定义:相交成 的两个平面叫做互相垂直的平面。
两平面垂直的判定定理:(线面垂直⇒面面垂直)如果 ,那么这两个平面互相垂直。
推理模式:两平面垂直的性质定理:(面面垂直⇒线面垂直)若两个平面互相垂直,那么在一个平面内垂直于它们的 的直线垂直于另一个平面。
一般来说,线线垂直或面面垂直都可转化为线面垂直来分析解决,其关系为:线线垂直−−−→←−−−判定性质线面垂直−−−→←−−−判定性质面面垂直.这三者之间的关系非常密切,可以互相转化,从前面推出后面就是判定定理,而从后面推出前面就是性质定理.同学们应当学会灵活应用这些定理证明问题.在空间图形中,高一级的垂直关系中蕴含着低一级的垂直关系,下面举例说明.例题:1.如图,AB 就是圆O 的直径,C 就是圆周上一点,PA ⊥平面ABC.(1)求证:平面PAC ⊥平面PBC;(2)若D 也就是圆周上一点,且与C 分居直径AB 的两侧,试写出图中所有互相垂直的各对平面.2、如图,棱柱111ABC A B C -的侧面11BCC B 就是菱形,11B C A B ⊥证明:平面1AB C ⊥平面11A BC3、如图所示,在长方体1111ABCD A B C D -中,AB=AD=1,AA 1=2,M 就是棱CC 1的中点 (Ⅰ)求异面直线A 1M 与C 1D 1所成的角的正切值;(Ⅱ)证明:平面ABM ⊥平面A 1B 1M 14、如图,AB 就是圆O的直径,C就是圆周上一点,PA ⊥平面ABC .若AE ⊥PC ,E为垂足,F就是PB 上任意一点,求证:平面AEF ⊥平面PBC .5、如图,直三棱柱ABC —A 1B 1C 1 中,AC =BC =1,∠ACB =90°,AA 1 =2,D 就是A 1B 1 中点.(1)求证C 1D ⊥平面A 1B ;(2)当点F 在BB 1 上什么位置时,会使得AB 1 ⊥平面C 1DF ?并证明您的结论6、S 就是△ABC 所在平面外一点,SA ⊥平面ABC,平面SAB⊥平面SBC,求证AB ⊥BC 、7、在四棱锥中,底面ABCD 就是正方形,侧面VAD 就是正三角形,平面VAD ⊥底面ABCD证明:AB ⊥平面VAD8、如图,平行四边形ABCD 中,60DAB ︒∠=,2,4AB AD ==,将CBD ∆沿BD 折起到EBD ∆的位置,使平面EDB ⊥平面ABD 、求证:AB DE ⊥VDC B A SAB9、如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD,AB=AD,∠BAD=60°,E 、F 分别就是AP 、AD 的中点求证:(1)直线EF ‖平面PCD;(2)平面BEF ⊥平面PAD10、如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,AB AS BC AB =⊥,、过A 作SB AF ⊥,垂足为F ,点G E ,分别就是棱SC SA ,的中点。
线面垂直面面垂直的判定定理和性质定理
线面垂直面面垂直的判定定理是指两个射线有一定的关系即垂直面是垂直的,其中一个起点在另一个终点上。
简单来说就是两线垂直于一个面,则这两条线的垂直的面也是垂直的。
由线面垂直面面垂直的判定定理可以得出线面垂直面面垂直的性质定理,这是建立在线面垂直面面的判断定理的基础之上的定理。
线面垂直面面垂直的性质定理:若两个射线分别与两个平面成垂直,则它们两个平面所成的平面也是垂直的。
该定理也可以用图形来表示,如下图所示:
从图中可以看出,射线AB和CD都是垂直于两个平面m、n,其中AB与m,CD与n成垂直。
而平面m和n又组成一个新平面mn,根据线面垂直面面垂直的性质定理可以知道AB与mn也是垂直的,同样CD也与mn是垂直的。
线面垂直面面垂直的定理主要应用在几何中,它可以用来证明两个平面的面积计算方法是正确的,也可以用来证明两个球面的夹角是垂直的。
同时,它同样可以应用在工程技术中,例如对于地面上的建筑物,我们可以用它来判断其是否与地面垂直。
由此可以看出,线面垂直面面垂直的判定定理和性质定理对于各类几何计算和工程技术应用具有十分重要的意义。
它能有效地帮助人们判断两面之间是否是垂直的关系,从而实现各种几何计算和工程技术应用。
线线垂直线面垂直面面垂直的判定与性质Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】空间中的垂直关系1.线面垂直直线与平面垂直的判定定理:如果 ,那么这条直线垂直于这个平面。
推理模式:直线和平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线 。
2.面面垂直两个平面垂直的定义:相交成 的两个平面叫做互相垂直的平面。
两平面垂直的判定定理:(线面垂直⇒面面垂直)如果 ,那么这两个平面互相垂直。
推理模式:两平面垂直的性质定理:(面面垂直⇒线面垂直)若两个平面互相垂直,那么在一个平面内垂直于它们的 的直线垂直于另一个平面。
一般来说,线线垂直或面面垂直都可转化为线面垂直来分析解决,其关系为:线线垂直−−−→←−−−判定性质线面垂直−−−→←−−−判定性质面面垂直.这三者之间的关系非常密切,可以互相转化,从前面推出后面是判定定理,而从后面推出前面是性质定理.同学们应当学会灵活应用这些定理证明问题.在空间图形中,高一级的垂直关系中蕴含着低一级的垂直关系,下面举例说明.例题:1.如图,AB 是圆O 的直径,C 是圆周上一点,PA ⊥平面ABC .(1)求证:平面PAC ⊥平面PBC ;(2)若D 也是圆周上一点,且与C 分居直径AB 的两侧,试写出图中所有互相垂直的各对平面.2、如图,棱柱111ABC A B C -的侧面11BCC B 是菱形,11B C A B ⊥证明:平面1AB C ⊥平面11A BC3、如图所示,在长方体1111ABCD A B C D -中,AB=AD=1,AA 1=2,M 是棱CC 1的中点 (Ⅰ)求异面直线A 1M 和C 1D 1所成的角的正切值;(Ⅱ)证明:平面ABM ⊥平面A 1B 1M 14、如图,AB 是圆O的直径,C是圆周上一点,PA ⊥平面ABC .若AE ⊥PC ,E为垂足,F是PB 上任意一点,求证:平面AEF ⊥平面PBC .5、如图,直三棱柱ABC —A 1B 1C 1 中,AC =BC =1,∠ACB =90°,AA 1 =2,D 是A 1B 1 中点.(1)求证C 1D ⊥平面A 1B ;(2)当点F 在BB 1 上什么位置时,会使得AB 1 ⊥平面C 1DF 并证明你的结论6、S 是△ABC 所在平面外一点,SA ⊥平面ABC,平面SAB ⊥平面SBC,求证AB ⊥BC.7、在四棱锥中,底面ABCD 是正方形,侧面VAD 是正三角形,平面VAD ⊥底面ABCD证明:AB ⊥平面VAD8、如图,平行四边形ABCD 中,60DAB ︒∠=,2,4AB AD ==,将CBD ∆沿BD 折起到EBD ∆的位置,使平面EDB ⊥平面ABD .求证:AB DE ⊥ 9、如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,AB=AD ,∠BAD=60°,E 、F 分别是AP 、AD 的中点求证:(1)直线EF ‖平面PCD ;(2)平面BEF ⊥平面PADVDCBA SA10、如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,AB AS BC AB =⊥,.过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点。
面面垂直线面垂直的判定定理一、引言在几何学中,面面垂直是一个基本的概念。
当两个平面垂直时,我们称它们是面面垂直的。
本文将介绍面面垂直线面垂直的判定定理。
二、定义1. 面:在三维空间中,由无数条线段组成的平坦曲面。
2. 平行:两条线或两个平面在同一平面内,且不相交。
3. 垂直:两条线或两个平面相交于一个角度为90度的交点。
4. 面面垂直:当两个平面相互垂直时,它们被称为“面面垂直”。
三、定理如果一条直线同时与两个不同的平面相交,并且这条直线与其中一个平面的交线是另一个平面上的一条直线,则这两个平面是“面面垂直”的。
四、证明假设有两个不同的平面A和B,并且这两个平面相互垂直。
我们需要证明如果一条直线同时与这两个不同的平面相交,并且这条直线与其中一个平面A的交线是另一个平面B上的一条直线,则这两个平面是“ 面面垂直”的。
首先,我们需要证明这条直线存在。
假设这两个平面A和B相交于一条直线L。
因为这两个平面相互垂直,所以它们的交角为90度,因此直线L与平面A和平面B的交线都是垂直的。
接下来,我们需要证明这条直线与平面A和平面B的交线是垂直的。
假设这条直线与平面A的交点为P,与平面B的交点为Q,并且PQ 在平面B上。
我们需要证明AP和BQ是垂直的。
由于PQ在平面B上,所以PQ与平面A的交线PA也在平面B上。
因此,我们可以得到三角形APQ和三角形BPQ共享一个角度PQB,并且它们有一个共同边界PQ。
根据余弦定理:cos(APQ) = (AQ² + PQ² - AP²) / (2 * AQ * PQ)cos(BPQ) = (BQ² + PQ² - BP²) / (2 * BQ * PQ)由于AP = BQ(因为它们都等于L),所以AP² = BQ²。
将其代入上式中可得:cos(APQ) = cos(BPQ)因此,APQ = BPQ因此,AP和BP是垂直的。