山东省冠县武训高级中学高考数学 7.3 二元一次不等式(组)与简单的线性规划问题复习题库
- 格式:doc
- 大小:372.50 KB
- 文档页数:8
第3课时二元一次不等式(组)与简单的线性规划问题考纲传真1.会从实际情境中抽象出二元一次不等式组.2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.3.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.1.二元一次不等式表示平面区域在平面直角坐标系中,平面内所有的点被直线Ax+By+C=0分成三类:(1)满足Ax+By+C=0的点;(2)满足Ax+By+C>0的点;(3)满足Ax+By+C<0的点.2.二元一次不等式表示平面区域的判断方法直线l:Ax+By+C=0把坐标平面内不在直线l上的点分为两部分,当点在直线l的同一侧时,点的坐标使式子Ax+By+C的值具有相同的符号,当点在直线l的两侧时,点的坐标使Ax+By+C的值具有相反的符号.3.线性规划中的基本概念名称意义线性约束条件由x,y的一次不等式(或方程)组成的不等式(组)线性目标函数关于x,y的一次解析式可行解满足线性约束条件的解(x,y)可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题1.(人教A 版教材习题改编)不等式组⎩⎪⎨⎪⎧x -3y +6≥0x -y +2<0表示的平面区域是( )『解析』 x -3y +6≥0表示直线x -3y +6=0及左下方部分,x -y +2<0表示直线x -y +2=0右上方部分.故不等式组表示的平面区域为选项B 所示部分. 『答案』 B2.如果点(1,b )在两条平行直线6x -8y +1=0和3x -4y +5=0之间,则b 应取的整数值为( )A .2B .1C .3D .0『解析』 由题意知(6-8b +1)(3-4b +5)<0,即(b -78)(b -2)<0,∴78<b <2,∴b 应取的整数为1. 『答案』 B3.(2012·广东高考)已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤2,x +y ≥1,x -y ≤1,则z =3x +y 的最大值为( )A .12B .11C .3D .-1『解析』 可行域如图中阴影部分所示.先画出直线l 0:y =-3x ,平移直线l 0,当直线过A 点时z =3x +y 的值最大,由⎩⎪⎨⎪⎧y =2,x -y -1=0,得⎩⎪⎨⎪⎧x =3,y =2.∴A 点坐标为(3,2).∴z 最大=3×3+2=11. 『答案』 B4.在平面直角坐标系中,不等式组⎩⎪⎨⎪⎧x ≥1,x +y ≤0,x -y -4≤0表示的平面区域的面积是________.『解析』 不等式组表示的区域如图中的阴影部分所示,由⎩⎪⎨⎪⎧x =1x +y =0得A (1,-1)由⎩⎪⎨⎪⎧x =1x -y -4=0得B (1,-3)由⎩⎪⎨⎪⎧x +y =0x -y -4=0得C (2,-2), ∴|AB |=2,∴S △ABC =12×2×1=1.『答案』 15.(2012·山东高考改编)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥2,2x +y ≤4,4x -y ≥-1,则目标函数z =3x -y 的取值范围是______.『解析』 作不等式组表示的可行域,如图所示,作直线l 0:3x -y =0,并上下平移.当直线过点A 、B 时,z 分别取得最大值、最小值.由⎩⎪⎨⎪⎧x +2y -2=0,2x +y -4=0,得A (2,0).由⎩⎪⎨⎪⎧4x -y +1=0,2x +y -4=0.得点B (12,3),∴z max =3×2-0=6,z min =3×12-3=-32.故z 的取值范围是『-32,6』.『答案』 『-32,6』二元一次不等式(组)表示的平面区域若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,求k 的值.『审题视点』 画出不等式组表示的平面区域,直线y =kx +43过定点(0,43),利用面积相等确定直线经过的区域边界上的点,然后代入求k 值. 『尝试解答』 由图可知,线性规划区域为△ABC 边界及内部.y =kx +43恰过A ⎝⎛⎭⎫0,43,y =kx +43将区域平均分成面积相等两部分, ∴直线y =kx +43一定过线段BC 的中点D ,易求C (0,4),B (1,1),∴线段BC 的中点D 的坐标为(12,52).因此52=k ×12+43,k =73.,1.解答本题的关键是根据直线y =kx +43过定点(0,43),利用面积相等确定直线所经过的边界上的点.2.二元一次不等式(组)表示平面区域的判定方法:(1)同号上,异号下.当B (Ax +By +C )>0时,区域为直线Ax +By +C =0的上方,当B (Ax +By +C )<0时,区域为直线Ax +By +C =0的下方.(2)直线定界、特殊点定域.应注意是否包括边界,若不包括边界,则应将边界画成虚线;若直线不过原点,特殊点常选取原点.(2012·福建高考)若函数y =2x 图象上存在点(x ,y )满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为( )A.12 B .1 C.32D .2『解析』 在同一直角坐标系中作出函数y =2x的图象及⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0所表示的平面区域,如图阴影部分所示.由下图可知,当m ≤1时,函数y =2x 的图象上存在点(x ,y )满足约束条件,故m 的最大值为1.『答案』 B求目标函数的最值(2012·安徽高考改编)已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +2y ≥3,2x +y ≤3.(1)求z =x -y 的最小值和最大值; (2)若z =x 2+y 2,求z 的取值范围.『审题视点』 明确目标函数z 的几何意义,数形结合找最优解,代入求值. 『尝试解答』 作约束条件⎩⎪⎨⎪⎧x ≥0,x +2y ≥3,2x +y ≤3.满足的可行域,如下图所示为△ABC 及其内部.联立⎩⎪⎨⎪⎧x +2y =3,2x +y =3.得A (1,1).解方程组⎩⎪⎨⎪⎧x =0,2x +y =3,得点B (0,3). (1)由z =x -y ,得y =x -z .平移直线x -y =0,则当其过点B (0,3)时,截距-z 最大;当过点A (1,1)时,截距-z 最小,即z 最大.∴z min =0-3=-3;z max =1-1=0. (2)过O (0,0)作直线x +2y =3的垂线l 交于点N .观察可行域知,可行域内的点B 、N 到原点的距离分别达到最大与最小. 又|ON |=|0+0-3|12+22=355,|OB |=3.∴z 的取值范围是『355,3』.1.本题求解的关键在于:(1)准确作出可行域;(2)明确目标函数的几何意义.2.(1)线性目标函数z=ax+by的几何意义与直线ax+by-z=0在y轴上的截距有关,当b>0时,直线ax+by-z=0在y轴上的截距越大,z值越大;当b<0时,情况相反.(2)常见的非线性目标函数的几何意义:y-bx-a表示点(x,y)与点(a,b)连线的斜率;(x-a)2+(y-b)2表示点(x,y)与点(a,b)的距离.(2012·课标全国卷)已知正三角形ABC的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x,y)在△ABC内部,则z=-x+y的取值范围是() A.(1-3,2) B.(0,2) C.(3-1,2) D.(0,1+3)『解析』如下图,根据题意得C(1+3,2).作直线-x+y=0,并向左上或右下平移,过点B(1,3)和C(1+3,2)时,z=-x+y取范围的边界值,即-(1+3)+2<z<-1+3,∴z=-x+y的取值范围是(1-3,2).『答案』A一种方法确定二元一次不等式表示的平面区域的方法是“直线定界,特殊点定域”.(1)直线定界:即若不等式不含等号,则应把直线画成虚线;若不等式含有等号,把直线画成实线.(2)特殊点定域:当C≠0时,常把原点作为测试点;当C=0时,常选点(1,0)或者(0,1)作为测试点.一个程序利用线性规划求最值的步骤是:(1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形;(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解; (4)求最值:将最优解代入目标函数求最值. 两个防范1.画平面区域.避免失误的重要方法就是首先使二元一次不等式标准化.2.求二元一次函数z =ax +by (ab ≠0)的最值,利用其几何意义,通过求y =-a b x +zb 的截距z b 的最值间接求出z 的最值.要注意:当b >0时,截距zb 取最大值时,z 也取最大值;截距zb取最小值时,z 也取最小值.当b <0时,结论与b >0的情形恰好相反.从近两年的高考试题来看,二元一次不等式(组)表示的平面区域,求线性目标函数的最值是高考命题的热点,难度中等偏下,主要考查可行域的画法、目标函数最值的求法、由最优解(可行域)情况确定参数的范围,以及数形结合的思想.求解的常见错误是忽视题目的约束条件与目标函数的几何意义导致错误.。
高考数学一轮复习学案:7.3 二元一次不等式(组)与简单的线性规划问题(含答案)7.3二元一次不等二元一次不等式式组组与简与简单的线性规划问题单的线性规划问题最新考纲考情考向分析1.会从实际情境中抽象出二元一次不等式组2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组3.会从实际情境中抽象出一些简单的二元一次线性规划问题,并能加以解决.以画二元一次不等式组表示的平面区域.目标函数最值的求法为主,兼顾由最优解可行域情况确定参数的范围,以及简单线性规划问题的实际应用,加强转化与化归和数形结合思想的应用意识本节内容在高考中以选择.填空题的形式进行考查,难度中低档.1二元一次不等式表示的平面区域1一般地,二元一次不等式AxByC0在平面直角坐标系中表示直线AxByC0某一侧所有点组成的平面区域我们把直线画成虚线,以表示区域不包括边界直线当我们在坐标系中画不等式AxByC0所表示的平面区域时,此区域应包括边界直线,则把边界直线画成实线2对于直线AxByC0同一侧的所有点,把它的坐标x,y代入AxByC,所得的符号都相同,所以只需在此直线的同一侧取一个特殊点x0,y0作为测试点,由Ax0By0C的符号即可断定AxByC0表示的是直线AxByC0哪一侧的平面区域2线性规划相关概念名称意义约束条件由变量x,y组成的一次不等式线性约束条件由x,y的一次不等式或方程组成的不等式组目标函数欲求最大值或最小值的函数线性目标函数关于x,y的一次解析式可行解满足线性约束条件的解可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题3重要结论画二元一次不等式表示的平面区域的直线定界,特殊点定域1直线定界不等式中无等号时直线画成虚线,有等号时直线画成实线2特殊点定域若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取0,1或1,0来验证知识拓展1利用“同号上,异号下”判断二元一次不等式表示的平面区域对于AxByC0或AxByC0时,区域为直线AxByC0的上方;2当BAxByC0表示的平面区域一定在直线AxByC0的上方3点x1,y1,x2,y2在直线AxByC0同侧的充要条件是Ax1By1CAx2By2C0,异侧的充要条件是Ax1By1CAx2By2C0.4 第二.四象限表示的平面区域可以用不等式xy0表示5线性目标函数的最优解是唯一的6最优解指的是使目标函数取得最大值或最小值的可行解7目标函数zaxbyb0中,z的几何意义是直线axbyz0在y轴上的截距题组二教材改编2P86T3不等式组x3y60,xy20表示的平面区域是答案B解析x3y60表示直线x3y60及其右下方部分,xy20表示直线xy20的左上方部分,故不等式组表示的平面区域为选项B中的阴影部分3P91T2投资生产A产品时,每生产100吨需要资金200万元,需场地200平方米;投资生产B产品时,每生产100吨需要资金300万元,需场地100平方米现某单位可使用资金1400万元,场地900平方米,则上述要求可用不等式组表示为__________________用x,y分别表示生产A,B产品的吨数,x和y的单位是百吨答案200x300y1400,200x100y900,x0,y0解析用表格列出各数据AB总数产品吨数xy资金200x300y1400场地200x100y900所以不难看出,x0,y0,200x300y1400,200x100y900.题组三易错自纠4下列各点中,不在xy10表示的平面区域内的是A0,0B1,1C1,3D2,3答案C解析把各点的坐标代入可得1,3不适合,故选C.5xx日照一模已知变量x,y满足2xy0,x2y30,x0,则z22xy的最大值为A.2B22C2D4答案D解析作出满足不等式组的平面区域,如图阴影部分所示,令m2xy,则当m取得最大值时,z22xy取得最大值由图知直线m2xy经过点A1,2时,m取得最大值,所以zmax22124,故选D.6已知x,y满足xy50,xy0,x3,若使得zaxy取最大值的点x,y有无数个,则a的值为________答案1解析先根据约束条件画出可行域,如图中阴影部分所示,当直线zaxy和直线AB重合时,z取得最大值的点x,y有无数个,akAB1,a1.题型一二元一次不等式组表示的平面区域命题点1不含参数的平面区域问题典例xx黄冈模拟在平面直角坐标系中,已知平面区域Ax,y|xy1,且x0,y0,则平面区域Bxy,xy|x,yA的面积为A2B1C.12D.14答案B解析对于集合B,令mxy,nxy,则xmn2,ymn2,由于x,yA,所以mn2mn21,mn20,mn20,即m1,mn0,mn0,因此平面区域B的面积即为不等式组m1,mn0,mn0所对应的平面区域阴影部分的面积,画出图形可知,该平面区域的面积为212111,故选B.命题点2含参数的平面区域问题典例若不等式组xy0,2xy2,y0,xya表示的平面区域的形状是三角形,则a的取值范围是Aa43B0a1C1a43D00,y12x3,x4y12,则zy3x2的取值范围为A.,12B.,13C.12,13D.13,答案B解析不等式组所表示的平面区域如图中阴影部分所示,zy3x2表示点D2,3与平面区域内的点x,y之间连线的斜率因为点D2,3与点B8,1连线的斜率为13且C的坐标为2,2,故由图知,zy3x2的取值范围为,13,故选B.2已知x,y满足约束条件xy0,xy2,y0,若zaxy的最大值为4,则a等于A3B2C2D3答案B解析根据已知条件,画出可行域,如图阴影部分所示由zaxy,得yaxz,直线的斜率ka.当0k1,即1a1,即a1时,由图形可知此时最优解为点0,0,此时z0,不合题意;当1k0,即0a1时,无选项满足此范围;当k1时,由图形可知此时最优解为点2,0,此时z2a04,得a2.题型三线性规划的实际应用问题典例某玩具生产公司每天计划生产卫兵.骑兵.伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元1试用每天生产的卫兵个数x与骑兵个数y表示每天的利润元;2怎样分配生产任务才能使每天的利润最大,最大利润是多少解1依题意每天生产的伞兵个数为100xy,所以利润5x6y3100xy2x3y300.2约束条件为5x7y4100xy600,100xy0,x0,y0,x,yN.整理得x3y200,xy100,x0,y0,x,yN.目标函数为2x3y300,作出可行域,如图阴影部分所示,作初始直线l02x3y0,平移l0,当l0经过点A 时,有最大值,由x3y200,xy100,得x50,y50.最优解为A50,50,此时max550元故每天生产卫兵50个,骑兵50个,伞兵0个时利润最大,且最大利润为550元思维升华解线性规划应用问题的一般步骤1审题仔细阅读材料,抓住关键,准确理解题意,明确有哪些限制条件,借助表格或图形理清变量之间的关系2设元设问题中起关键作用或关联较多的量为未知量x,y,并列出相应的不等式组和目标函数3作图准确作出可行域,平移找点最优解4求解代入目标函数求解最大值或最小值5检验根据结果,检验反馈跟踪训练xx全国某高科技企业生产产品A和产品B需要甲.乙两种新型材料生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时生产一件产品A的利润为2100元,生产一件产品B的利润为900元该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A.产品B的利润之和的最大值为________元答案216000解析设生产A产品x件,B产品y件,根据所耗费的材料要求.工时要求等其他限制条件,得线性约束条件为1.5x0.5y150,x0.3y90,5x3y600,x0,xN*,y0,yN*,目标函数z2100x900y.作出可行域为图中的四边形,包括边界,顶点为60,100,0,200,0,0,90,0,在60,100处取得最大值,zmax210060900100216000元线性规划问题考点分析线性规划是高考重点考查的一个知识点这类问题一般有三类目标函数是线性的;目标函数是非线性的;已知最优解求参数,处理时要注意搞清是哪种类型,利用数形结合解决问题典例xx天津设变量x,y 满足约束条件xy20,2x3y60,3x2y90,则目标函数z2x5y的最小值为A4B6C10D17答案B解析由约束条件作出可行域如图阴影部分所示,目标函数可化为y25x15z,在图中画出直线y25x,平移该直线,易知经过点A时z最小又知点A的坐标为3,0,zmin23506.故选B.。
【步步高】(江苏专用)2017版高考数学一轮复习第七章不等式 7.3 二元一次不等式(组)与简单的线性规划问题理1.二元一次不等式表示的平面区域(1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.我们把直线画成虚线以表示区域不包括边界直线.当我们在坐标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应包括边界直线,则把边界直线画成实线.(2)由于对直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得的符号都相同,所以只需在此直线的同一侧取一个特殊点(x0,y0)作为测试点,由Ax0+By0+C的符号即可判断Ax+By+C>0表示的直线是Ax+By+C=0哪一侧的平面区域.2.线性规划相关概念3.(1)画二元一次不等式表示的平面区域的直线定界,特殊点定域:①直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线;②特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证.(2)利用“同号上,异号下”判断二元一次不等式表示的平面区域:对于Ax+By+C>0或Ax+By+C<0,则有①当B(Ax+By+C)>0时,区域为直线Ax+By+C=0的上方;②当B (Ax +By +C )<0时,区域为直线Ax +By +C =0的下方. (3)最优解和可行解的关系:最优解必定是可行解,但可行解不一定是最优解.最优解不一定唯一,有时唯一,有时有多个. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方.( × ) (2)线性目标函数的最优解可能是不唯一的.( √ )(3)目标函数z =ax +by (b ≠0)中,z 的几何意义是直线ax +by -z =0在y 轴上的截距.( × )(4)不等式x 2-y 2<0表示的平面区域是一、三象限角的平分线和二、四象限角的平分线围成的含有y 轴的两块区域.( √ )1.如图阴影部分表示的区域可用二元一次不等式组表示为________.答案 ⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0解析 两直线方程分别为x -2y +2=0与x +y -1=0. 由(0,0)点在直线x -2y +2=0右下方可知x -2y +2≥0, 又(0,0)点在直线x +y -1=0左下方可知x +y -1≥0,即⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0为所表示的可行域.2.不等式组⎩⎪⎨⎪⎧x -3y +6<0,x -y +2≥0表示的平面区域是________.答案 ③解析 用特殊点代入,比如(0,0),容易判断为③.3.若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y ≥-1,x +y ≥1,3x -y ≤3,则该约束条件所围成的平面区域的面积是________. 答案 2解析 因为直线x -y =-1与x +y =1互相垂直, 所以如图所示的可行域为直角三角形, 易得A (0,1),B (1,0),C (2,3), 故AB =2,AC =22, 其面积为12×AB ×AC =2.4.若x ,y 满足⎩⎪⎨⎪⎧x -y ≤0,x +y ≤1,x ≥0,则z =x +2y 的最大值为________.答案 2解析 可行域如图所示.目标函数化为y =-12x +12z ,当直线y =-12x +12z 过点A (0,1)时,z 取得最大值2.5.投资生产A 产品时,每生产100吨需要资金200万元,需场地200平方米;投资生产B 产品时,每生产100吨需要资金300万元,需场地100平方米.现某单位可使用资金1 400万元,场地900平方米,则上述要求可用不等式组表示为__________________(用x ,y 分别表示生产A ,B 产品的吨数,x 和y 的单位是百吨). 答案 ⎩⎪⎨⎪⎧200x +300y ≤1 400,200x +100y ≤900,x ≥0,y ≥0解析 用表格列出各数据所以不难看出,x ≥0,y题型一 二元一次不等式(组)表示的平面区域 命题点1 不含参数的平面区域问题例1 (1)不等式(x -2y +1)(x +y -3)≤0在坐标平面内表示的区域(用阴影部分表示),应是下列图形中的________.(2)不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积等于________.答案 (1)③ (2)43解析 (1)(x -2y +1)(x +y -3)≤0⇒⎩⎪⎨⎪⎧x -2y +1≥0,x +y -3≤0,或⎩⎪⎨⎪⎧x -2y +1≤0,x +y -3≥0.画出平面区域后,只有③符合题意.(2)由题意得不等式组表示的平面区域如图阴影部分,A (0,43),B (1,1),C (0,4),则△ABC 的面积为12×1×83=43.命题点2 含参数的平面区域问题例2 若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是________________________________________________________________. 答案 73解析 不等式组表示的平面区域如图所示.由于直线y =kx +43过定点⎝ ⎛⎭⎪⎫0,43.因此只有直线过AB 中点时,直线y =kx +43能平分平面区域. 因为A (1,1),B (0,4),所以AB 中点D ⎝ ⎛⎭⎪⎫12,52.当y =kx +43过点⎝ ⎛⎭⎪⎫12,52时,52=k 2+43, 所以k =73.思维升华 (1)求平面区域的面积:①首先画出不等式组表示的平面区域,若不能直接画出,应利用题目的已知条件转化为不等式组问题,从而再作出平面区域;②对平面区域进行分析,若为三角形应确定底与高,若为规则的四边形(如平行四边形或梯形),可利用面积公式直接求解,若为不规则四边形,可分割成几个三角形分别求解再求和即可.(2)利用几何意义求解的平面区域问题,也应作出平面图形,利用数形结合的方法去求解.(1)不等式组⎩⎪⎨⎪⎧x ≥0,x +y ≤3,y ≥x +1表示的平面区域为Ω,直线y =kx -1与区域Ω有公共点,则实数k 的取值范围为________.(2)已知约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,kx -y ≤0表示面积为1的直角三角形区域,则实数k 的值为________.答案 (1)[3,+∞) (2)1解析 (1)直线y =kx -1过定点M (0,-1),由图可知,当直线y =kx -1经过直线y =x +1与直线x +y =3的交点C (1,2)时,k 最小,此时k CM =2--1-0=3,因此k ≥3,即k ∈[3,+∞).(2)由于x =1与x +y -4=0不可能垂直,所以只有可能x +y -4=0与kx -y =0垂直或x =1与kx -y =0垂直.①当x +y -4=0与kx -y =0垂直时,k =1,检验知三角形区域面积为1,即符合要求. ②当x =1与kx -y =0垂直时,k =0,检验不符合要求. 题型二 求目标函数的最值问题 命题点1 求线性目标函数的最值例3 (2014·广东)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,且z =2x +y 的最大值和最小值分别为m 和n ,则m -n =________. 答案 6解析 画出可行域,如图阴影部分所示.由z =2x +y ,得y =-2x +z . 由⎩⎪⎨⎪⎧y =x ,y =-1,得⎩⎪⎨⎪⎧x =-1,y =-1,∴A (-1,-1).由⎩⎪⎨⎪⎧x +y =1,y =-1,得⎩⎪⎨⎪⎧x =2,y =-1,∴B (2,-1).当直线y =-2x +z 经过点A 时,z min =2×(-1)-1=-3=n .当直线y =-2x +z 经过点B 时,z max =2×2-1=3=m ,故m -n =6.命题点2 求非线性目标函数的最值例4 实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≤0,x >0,y ≤2.(1)若z =yx,求z 的最大值和最小值,并求z 的取值范围;(2)若z =x 2+y 2,求z 的最大值与最小值,并求z 的取值范围.解 由⎩⎪⎨⎪⎧x -y +1≤0,x >0,y ≤2,作出可行域,如图中阴影部分所示.(1)z =yx表示可行域内任一点与坐标原点连线的斜率,因此y x的范围为直线OB 的斜率到直线OA 的斜率(直线OA 的斜率不存在,即z max 不存在).由⎩⎪⎨⎪⎧x -y +1=0,y =2,得B (1,2),∴k OB =21=2,即z min =2,∴z 的取值范围是[2,+∞).(2)z =x 2+y 2表示可行域内的任意一点与坐标原点之间距离的平方. 因此x 2+y 2的值最小为OA 2(取不到),最大值为OB 2.由⎩⎪⎨⎪⎧x -y +1=0,x =0,得A (0,1),∴OA 2=(02+12)2=1,OB 2=(12+22)2=5, ∴z 的取值范围是(1,5]. 引申探究 1.若z =y -1x -1,求z 的取值范围. 解 z =y -1x -1可以看作过点P (1,1)及(x ,y )两点的直线的斜率. ∴z 的取值范围是(-∞,0).2.若z =x 2+y 2-2x -2y +3.求z 的最大值、最小值. 解 z =x 2+y 2-2x -2y +3 =(x -1)2+(y -1)2+1,而(x -1)2+(y -1)2表示点P (1,1)与Q (x ,y )的距离的平方,(PQ 2)max =(0-1)2+(2-1)2=2,(PQ 2)min =(|1-1+1|12+-2)2=12, ∴z max =2+1=3,z min =12+1=32.命题点3 求线性规划的参数例5 已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a x -,若z =2x +y 的最小值为1,则a=________. 答案 12解析 作出不等式组表示的可行域,如图(阴影部分).易知直线z =2x +y 过交点A 时,z 取最小值, 由⎩⎪⎨⎪⎧x =1,y =ax -,得⎩⎪⎨⎪⎧x =1,y =-2a ,∴z min =2-2a =1,解得a =12.思维升华 (1)先准确作出可行域,再借助目标函数的几何意义求目标函数的最值. (2)当目标函数是非线性的函数时,常利用目标函数的几何意义来解题,常见代数式的几何意义有:①x 2+y 2表示点(x ,y )与原点(0,0)的距离,x -a2+y -b2表示点(x ,y )与点(a ,b )的距离;②y x 表示点(x ,y )与原点(0,0)连线的斜率,y -bx -a表示点(x ,y )与点(a ,b )连线的斜率. (3)当目标函数中含有参数时,要根据临界位置确定参数所满足条件.(1)在直角坐标平面内,不等式组⎩⎪⎨⎪⎧y ≤x +1,y ≥0,0≤x ≤t所表示的平面区域的面积为32,则t 的值为________.(2) x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为________. 答案 (1)1 (2)2或-1解析 (1)不等式组⎩⎪⎨⎪⎧y ≤x +1,y ≥0,0≤x ≤t所表示的平面区域如图中阴影部分所示.由⎩⎪⎨⎪⎧y =x +1,x =t ,解得交点B (t ,t +1),在y =x +1中,令x =0得y =1,即直线y =x +1与y 轴的交点为C (0,1),由平面区域的面积S =+t +t 2=32,得t 2+2t -3=0,解得t =1或t =-3(不合题意,舍去).(2)如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距, 故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2;当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1. 题型三 线性规划的实际应用例6 某客运公司用A 、B 两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A 、B 两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1 600元/辆和2 400元/辆,公司拟组建一个不超过21辆车的客运车队,并要求B 型车不多于A 型车7辆.若每天运送人数不少于900,且使公司从甲地去乙地的营运成本最小,那么应配备A 型车、B 型车各多少辆?解 设A 型、B 型车辆分别为x 、y 辆,相应营运成本为z 元,则z =1 600x +2 400y .由题意,得x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤21,y ≤x +7,36x +60y ≥900,x ,y ≥0,x ,y ∈N .作可行域如图所示,可行域的三个顶点坐标分别为P (5,12),Q (7,14),R (15,6).由图可知,当直线z =1 600x +2 400y 经过可行域的点P时,直线z =1 600x +2 400y 在y 轴上的截距z2 400最小,即z 取得最小值.故应配备A 型车5辆、B 型车12辆,可以满足公司从甲地去乙地的营运成本最小. 思维升华 解线性规划应用问题的一般步骤: (1)分析题意,设出未知量; (2)列出线性约束条件和目标函数; (3)作出可行域并利用数形结合求解; (4)作答.(2015·陕西改编)某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为________万元.答案 18解析 设每天甲、乙的产量分别为x 吨,y 吨,由已知可得⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,目标函数z =3x +4y ,线性约束条件表示的可行域如图阴影部分所示:可得目标函数在点A 处取到最大值.由⎩⎪⎨⎪⎧x +2y =8,3x +2y =12,得A (2,3).则z max =3×2+4×3=18(万元).8.含参数的线性规划问题的易错点典例 已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,如果目标函数z =x -y 的最小值为-1,则实数m =________.易错分析 题目给出的区域边界“两静一动”,可先画出已知边界表示的区域,分析动直线的位置时容易出错,没有抓住直线x +y =m 和直线y =-x 平行这个特点;另外在寻找最优点时也容易找错区域的顶点.解析 显然,当m <2时,不等式组表示的平面区域是空集;当m =2时,不等式组表示的平面区域只包含一个点A (1,1).此时z min =1-1=0≠-1. 显然都不符合题意.故必有m >2,此时不等式组⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m所表示的平面区域如图所示,平面区域为一个三角形区域, 其顶点为A (1,1),B (m -1,1),C (m +13,2m -13).由图可知,当直线y =x -z 经过点C 时,z 取得最小值, 最小值为m +13-2m -13=2-m3.由题意,得2-m3=-1,解得m =5.答案 5温馨提醒 (1)当约束条件含有参数时,要注意根据题目条件,画出符合条件的可行域.本题因含有变化的参数,可能导致可行域画不出来. (2)应注意直线y =x -z 经过的特殊点.[方法与技巧]1.平面区域的画法:线定界、点定域(注意实虚线).2.求最值:求二元一次函数z =ax +by (ab ≠0)的最值,将函数z =ax +by 转化为直线的斜截式:y =-ab x +z b ,通过求直线的截距z b的最值间接求出z 的最值.最优解在顶点或边界取得. 3.解线性规划应用题,可先找出各变量之间的关系,最好列成表格,然后用字母表示变量,列出线性约束条件;写出要研究的函数,转化成线性规划问题.4.利用线性规划的思想结合代数式的几何意义可以解决一些非线性规划问题. [失误与防范]1.画出平面区域.避免失误的重要方法就是首先使二元一次不等式标准化.2.在通过求直线的截距zb 的最值间接求出z 的最值时,要注意:当b >0时,截距z b取最大值时,z 也取最大值;截距z b 取最小值时,z 也取最小值;当b <0时,截距zb取最大值时,z 取最小值;截距zb取最小值时,z 取最大值.A 组 专项基础训练 (时间:30分钟)1.直线2x +y -10=0与不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x -y ≥-2,4x +3y ≤20表示的平面区域的公共点有________个. 答案 1解析 由不等式组画出平面区域如图(阴影部分).直线2x +y -10=0恰过点A (5,0),且其斜率k =-2<k AB =-43,即直线2x +y -10=0与平面区域仅有一个公共点A (5,0).2.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2≥0,x -y +3≥0,2x +y -3≤0,则目标函数z=x +6y 的最大值为________. 答案 18解析 画出约束条件的可行域如图阴影,作直线l :x +6y =0,平移直线l 可知,直线l 过点A 时,目标函数z =x +6y 取得最大值,易得A (0,3),所以z max =0+6×3=18.3.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≥0,x -y -2≤0,y ≥1,则目标函数z =x +2y 的最小值为________.答案 3解析 由线性约束条件画出可行域(如图所示).由z =x +2y ,得y =-12x +12z ,12z 的几何意义是直线y =-12x +12z 在y 轴上的截距,要使z最小,需使12z 最小,易知当直线y =-12x +12z 过点A (1,1)时,z 最小,最小值为3.4.若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a ,表示的平面区域是一个三角形,则a 的取值范围是______________.答案 (0,1]∪⎣⎢⎡⎭⎪⎫43,+∞ 解析 不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图(阴影部分),求得A ,B 两点的坐标分别为⎝ ⎛⎭⎪⎫23,23和(1,0),若原不等式组表示的平面区域是一个三角形,则a 取值范围是0<a ≤1或a ≥43.5.某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克、B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是________元. 答案 2 800解析 设每天生产甲种产品x 桶,乙种产品y 桶,则根据题意得x 、y 的约束条件为⎩⎪⎨⎪⎧x ≥0,x ∈N ,y ≥0,y ∈N ,x +2y ≤12,2x +y ≤12.设获利z 元, 则z =300x +400y . 画出可行域如图.画直线l :300x +400y =0, 即3x +4y =0.平移直线l ,从图中可知,当直线过点M 时, 目标函数取得最大值.由⎩⎪⎨⎪⎧x +2y =12,2x +y =12,解得⎩⎪⎨⎪⎧x =4,y =4,即M 的坐标为(4,4),∴z max =300×4+400×4=2 800(元).6.若函数y =2x图象上存在点(x ,y )满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为________. 答案 1解析 在同一直角坐标系中作出函数y =2x的图象及⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0所表示的平面区域,如图阴影部分所示.由图可知,当m ≤1时,函数y =2x的图象上存在点(x ,y )满足约束条件, 故m 的最大值为1.7.已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x >0,4x +3y ≤4,y ≥0,则ω=y +1x的最小值是________. 答案 1解析 作出不等式组对应的平面区域如图,ω=y +1x的几何意义是区域内的点P (x ,y )与定点A (0,-1)所在直线的斜率, 由图象可知当P 位于点D (1,0)时,直线AP 的斜率最小,此时ω=y +1x 的最小值为-1-00-1=1.8.已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,x <2,x +y -1≥0,则z =2x -2y -1的取值范围是__________.答案 [-53,5)解析 画出不等式组所表示的区域,如图中阴影部分所示,可知2×13-2×23-1≤z <2×2-2×(-1)-1,即z 的取值范围是[-53,5).9.铁矿石A 和B 的含铁率a ,冶炼每万吨铁矿石的CO 2的排放量b 及每万吨铁矿石的价格c 如表:某冶炼厂至少要生产2),则购买铁矿石的最少费用为________(百万元). 答案 15解析 设购买铁矿石A 、B 分别为x 万吨,y 万吨,购买铁矿石的费用为z(百万元),则 ⎩⎪⎨⎪⎧0.5x +0.7y ≥1.9,x +0.5y ≤2,x ≥0,y ≥0.目标函数z =3x +6y ,由⎩⎪⎨⎪⎧0.5x +0.7y =1.9,x +0.5y =2,得⎩⎪⎨⎪⎧x =1,y =2.记P (1,2),画出可行域可知,当目标函数z =3x +6y 过点P (1,2)时,z 取到最小值15. 10.设实数x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -6≤0,x -y +2≥0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为10,则a 2+b 2的最小值为________. 答案2513解析 因为a >0,b >0, 所以由可行域得,如图,当目标函数过点(4,6)时z 取最大值,∴4a +6b =10.a 2+b 2的几何意义是直线4a +6b =10上任意一点到点(0,0)的距离的平方,那么其最小值是点(0,0)到直线4a +6b =10距离的平方,则a 2+b 2的最小值是2513.B 组 专项能力提升 (时间:20分钟)11.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥1,x -y ≤1,y -1≤0,若z =x -2y 的最大值与最小值分别为a ,b ,且方程x 2-kx +1=0在区间(b ,a )上有两个不同实数解,则实数k 的取值范围是__________. 答案 (-103,-2)解析 作出可行域,如图所示,则目标函数z =x -2y 在点(1,0)处取得最大值1,在点(-1,1)处取得最小值-3, ∴a =1,b =-3,从而可知方程x 2-kx +1=0在区间(-3,1)上有两个不同实数解. 令f (x )=x 2-kx +1,则⎩⎪⎨⎪⎧f -,f ,-3<k2<1,Δ=k 2-4>0⇒-103<k <-2.12.在平面直角坐标系中,点P 是由不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≥1所确定的平面区域内的动点,Q是直线2x +y =0上任意一点,O 为坐标原点,则|OP →+OQ →|的最小值为________. 答案55解析 在直线2x +y =0上取一点Q ′,使得Q ′O →=OQ →, 则|OP →+OQ →|=|OP →+Q ′O →| =|Q ′P →|≥|P ′P →|≥|BA →|,其中P ′,B 分别为点P ,A 在直线2x +y =0上的投影,如图.因为|AB →|=|0+1|12+22=55,因此|OP →+OQ →|min =55.13.设平面点集A ={(x ,y )|(y -x )·(y -1x)≥0},B ={(x ,y )|(x -1)2+(y -1)2≤1},则A ∩B 所表示的平面图形的面积为________.答案π2解析 平面点集A 表示的平面区域就是不等式组⎩⎪⎨⎪⎧y -x ≥0,y -1x≥0与⎩⎪⎨⎪⎧y -x ≤0,y -1x≤0表示的两块平面区域,而平面点集B 表示的平面区域为以点(1,1)为圆心, 以1为半径的圆及圆的内部, 作出它们表示的平面区域如图所示,图中的阴影部分就是A ∩B 所表示的平面图形. 由于圆和曲线y =1x关于直线y =x 对称,因此,阴影部分所表示的图形面积为圆面积的12,即为π2.14.已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为________. 答案 37解析 由已知得平面区域Ω为△MNP 内部及边界. ∵圆C 与x 轴相切,∴b =1.显然当圆心C 位于直线y =1与x +y -7=0的交点(6,1)处时,a max =6. ∴a 2+b 2的最大值为62+12=37.15.设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x 3a +y 4a ≤1,若z =x +2y +3x +1的最小值为32,则a 的值为________. 答案 1 解析 ∵x +2y +3x +1=1+y +x +1的最小值为32,∴y +1x +1的最小值为14,而y +1x +1表示点(x ,y )与(-1,-1)连线的斜率,易知a >0, ∴可行域如图中阴影部分所示,∴(y +1x +1)min =0--3a --=13a +1=14,∴a =1.16.(2015·浙江)若实数x ,y 满足x 2+y 2≤1,则|2x +y -2|+|6-x -3y |的最小值是________. 答案 3解析 满足x 2+y 2≤1的实数x ,y 表示的点(x ,y )构成的区域是单位圆及其内部.f (x ,y )=|2x +y -2|+|6-x -3y |=|2x +y -2|+6-x -3y=⎩⎪⎨⎪⎧4+x -2y ,y ≥-2x +2,8-3x -4y ,y <-2x +2.直线y =-2x +2与圆x 2+y 2=1交于A ,B 两点,如图所示,易得B ⎝ ⎛⎭⎪⎫35,45.设z 1=4+x -2y ,z 2=8-3x -4y ,分别作直线y =12x和y =-34x 并平移,则z 1=4+x -2y 在点B ⎝ ⎛⎭⎪⎫35,45取得最小值为3,z 2=8-3x -4y 在点B ⎝ ⎛⎭⎪⎫35,45取得最小值为3,所以|2x +y -2|+|6-x -3y |的最小值是3.。
7.2二元一次不等式(组)与简单的线性规划挖命题【考情探究】分析解读通过分析高考试题可以看出,题型以选择题、填空题为主,分值为5分,属中低档题.考查数形结合思想,体现数学的应用,命题侧重以下几点:1.考查线性目标函数的最值,借助数形结合的思想,将直线在纵轴上的截距弄清楚;2.准确作图是解题关键,要清楚目标函数的最值、最优解的概念,若目标函数不是线性的,则常与线段的长度、直线的斜率等有关.破考点【考点集训】考点一平面区域问题1.(2018四川凉山州模拟,8)已知点M的坐标(x,y)满足不等式组N为直线y=-2x+2上任一点,则|MN|的最小值是()A. B. C.1 D.答案B2.(2017河北衡水中学摸底联考,7)若A为不等式组表示的平面区域,则当z从-2连续变化到1时,动直线y=-x+z扫过A中的那部分区域的面积为()A.1B.1.5C.0.75D.1.75答案D3.(2018湖北六校1月联考,10)不等式组的解集记作D,实数x,y满足如下两个条件:①∀(x,y)∈D,y≥ax;②∃(x,y)∈D,x-y≤a.则实数a的取值范围为()A.(-2,1)B.[-2,1]C.(-∞,1]D.[-2,+∞)答案B考点二线性规划问题1.(2018辽宁鞍山铁东二模,5)设x,y满足约束条件则z=3x+y的最大值为()A.-3B.4C.2D.5答案B2.(2018江西九江二模,8)实数x,y满足线性约束条件若z=的最大值为1,则z的最小值为()A.-B.-C.D.-答案D3.(2018湖北荆州一模,8)已知实数x、y满足则z=2x-2y-1的最小值是.答案-炼技法【方法集训】方法1 判断二元一次不等式(组)表示的平面区域的方法1.(2018云南玉溪模拟,6)已知不等式组所表示的平面区域为面积等于的三角形,则实数k的值为()A.-1B.-C.D.1答案D2.(2017山西五校3月联考,15)不等式组表示的平面区域为Ω,直线x=a(a>1)将平面区域Ω分成面积之比为1∶4的两部分,则目标函数z=ax+y的最大值为.答案9方法2 目标函数最值(范围)问题的求解方法1.(2018广东东莞模拟,7)已知则z=22x+y的最小值是()A.1B.16C.8D.4答案C2.(2017湖南永州模拟,15)若x,y满足约束条件则x2+y2的最小值为. 答案2过专题【五年高考】A组统一命题·课标卷题组考点一平面区域问题1.(2014课标Ⅰ,9,5分)不等式组的解集记为D.有下面四个命题:p1:∀(x,y)∈D,x+2y≥-2,p2:∃(x,y)∈D,x+2y≥2,p3:∀(x,y)∈D,x+2y≤3,p4:∃(x,y)∈D,x+2y≤-1.其中的真命题是()A.p2,p3B.p1,p2C.p1,p4D.p1,p3答案B2.(2015课标Ⅰ,15,5分)若x,y满足约束条件则的最大值为.答案31.(2018课标Ⅰ,13,5分)若x,y满足约束条件则z=3x+2y的最大值为. 答案62.(2017课标Ⅲ,13,5分)若x,y满足约束条件则z=3x-4y的最小值为. 答案-13.(2016课标Ⅰ,16,5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时.生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.答案216000B组自主命题·省(区、市)卷题组考点一平面区域问题1.(2016山东,4,5分)若变量x,y满足则x2+y2的最大值是()A.4B.9C.10D.12答案C2.(2016浙江,3,5分)在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影.由区域中的点在直线x+y-2=0上的投影构成的线段记为AB,则|AB|=() A.2 B.4 C.3 D.6答案C1.(2018天津,2,5分)设变量x,y满足约束条件则目标函数z=3x+5y的最大值为()A.6B.19C.21D.45答案C2.(2017浙江,4,4分)若x,y满足约束条件则z=x+2y的取值范围是()A.[0,6]B.[0,4]C.[6,+∞)D.[4,+∞)答案D3.(2015陕西,10,5分)某企业生产甲、乙两种产品均需用A,B两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为()A.12万元B.16万元C.17万元D.18万元答案D4.(2018北京,12,5分)若x,y满足x+1≤y≤2x,则2y-x的最小值是.答案3C组教师专用题组考点一平面区域问题1.(2015重庆,10,5分)若不等式组表示的平面区域为三角形,且其面积等于,则m的值为()A.-3B.1C.D.3答案B2.(2016江苏,12,5分)已知实数x,y满足则x2+y2的取值范围是.答案考点二线性规划问题1.(2017课标Ⅱ,5,5分)设x,y满足约束条件则z=2x+y的最小值是()A.-15B.-9C.1D.9答案A2.(2017北京,4,5分)若x,y满足则x+2y的最大值为()A.1B.3C.5D.9答案D3.(2017天津,2,5分)设变量x,y满足约束条件则目标函数z=x+y的最大值为()A. B.1 C. D.3答案D4.(2017山东,4,5分)已知x,y满足约束条件则z=x+2y的最大值是()A.0B.2C.5D.6答案C5.(2016天津,2,5分)设变量x,y满足约束条件则目标函数z=2x+5y的最小值为()A.-4B.6C.10D.17答案B6.(2016北京,2,5分)若x,y满足则2x+y的最大值为()A.0B.3C.4D.5答案C7.(2015天津,2,5分)设变量x,y满足约束条件则目标函数z=x+6y的最大值为()A.3B.4C.18D.40答案C8.(2015北京,2,5分)若x,y满足则z=x+2y的最大值为()A.0B.1C.D.2答案D9.(2015山东,6,5分)已知x,y满足约束条件若z=ax+y的最大值为4,则a=()A.3B.2C.-2D.-3答案B10.(2014课标Ⅱ,9,5分)设x,y满足约束条件则z=2x-y的最大值为()A.10B.8C.3D.2答案B11.(2018浙江,12,6分)若x,y满足约束条件则z=x+3y的最小值是,最大值是.答案-2;812.(2016课标Ⅲ,13,5分)若x,y满足约束条件则z=x+y的最大值为.答案【三年模拟】一、选择题(每小题5分,共30分)1.(2019届湖南岳阳第二次质检,9)设实数x,y满足则z=-的取值范围是()A. B.C. D.答案A2.(2019届广东深圳宝安9月调研,9)若实数x,y满足|x|+|y|≥2,则M=x2+y2-2x的最小值为()A.-2B.0C.-1D.-答案D3.(2018广东广州3月测试,8)若x,y满足约束条件则z=x2+2x+y2的最小值为()A. B. C.- D.-答案D4.(2018江西南昌NCS项目3月联考,5)设不等式组表示的平面区域为M,若直线y=kx经过区域M内的点,则实数k的取值范围为()A. B. C. D.答案C5.(2018湖南师大附中模拟,8)设变量x、y满足约束条件则z=|x-3y|的最大值为()A.8B.4C.2D.答案A6.(2018湖南五市十校联考,6)若实数x,y满足不等式组且目标函数z=ax-2y的最大值为1,则实数a的值是()A.-1B.1C.+1D.3答案B二、填空题(每小题5分,共20分)7.(2019届山东日照一中第二次质检,14)已知实数x,y满足在这两个实数x,y曲一线 让每一位学生分享高品质教育 11 / 11之间插入三个实数,使这五个数构成等差数列,那么这个等差数列最后三项和的最大值为 .答案 98.(2019届重庆中山外国语学校开学考试,14)记“点M(x,y)满足x 2+y 2≤a(a>0)”为事件A,记“M(x,y)满足”为事件B,若P(B|A)=1,则实数a 的最大值为 .答案9.(2018河南豫南九校4月联考,14)已知不等式组表示的平面区域为D,若对任意的(x,y)∈D,不等式t-4<x-2y+6<t+4恒成立,则实数t 的取值范围是 .答案 (3,5)10.(2018河南顶级名校第二次联考,15)设实数x,y 满足约束条件则z=+的最小值为 .答案 1。
7.3二元一次不等式(组)及简单的线性规划问题1.二元一次不等式(组)表示的平面区域不等式 表示区域Ax +By +C >0 直线Ax +By +C =0某一侧的所有点组成的平面区域不包括边界直线 Ax +By +C ≥0 包括边界直线不等式组各个不等式所表示平面区域的公共部分2.线性规划中的基本概念名称 意义约束条件 由变量x ,y 组成的不等式(组)线性约束条件由x ,y的一次不等式(或方程)组成的不等式(组) 目标函数 关于x ,y 的函数解析式,如z =2x +3y 等 线性目标函数 关于x ,y 的一次解析式 可行解 满足线性约束条件的解(x ,y ) 可行域 所有可行解组成的集合最优解 使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题1.画出平面区域.避免失误的重要方法就是首先使二元一次不等式化为ax +by +c >0(a >0).2.线性规划问题中的最优解不一定是唯一的,即可行域内使目标函数取得最值的点不一定只有一个,也可能有无数多个,也可能没有. 『试一试』1.如图所示的平面区域(阴影部分)满足的不等式是______.『答案』x +y -1>02.设x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x +y -1≥0,x ≤3,则z =2x -3y 的最小值是________.『解析』作出不等式组表示的可行域,如图(阴影部分).易知直线z =2x -3y 过点C 时,z 取得最小值.由⎩⎪⎨⎪⎧ x =3,x -y +1=0,得⎩⎪⎨⎪⎧x =3,y =4,∴z min =2×3-3×4=-6. 『答案』-61.确定二元一次不等式表示平面区域的方法二元一次不等式所表示的平面区域的确定,一般是取不在直线上的点(x 0,y 0)作为测试点来进行判定,满足不等式的则平面区域在测试点所在的直线的一侧,反之在直线的另一侧. 2.求二元一次函数z =ax +by (ab ≠0)的最值的方法将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求直线的截距zb 的最值间接求出z 的最值.(1)当b >0时,截距z b 取最大值时,z 也取最大值;截距zb 取最小值时,z 也取最小值;(2)当b <0时,截距z b 取最大值时,z 取最小值;截距zb 取最小值时,z 取最大值.『练一练』(2014·南京一模)已知实数x ,y 满足⎩⎪⎨⎪⎧x -y +2≥0,x +y ≥0,x ≤1,则z =2x +y 的最小值是________.『解析』作出可行域,如图可知当直线y =-2x +z 经过点(-1,1)时,z 取得最小值-1.『答案』-1考点一二元一次不等式(组)表示平面区域1.由不等式组⎩⎪⎨⎪⎧x ≤3,y ≥0,y ≤x -1所确定的平面区域的面积等于________.『解析』作出满足不等式组的平面区域,如图阴影部分,可知其面积为2.『答案』22.(2014·苏锡常镇调研)在不等式组⎩⎪⎨⎪⎧y ≤x ,0<x ≤3,y >1x所表示的平面区域内的所有格点(横、纵坐标均为整数的点称为格点)中任取3个点,则该3点恰能作为一个三角形的三个顶点的概率为________.『解析』当x =1时,1<y ≤1,此时无解;当x =2时,12<y ≤2,此时y =1,2;当x =3时,13<y ≤3,此时y =1,2,3.所以在可行域中共有5个格点,从中任取3个点共计10种方法.若在直线x =2上取一点,则在直线x =3上三个点中取两个,此时有2×3=6(种);若在直线x =2上取两点,则直线x =3上三个点中取一个,此时有3种,故所求概率为910.『答案』9103.如图阴影部分表示的区域可用二元一次不等式组表示为________.『解析』两直线方程分别为x -2y +2=0与x +y -1=0.由(0,0)点在直线x -2y +2=0右下方可知x -2y +2≥0,又(0,0)点在直线x +y -1=0左下方可知x +y -1≥0,即⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0为所表示的可行域.『答案』⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0『备课札记』『类题通法』二元一次不等式(组)表示平面区域的判断方法:直线定界,测试点定域.注意不等式中不等号有无等号,无等号时直线画成虚线,有等号时直线画成实线.测试点可以选一个,也可以选多个,若直线不过原点,测试点常选取原点.考点二求目标函数的最值线性规则问题是高考的重点,而线性规划问题具有代数和几何的双重形式,多与函数、平面向量、数列、三角、概率、解析几何等问题交叉渗透,自然地融合在一起,使数学问题的解答变得更加新颖别致.归纳起来常见的命题角度有:1求线性目标函数的最值; 2求非线性目标的最值; 3求线性规划中的参数.角度一 求线性目标函数的最值1.(1)(2014·徐州摸底)已知实数x ,y 满足⎩⎪⎨⎪⎧x +y ≥2,x -y ≤2,0≤y ≤3,则z =2x -y 的最大值是________.『解析』在平面直角坐标系中作出满足条件的可行域,如图,即等腰直角三角形ABC ,其中A (5,3),B (2,0),C (-1,3),过原点O 作直线l 0:y =2x ,将l 0平移至点A 时,可取最大值,即z max =2×5-3=7.『答案』7(2)(2013·南京、盐城一模)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -6≤0,x -y +2≥0,x ≥0,y ≥0,则目标函数z =2x +3y的最大值为________.『解析』画出不等式组表示的可行域(如图阴影部分所示).由图可知,y =-23x +z3,过点(4,6)时,z 取得最大值,为26.『答案』26角度二 求非线性目标的最值2.(1)(2014·苏北四市二调)在约束条件⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤22y -x ≥1下,x -12+y 2的最小值为________.『解析』画出线性约束条件下的可行域(如图阴影部分),所求的22(1)x y -+的几何意义就是点(1,0)与阴影部分内的点之间的距离,其最小值为点(1,0)到直线x -2y +1=0的距离,可求得22(1)x y -+的最小值为2212011(2)-⨯++-=255. 『答案』255(2)(2014·南通一模)设实数x ,y 满足⎩⎪⎨⎪⎧x -y -2≤0,x +2y -5≥0,y -2≤0,则z =y x -xy的取值范围是________.『解析』作出可行域(如图阴影部分),则区域内的点与原点连线的斜率取值范围是⎣⎡⎦⎤13,2.令t =y x ,则z =t -1t ,根据函数z =t -1t在t ∈⎣⎡⎦⎤13,2上单调递增,得z ∈⎣⎡⎦⎤-83,32.『答案』⎣⎡⎦⎤-83,32 角度三 求线性规划中的参数3.(1)(2013·苏北三市调研)已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥2x +1,x +y +k ≤0(k 为常数),若目标函数z =2x +y 的最大值是113,则实数k =________.『解析』由题意得当k <-1时满足题意,此时该不等式组表示的平面区域如下图所示,平移直线2x +y =0经过点P 时,目标函数z =2x +y 取得最大值,是113,联立⎩⎪⎨⎪⎧2x -y +1=0,x +y +k =0,得⎩⎨⎧x =-k +13,y =1-2k3,即点P ⎝⎛⎭⎫-k +13,1-2k 3, 所以2⎝⎛⎭⎫-k +13+1-2k 3=113,解得k =-3.『答案』-3(2)已知实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≥0,x +2y -8≤0,x ≤3.若点⎝⎛⎭⎫3,52是使ax -y 取得最小值的唯一的可行解,则实数a 的取值范围为________.『解析』记z =ax -y ,注意到当x =0时,y =-z ,即直线z =ax -y 在y 轴上的截距是-z .在坐标平面内画出题中的不等式组表示的平面区域,结合图形可知,满足题意的实数a 的取值范围为a <-12.『答案』⎝⎛⎭⎫-∞,-12 『备课札记』 『类题通法』1.求目标函数的最值的一般步骤为:一画二移三求.其关键是准确作出可行域,理解目标函数的意义.2.常见的目标函数有: (1)截距型:形如z =ax +by .求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-a b x +zb,通过求直线的截距zb的最值间接求出z 的最值.(2)距离型:形如z =(x -a )2+(y -b )2.(3)斜率型:形如z =y -bx -a .注意:转化的等价性及几何意义.考点三线性规划的实际应用『典例』 某旅行社租用A ,B 两种型号的客车安排900名客人旅行,A ,B 两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆,则租金最少为________元.『解析』 设租用A 型车x 辆,B 型车y 辆,目标函数为z =1 600x +2 400y ,则约束条件为⎩⎪⎨⎪⎧36x +60y ≥900,y -x ≤7,y +x ≤21,x ,y ∈N ,作出可行域,如图中阴影部分所示,可知目标函数过点(5,12)时,有最小值z min =36 800(元).『答案』 36 800『备课札记』 『类题通法』求解线性规划应用题的注意点(1)明确问题中的所有约束条件,并根据题意判断约束条件中是否能够取到等号.(2)注意结合实际问题的实际意义,判断所设未知数x ,y 的取值范围,特别注意分析x ,y 是否是整数、非负数等.(3)正确地写出目标函数,一般地,目标函数是等式的形式. 『针对训练』某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克,B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是________元.『解析』设每天分别生产甲产品x 桶,乙产品y 桶,相应的利润为z 元,则⎩⎪⎨⎪⎧x +2y ≤12,2x +y ≤12,x ≥0,y ≥0,z =300x +400y ,在坐标平面内画出该不等式组表示的平面区域及直线300x +400y =0,平移该直线,当平移到经过该平面区域内的点A (4,4)时,相应直线在y 轴上的截距达到最大,此时z =300x +400y 取得最大值,最大值是z =300×4+400×4=2 800,即该公司可获得的最大利润是2 800元.『答案』2 800『课堂练通考点』1.(2014·扬州期末)设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +2y ≥4,2x +y ≤5,则z =2x -y 的最大值是________.『解析』由约束条件⎩⎪⎨⎪⎧x ≥0,x +2y ≥4,2x +y ≤5,可以画出可行域如下图阴影部分所示,故当直线经过点A (2,1)时,目标函数z =2x -y 的最大值为3.『答案』32.不等式组⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,kx -y ≤0,表示面积为1的直角三角形区域,则k 的值为________.『解析』注意到直线kx -y =0恒过原点,在坐标平面内画出题中的不等式组表示的平面区域,结合题意得直线kx -y =0与直线x +y -4=0垂直时满足题意,于是有k ×(-1)=-1,由此解得k =1. 『答案』13.已知O 为坐标原点,A (1,2),点P 的坐标(x ,y )满足约束条件⎩⎪⎨⎪⎧x +|y |≤1,x ≥0,则z =OA ·OP的最大值为________. 『解析』如图作可行域,z =OA ·OP =x +2y ,显然在B (0,1)处z max =2. 『答案』24.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤8,2y -x ≤4,x ≥0,y ≥0,且z =5y -x 的最大值为a ,最小值为b ,则a-b 的值是________. 『解析』约束条件⎩⎪⎨⎪⎧x +y ≤8,2y -x ≤4,x ≥0,y ≥0表示以(0,0),(0,2),(4,4),(8,0)为顶点的四边形区域,检验四个顶点的坐标可知,当x =4,y =4时,a =z max =5×4-4=16;当x =8,y =0时,b =z min =5×0-8=-8,∴a -b =24. 『答案』245.(2013·安徽高考)若非负变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥-1,x +2y ≤4,则x +y 的最大值为________.『解析』画出可行域是如下图所示的四边形OABC 的边界及内部,令z =x +y ,易知当直线y =-x +z 经过点C (4,0)时,直线在y 轴上截距最大,目标函数z 取得最大值,即z max =4.『答案』46.(2013·北京高考)设D 为不等式组⎩⎪⎨⎪⎧x ≥0,2x -y ≤0,x +y -3≤0所表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为________.『解析』作出可行域,如图中阴影部分所示,则根据图形可知,点B (1,0)到直线2x -y =0的距离最小,d =|2×1-0|22+1=255,故最小距离为255.『答案』255。
【步步高】(江苏专用)2017版高考数学一轮复习第七章不等式 7.3 二元一次不等式(组)与简单的线性规划问题文1.二元一次不等式表示的平面区域(1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.我们把直线画成虚线以表示区域不包括边界直线.当我们在坐标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应包括边界直线,则把边界直线画成实线.(2)由于对直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得的符号都相同,所以只需在此直线的同一侧取一个特殊点(x0,y0)作为测试点,由Ax0+By0+C的符号即可判断Ax+By+C>0表示的直线是Ax+By+C=0哪一侧的平面区域.2.线性规划相关概念3.(1)画二元一次不等式表示的平面区域的直线定界,特殊点定域:①直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线;②特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证.(2)利用“同号上,异号下”判断二元一次不等式表示的平面区域:对于Ax+By+C>0或Ax+By+C<0,则有①当B(Ax+By+C)>0时,区域为直线Ax+By+C=0的上方;②当B(Ax+By+C)<0时,区域为直线Ax+By+C=0的下方.(3)最优解和可行解的关系:最优解必定是可行解,但可行解不一定是最优解.最优解不一定唯一,有时唯一,有时有多个.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)不等式Ax+By+C>0表示的平面区域一定在直线Ax+By+C=0的上方.( ×)(2)线性目标函数的最优解可能是不唯一的.( √)(3)目标函数z=ax+by(b≠0)中,z的几何意义是直线ax+by-z=0在y轴上的截距.( ×)(4)不等式x2-y2<0表示的平面区域是一、三象限角的平分线和二、四象限角的平分线围成的含有y轴的两块区域.( √)1.如图阴影部分表示的区域可用二元一次不等式组表示为________.答案 ⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0解析 两直线方程分别为x -2y +2=0与x +y -1=0. 由(0,0)点在直线x -2y +2=0右下方可知x -2y +2≥0, 又(0,0)点在直线x +y -1=0左下方可知x +y -1≥0,即⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0为所表示的可行域.2.(教材改编)不等式组⎩⎪⎨⎪⎧x -3y +6<0,x -y +2≥0表示的平面区域是________.答案 ③解析 用特殊点代入,比如(0,0),容易判断为③.3.若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y ≥-1,x +y ≥1,3x -y ≤3,则该约束条件所围成的平面区域的面积是________. 答案 2解析 因为直线x -y =-1与x +y =1互相垂直, 所以如图所示的可行域为直角三角形,易得A (0,1),B (1,0),C (2,3),故AB =2,AC =22, 其面积为12×AB ×AC =2.4.(2015·北京改编)若x ,y 满足⎩⎪⎨⎪⎧x -y ≤0,x +y ≤1,x ≥0,则z =x +2y 的最大值为________.答案 2解析 可行域如图所示.目标函数化为y =-12x +12z ,当直线y =-12x +12z 过点A (0,1)时,z 取得最大值2.5.(教材改编)投资生产A 产品时,每生产100吨需要资金200万元,需场地200平方米;投资生产B 产品时,每生产100吨需要资金300万元,需场地100平方米.现某单位可使用资金1 400万元,场地900平方米,则上述要求可用不等式组表示为__________________(用x ,y 分别表示生产A ,B 产品的吨数,x 和y 的单位是百吨).答案 ⎩⎪⎨⎪⎧200x +300y ≤1 400,200x +100y ≤900,x ≥0,y ≥0解析 用表格列出各数据A B 总数 产品吨数 xy资金 200x 300y 1 400 场地200x100y900所以不难看出,x ≥0,y题型一 二元一次不等式(组)表示的平面区域命题点1 不含参数的平面区域问题例1 (1)不等式(x -2y +1)(x +y -3)≤0在坐标平面内表示的区域(用阴影部分表示),应是下列图形中的________.(2)不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积等于________.答案 (1)③ (2)43解析 (1)(x -2y +1)(x +y -3)≤0⇒⎩⎪⎨⎪⎧x -2y +1≥0,x +y -3≤0,或⎩⎪⎨⎪⎧x -2y +1≤0,x +y -3≥0.画出平面区域后,只有③符合题意.(2)由题意得不等式组表示的平面区域如图阴影部分,A (0,43),B (1,1),C (0,4),则△ABC 的面积为12×1×83=43.命题点2 含参数的平面区域问题例2 若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是____________________________________________________________. 答案 73解析 不等式组表示的平面区域如图所示.由于直线y =kx +43过定点⎝ ⎛⎭⎪⎫0,43.因此只有直线过AB 中点时,直线y =kx +43能平分平面区域.因为A (1,1),B (0,4),所以AB 中点D ⎝ ⎛⎭⎪⎫12,52. 当y =kx +43过点⎝ ⎛⎭⎪⎫12,52时,52=k 2+43, 所以k =73.思维升华 (1)求平面区域的面积:①首先画出不等式组表示的平面区域,若不能直接画出,应利用题目的已知条件转化为不等式组问题,从而再作出平面区域;②对平面区域进行分析,若为三角形应确定底与高,若为规则的四边形(如平行四边形或梯形),可利用面积公式直接求解,若为不规则四边形,可分割成几个三角形分别求解再求和即可.(2)利用几何意义求解的平面区域问题,也应作出平面图形,利用数形结合的方法去求解.(1)不等式组⎩⎪⎨⎪⎧x ≥0,x +y ≤3,y ≥x +1表示的平面区域为Ω,直线y =kx -1与区域Ω有公共点,则实数k 的取值范围为________.(2)已知约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,kx -y ≤0表示面积为1的直角三角形区域,则实数k 的值为________.答案 (1)[3,+∞) (2)1解析 (1)直线y =kx -1过定点M (0,-1),由图可知,当直线y =kx -1经过直线y =x +1与直线x +y =3的交点C (1,2)时,k 最小,此时k CM =2--11-0=3,因此k ≥3,即k ∈[3,+∞).(2)由于x =1与x +y -4=0不可能垂直,所以只有可能x +y -4=0与kx -y =0垂直或x =1与kx -y =0垂直.①当x +y -4=0与kx -y =0垂直时,k =1,检验知三角形区域面积为1,即符合要求. ②当x =1与kx -y =0垂直时,k =0,检验不符合要求. 题型二 求目标函数的最值问题 命题点1 求线性目标函数的最值例3 (2014·广东)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,且z =2x +y 的最大值和最小值分别为m 和n ,则m -n =________. 答案 6解析 画出可行域,如图阴影部分所示. 由z =2x +y ,得y =-2x +z .由⎩⎪⎨⎪⎧y =x ,y =-1,得⎩⎪⎨⎪⎧x =-1,y =-1,∴A (-1,-1).由⎩⎪⎨⎪⎧x +y =1,y =-1,得⎩⎪⎨⎪⎧x =2,y =-1,∴B (2,-1).当直线y =-2x +z 经过点A 时,z min =2×(-1)-1=-3=n .当直线y =-2x +z 经过点B 时,z max =2×2-1=3=m ,故m -n =6.命题点2 求非线性目标函数的最值例4 实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≤0,x >0,y ≤2.(1)若z =yx,求z 的最大值和最小值,并求z 的取值范围; (2)若z =x 2+y 2,求z 的最大值与最小值,并求z 的取值范围.解 由⎩⎪⎨⎪⎧x -y +1≤0,x >0,y ≤2,作出可行域,如图中阴影部分所示.(1)z =yx表示可行域内任一点与坐标原点连线的斜率,因此y x的范围为直线OB 的斜率到直线OA 的斜率(直线OA 的斜率不存在,即z max 不存在).由⎩⎪⎨⎪⎧x -y +1=0,y =2,得B (1,2),∴k OB =21=2,即z min =2,∴z 的取值范围是[2,+∞).(2)z =x 2+y 2表示可行域内的任意一点与坐标原点之间距离的平方. 因此x 2+y 2的值最小为OA 2(取不到),最大值为OB 2.由⎩⎪⎨⎪⎧x -y +1=0,x =0,得A (0,1),∴OA 2=(02+12)2=1,OB 2=(12+22)2=5, ∴z 的取值范围是(1,5]. 引申探究 1.若z =y -1x -1,求z 的取值范围. 解 z =y -1x -1可以看作过点P (1,1)及(x ,y )两点的直线的斜率. ∴z 的取值范围是(-∞,0).2.若z =x 2+y 2-2x -2y +3.求z 的最大值、最小值. 解 z =x 2+y 2-2x -2y +3 =(x -1)2+(y -1)2+1,而(x -1)2+(y -1)2表示点P (1,1)与Q (x ,y )的距离的平方,(PQ 2)max =(0-1)2+(2-1)2=2, (PQ 2)min =(|1-1+1|12+-12)2=12, ∴z max =2+1=3,z min =12+1=32.命题点3 求线性规划的参数例5 已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a x -3,若z =2x +y 的最小值为1,则a=________. 答案 12解析 作出不等式组表示的可行域,如图(阴影部分). 易知直线z =2x +y 过交点A 时,z 取最小值,由⎩⎪⎨⎪⎧x =1,y =a x -3,得⎩⎪⎨⎪⎧x =1,y =-2a ,∴z min =2-2a =1,解得a =12.思维升华 (1)先准确作出可行域,再借助目标函数的几何意义求目标函数的最值. (2)当目标函数是非线性的函数时,常利用目标函数的几何意义来解题,常见代数式的几何意义有:①x 2+y 2表示点(x ,y )与原点(0,0)的距离,x -a2+y -b2表示点(x ,y )与点(a ,b )的距离;②y x 表示点(x ,y )与原点(0,0)连线的斜率,y -bx -a表示点(x ,y )与点(a ,b )连线的斜率. (3)当目标函数中含有参数时,要根据临界位置确定参数所满足条件.(1)(2015·无锡一模)在直角坐标平面内,不等式组⎩⎪⎨⎪⎧y ≤x +1,y ≥0,0≤x ≤t所表示的平面区域的面积为32,则t 的值为________.(2)(2014·安徽改编)x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为________. 答案 (1)1 (2)2或-1 解析 (1)不等式组⎩⎪⎨⎪⎧y ≤x +1,y ≥0,0≤x ≤t所表示的平面区域如图中阴影部分所示.由⎩⎪⎨⎪⎧y =x +1,x =t ,解得交点B (t ,t +1),在y =x +1中,令x =0得y =1,即直线y =x +1与y轴的交点为C (0,1),由平面区域的面积S =1+t +1×t 2=32,得t 2+2t -3=0,解得t=1或t =-3(不合题意,舍去).(2)如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2; 当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1. 题型三 线性规划的实际应用例6 某客运公司用A 、B 两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A 、B 两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1 600元/辆和2 400元/辆,公司拟组建一个不超过21辆车的客运车队,并要求B 型车不多于A 型车7辆.若每天运送人数不少于900,且使公司从甲地去乙地的营运成本最小,那么应配备A 型车、B 型车各多少辆?解 设A 型、B 型车辆分别为x 、y 辆,相应营运成本为z 元,则z =1 600x +2 400y .由题意,得x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤21,y ≤x +7,36x +60y ≥900,x ,y ≥0,x ,y ∈N .作可行域如图所示,可行域的三个顶点坐标分别为P (5,12),Q (7,14),R (15,6).由图可知,当直线z=1 600x+2 400y经过可行域的点P时,直线z=1 600x+2 400y在y轴上的截距z2 400最小,即z取得最小值.故应配备A型车5辆、B型车12辆,可以满足公司从甲地去乙地的营运成本最小.思维升华解线性规划应用问题的一般步骤:(1)分析题意,设出未知量;(2)列出线性约束条件和目标函数;(3)作出可行域并利用数形结合求解;(4)作答.(2015·陕西改编)某企业生产甲、乙两种产品均需用A,B两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为________万元.甲 乙 原料限额 A (吨) 3 2 12 B (吨)128答案 18解析 设每天甲、乙的产量分别为x 吨,y 吨,由已知可得⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,目标函数z =3x +4y ,线性约束条件表示的可行域如图阴影部分所示:可得目标函数在点A 处取到最大值. 由⎩⎪⎨⎪⎧x +2y =8,3x +2y =12,得A (2,3).则z max =3×2+4×3=18(万元).8.含参数的线性规划问题的易错点典例 已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,如果目标函数z =x -y 的最小值为-1,则实数m =________.易错分析 题目给出的区域边界“两静一动”,可先画出已知边界表示的区域,分析动直线的位置时容易出错,没有抓住直线x +y =m 和直线y =-x 平行这个特点;另外在寻找最优点时也容易找错区域的顶点.解析 显然,当m <2时,不等式组表示的平面区域是空集;当m =2时,不等式组表示的平面区域只包含一个点A (1,1).此时z min =1-1=0≠-1. 显然都不符合题意.故必有m >2,此时不等式组⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m所表示的平面区域如图所示,平面区域为一个三角形区域, 其顶点为A (1,1),B (m -1,1),C (m +13,2m -13).由图可知,当直线y =x -z 经过点C 时,z 取得最小值, 最小值为m +13-2m -13=2-m3.由题意,得2-m3=-1,解得m =5.答案 5温馨提醒 (1)当约束条件含有参数时,要注意根据题目条件,画出符合条件的可行域.本题因含有变化的参数,可能导致可行域画不出来. (2)应注意直线y =x -z 经过的特殊点.[方法与技巧]1.平面区域的画法:线定界、点定域(注意实虚线).2.求最值:求二元一次函数z =ax +by (ab ≠0)的最值,将函数z =ax +by 转化为直线的斜截式:y =-ab x +z b ,通过求直线的截距z b的最值间接求出z 的最值.最优解在顶点或边界取得. 3.解线性规划应用题,可先找出各变量之间的关系,最好列成表格,然后用字母表示变量,列出线性约束条件;写出要研究的函数,转化成线性规划问题.4.利用线性规划的思想结合代数式的几何意义可以解决一些非线性规划问题. [失误与防范]1.画出平面区域.避免失误的重要方法就是首先使二元一次不等式标准化.2.在通过求直线的截距z b 的最值间接求出z 的最值时,要注意:当b >0时,截距z b取最大值时,z 也取最大值;截距z b 取最小值时,z 也取最小值;当b <0时,截距zb取最大值时,z 取最小值;截距zb取最小值时,z 取最大值.A 组 专项基础训练 (时间:30分钟)1.直线2x +y -10=0与不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x -y ≥-2,4x +3y ≤20表示的平面区域的公共点有________个. 答案 1解析 由不等式组画出平面区域如图(阴影部分).直线2x +y -10=0恰过点A (5,0),且其斜率k =-2<k AB =-43,即直线2x +y -10=0与平面区域仅有一个公共点A (5,0). 2.若点(m,1)在不等式2x +3y -5>0所表示的平面区域内,则m 的取值范围是________. 答案 m >1解析 由2m +3-5>0,得m >1.3.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≥0,x -y -2≤0,y ≥1,则目标函数z =x +2y 的最小值为________.答案 3解析 由线性约束条件画出可行域(如图所示).由z =x +2y ,得y =-12x +12z ,12z 的几何意义是直线y =-12x +12z 在y 轴上的截距,要使z最小,需使12z 最小,易知当直线y =-12x +12z 过点A (1,1)时,z 最小,最小值为3.4.若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a ,表示的平面区域是一个三角形,则a 的取值范围是______________.答案 (0,1]∪⎣⎢⎡⎭⎪⎫43,+∞ 解析 不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图(阴影部分),求得A ,B 两点的坐标分别为⎝ ⎛⎭⎪⎫23,23和(1,0),若原不等式组表示的平面区域是一个三角形,则a 取值范围是0<a ≤1或a ≥43.5.某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克、B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是________元. 答案 2 800解析 设每天生产甲种产品x 桶,乙种产品y 桶,则根据题意得x 、y 的约束条件为⎩⎪⎨⎪⎧x ≥0,x ∈N ,y ≥0,y ∈N ,x +2y ≤12,2x +y ≤12.设获利z 元, 则z =300x +400y . 画出可行域如图.画直线l :300x +400y =0, 即3x +4y =0.平移直线l ,从图中可知,当直线过点M 时, 目标函数取得最大值.由⎩⎪⎨⎪⎧x +2y =12,2x +y =12,解得⎩⎪⎨⎪⎧x =4,y =4,即M 的坐标为(4,4),∴z max =300×4+400×4=2 800(元).6.若函数y =2x图象上存在点(x ,y )满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为________. 答案 1解析 在同一直角坐标系中作出函数y =2x的图象及⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0所表示的平面区域,如图阴影部分所示.由图可知,当m ≤1时,函数y =2x的图象上存在点(x ,y )满足约束条件,故m 的最大值为1.7.(2015·枣庄模拟)已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x >0,4x +3y ≤4,y ≥0,则ω=y +1x的最小值是________. 答案 1解析 作出不等式组对应的平面区域如图,ω=y +1x的几何意义是区域内的点P (x ,y )与定点A (0,-1)所在直线的斜率,由图象可知当P 位于点D (1,0)时,直线AP 的斜率最小,此时ω=y +1x 的最小值为-1-00-1=1.8.已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,x <2,x +y -1≥0,则z =2x -2y -1的取值范围是__________.答案 [-53,5)解析 画出不等式组所表示的区域,如图中阴影部分所示,可知2×13-2×23-1≤z <2×2-2×(-1)-1,即z 的取值范围是[-53,5).9.铁矿石A 和B 的含铁率a ,冶炼每万吨铁矿石的CO 2的排放量b 及每万吨铁矿石的价格c 如表:ab (万吨)c (百万元)A 50% 1 3 B70%0.56某冶炼厂至少要生产2),则购买铁矿石的最少费用为________(百万元). 答案 15解析 设购买铁矿石A 、B 分别为x 万吨,y 万吨,购买铁矿石的费用为z (百万元),则 ⎩⎪⎨⎪⎧0.5x +0.7y ≥1.9,x +0.5y ≤2,x ≥0,y ≥0.目标函数z =3x +6y ,由⎩⎪⎨⎪⎧0.5x +0.7y =1.9,x +0.5y =2,得⎩⎪⎨⎪⎧x =1,y =2.记P (1,2),画出可行域可知,当目标函数z =3x +6y 过点P (1,2)时,z 取到最小值15.10.设实数x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -6≤0,x -y +2≥0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为10,则a 2+b 2的最小值为________. 答案2513解析 因为a >0,b >0, 所以由可行域得,如图,当目标函数过点(4,6)时z 取最大值,∴4a +6b =10.a 2+b 2的几何意义是直线4a +6b =10上任意一点到点(0,0)的距离的平方,那么其最小值是点(0,0)到直线4a +6b =10距离的平方,则a 2+b 2的最小值是2513.B 组 专项能力提升 (时间:20分钟)11.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥1,x -y ≤1,y -1≤0,若z =x -2y 的最大值与最小值分别为a ,b ,且方程x 2-kx +1=0在区间(b ,a )上有两个不同实数解,则实数k 的取值范围是__________. 答案 (-103,-2)解析 作出可行域,如图所示,则目标函数z =x -2y 在点(1,0)处取得最大值1,在点(-1,1)处取得最小值-3,∴a =1,b =-3,从而可知方程x 2-kx +1=0在区间(-3,1)上有两个不同实数解. 令f (x )=x 2-kx +1,则⎩⎪⎨⎪⎧f -3>0,f 1>0,-3<k2<1,Δ=k 2-4>0⇒-103<k <-2.12.在平面直角坐标系中,点P 是由不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≥1所确定的平面区域内的动点,Q是直线2x +y =0上任意一点,O 为坐标原点,则|OP →+OQ →|的最小值为________. 答案55解析 在直线2x +y =0上取一点Q ′,使得Q ′O →=OQ →, 则|OP →+OQ →|=|OP →+Q ′O →| =|Q ′P →|≥|P ′P →|≥|BA →|,其中P ′,B 分别为点P ,A 在直线2x +y =0上的投影,如图.因为|AB →|=|0+1|12+22=55,因此|OP →+OQ →|min =55.13.设平面点集A ={(x ,y )|(y -x )·(y -1x)≥0},B ={(x ,y )|(x -1)2+(y -1)2≤1},则A ∩B 所表示的平面图形的面积为________.答案π2解析 平面点集A 表示的平面区域就是不等式组⎩⎪⎨⎪⎧y -x ≥0,y -1x≥0与⎩⎪⎨⎪⎧y -x ≤0,y -1x≤0表示的两块平面区域,而平面点集B 表示的平面区域为以点(1,1)为圆心, 以1为半径的圆及圆的内部, 作出它们表示的平面区域如图所示,图中的阴影部分就是A ∩B 所表示的平面图形. 由于圆和曲线y =1x关于直线y =x 对称,因此,阴影部分所表示的图形面积为圆面积的12,即为π2.14.已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为________. 答案 37解析 由已知得平面区域Ω为△MNP 内部及边界. ∵圆C 与x 轴相切,∴b =1.显然当圆心C 位于直线y =1与x +y -7=0的交点(6,1)处时,a max =6. ∴a 2+b 2的最大值为62+12=37.15.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -3≤0,x +3y -3≥0,y -1≤0,若目标函数z =ax +y (其中a >0)仅在点(3,0)处取得最大值,则a 的取值范围是__________.答案 ⎝ ⎛⎭⎪⎫12,+∞解析 画出x 、y 满足约束条件的可行域如图所示,要使目标函数z =ax +y 仅在点(3,0)处取得最大值,则直线y =-ax +z 的斜率应小于直线x +2y -3=0的斜率,即-a <-12,∴a >12.16.给定区域D :⎩⎪⎨⎪⎧x +4y ≥4,x +y ≤4,x ≥0,令点集T ={(x 0,y 0)∈D |x 0,y 0∈Z ,(x 0,y 0)是z =x +y在D 上取得最大值或最小值的点},则T 中的点共确定________条不同的直线. 答案 6解析 作出图形可知,△ABF 所围成的区域即为区域D ,其中A (0,1)是z 在D 上取得最小值的点,B ,C ,D ,E ,F 是z 在D 上取得最大值的点,则T 中的点共确定AB ,AC ,AD ,AE ,AF ,BF 共6条不同的直线.。
7.3 二元一次不等式(组)与简单的线性规划问题『考纲要求』1.考查二元一次不等式组表示的区域面积和目标函数最值(或取值范围).2.考查约束条件、目标函数中的参变量的取值范围.『复习指导』1.掌握确定平面区域的方法(线定界、点定域).2.理解目标函数的几何意义,掌握解决线性规划问题的方法(图解法),注意线性规划问题与其他知识的综合.『基础梳理』1.二元一次不等式表示的平面区域(1)一般地,直线l:ax+by+c=0把直角坐标平面分成了三个部分:①直线l上的点(x,y)的坐标满足;②直线l一侧的平面区域内的点(x,y)的坐标满足ax+by+c>0;③直线l另一侧的平面区域内的点(x,y)的坐标满足ax+by+c<0.所以,只需在直线l的某一侧的平面区域内,任取一特殊点(x0,y0),从ax0+by0+c值的正负,即可判断不等式表示的平面区域.(2)由于对直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C所得到实数的符号都,所以只需在此直线的某一侧取一个特殊点(x0,y0),由Ax0+By0+C 的即可判断Ax+By+C>0表示直线Ax+By+C=0哪一侧的平面区域.2.线性规划相关概念名称意义目标函数欲求或的函数约束条件目标函数中的变量所要满足的不等式组线性约束条件由x,y的一次不等式(或方程)组成的不等式组线性目标函数目标函数是关于变量的一次函数可行解满足的解可行域所有组成的集合最优解使目标函数取得或的点的坐标线性规划问题在线性约束条件下,求线性目标函数的或问题『助学微博』一种方法确定二元一次不等式表示的平面区域时,经常采用“直线定界,特殊点定域”的方法.(1)直线定界,即若不等式不含等号,则应把直线画成虚线;若不等式含有等号,把直线画成实线.(2)特殊点定域,即在直线Ax +By +C =0的某一侧取一个特殊点(x 0,y 0)作为测试点代入不等式检验,若满足不等式,则表示的就是包括该点的这一侧,否则就表示直线的另一侧.特别地,当C ≠0时,常把原点作为测试点;当C =0时,常选点(1,0)或者(0,1)作为测试点. 一个步骤利用线性规划求最值,一般用图解法求解,其步骤是: (1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形;(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解; (4)求最值:将最优解代入目标函数即可求出最大值或最小值. 两个防范(1)画出平面区域.避免失误的重要方法就是首先使二元一次不等式标准化.(2)求二元一次函数z =ax +by (ab ≠0)的最值,将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求直线的截距z b 的最值间接求出z 的最值.要注意:当b >0时,截距zb 取最大值时,z 也取最大值;截距z b 取最小值时,z 也取最小值;当b <0时,截距zb 取最大值时,z 取最小值;截距zb 取最小值时,z 取最大值.『考向探究』考向一 二元一次不等式(组)表示的平面区域『例1』直线2x +y -10=0与不等式组⎩⎪⎨⎪⎧x ≥0y ≥0,x -y ≥-2,4x +3y ≤20表示的平面区域的公共点有( ).A .0个B .1个C .2个D .无数个『训练1』 已知关于x ,y 的不等式组⎩⎪⎨⎪⎧0≤x ≤2,x +y -2≥0,kx -y +2≥0所表示的平面区域的面积为4,则k的值为( ). A .1 B .-3 C .1或-3D .0考向二 求线性目标函数的最值『例2』已知平面直角坐标系xOy 上的区域D 由不等式组⎩⎨⎧0≤x ≤ 2,y ≤2,x ≤ 2y给定.若M (x ,y )为D 上的动点,点A 的坐标为(2,1)则z =OM →·O A →的最大值为( ).A .3B .4C .3 2D .42 『训练2』 已知变量x ,y 满足条件⎩⎪⎨⎪⎧x +2y -3≤0,x +3y -3≥0,y -1≤0,若目标函数z =ax +y (其中a >0)仅在点(3,0)处取得最大值,则a 的取值范围是( ). A.⎝⎛⎭⎫-∞,-12 B.⎝⎛⎭⎫-12,0 C.⎝⎛⎭⎫0,12 D.⎝⎛⎭⎫12,+∞考向三 求非线性目标函数的最值『例3』变量x 、y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1.(1)设z =yx ,求z 的最小值;(2)设z =x 2+y 2,求z 的取值范围.『训练3』 如果点P 在平面区域⎩⎪⎨⎪⎧2x -y +2≥0,x +y -2≤0,2y -1≥0上,点Q 在曲线x 2+(y +2)2=1上,那么|PQ |的最小值为( ). A.32 B.45-1 C .22-1 D.2-1考向四 线性规划的实际应用『例4』某企业生产A ,B 两种产品,生产每一吨产品所需的劳动力、煤和电耗如下表:产品品种 劳动力(个)煤(吨) 电(千瓦)A 产品 3 9 4B 产品1045已知生产每吨A 产品的利润是7万元,生产每吨B 产品的利润是12万元,现因条件限制,该企业仅有劳动力300个,煤360吨,并且供电局只能供电200千瓦,试问该企业如何安排生产,才能获得最大利润?『训练4』 某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需运往A 地至少72吨的货物,派用的每辆车需满载且只运送一次,派用的每辆甲型卡车需配2名工人,运送一次可得利润450元;派用的每辆乙型卡车需配1名工人,运送一次可得利润350元.该公司合理计划当天派用两类卡车的车辆数,可得最大利润z =( ). A .4 650元 B .4 700元 C .4 900元 D .5 000元『专题突破』难点突破——高考中线性规划问题近几年新课标高考对线性规划问题的考查主要是以选择题或填空题的形式出现,线性约束条件下的线性目标函数的最优解一般在平面区域的顶点或边界处取得,所以对于一般的线性规划问题,我们可以直接解出可行域的顶点,然后将坐标代入目标函数求出相应的数值,从而确定目标函数的最值.『示例1』设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -5≤0,x -y -2≤0,x ≥0,则目标函数z =2x +3y +1的最大值为( ).A .11B .10C .9 D.172『示例2』若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +3y -3≥0,2x -y -3≤0,x -my +1≥0,且z =x +y 的最大值为9,则实数m等于( ).A .-2B .-1C .1D .2答案『基础梳理』1.(1)①ax+by+c=0 (2)相同符号2.名称意义目标函数欲求最大值或最小值的函数约束条件目标函数中的变量所要满足的不等式组线性约束条件由x,y的一次不等式(或方程)组成的不等式组线性目标函数目标函数是关于变量的一次函数可行解满足线性约束条件的解可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的点的坐标线性规划问题在线性约束条件下,求线性目标函数的最大值或最小值问题『考向探究』『例1』『审题视点』准确画出不等式组所表示的平面区域,比较直线2x+y-10=0与4x+3y-20=0的斜率即可判断.『解析』由不等式组画出平面区域如图(阴影部分).直线2x+y-10=0恰过点A(5,0),且斜率k=-2<k AB=-43,即直线2x+y-10=0与平面区域仅有一个公共点A(5,0).『答案』B不等式组表示的平面区域是各个不等式所表示的平面区域点集的交集,因而是各个不等式所表示的平面区域的公共部分.『训练1』『解析』其中平面区域kx -y +2≥0是含有坐标原点的半平面.直线kx -y +2=0又过定点(0,2),这样就可以根据平面区域的面积为4,确定一个封闭的区域,作出平面区域即可求解. 平面区域如图所示,根据区域面积为4,得A (2,4),代入直线方程,得k =1. 『答案』A 『例2』『审题视点』 作出平行域D ,然后解出目标函数z 的表达式,用截距法求z 的最大值.『解析』画出区域D ,如图中阴影部分所示,而z =OM →·O A →=2x +y ,∴y =-2x +z ,令l 0:y =-2x ,将l 0平移到过点(2,2)时,截距z 有最大值,故z max =2×2+2=4. 『答案』B求目标函数的最大值或最小值,必须先求出准确的可行域,令目标函数等于0,将其对应的直线平行移动,最先通过或最后通过的顶点便是最优解. 『训练2』『解析』画出x 、y 满足条件的可行域如图所示,要使目标函数z =ax +y 仅在点(3,0)处取得最大值,则直线y =-ax +z 的斜率应小于直线x +2y -3=0的斜率,即-a <-12,∴a >12.『答案』D 『例3』『审题视点』 利用目标函数所表示的几何意义求解.解 由约束条件⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1.作出(x ,y )的可行域如图所示.由⎩⎪⎨⎪⎧ x =1,3x +5y -25=0,解得A ⎝⎛⎭⎫1,225. 由⎩⎪⎨⎪⎧x =1,x -4y +3=0,解得C (1,1). 由⎩⎪⎨⎪⎧x -4y +3=0,3x +5y -25=0,解得B (5,2). (1)∵z =y x =y -0x -0.∴z 的值即是可行域中的点与原点O 连线的斜率.观察图形可知z min =k OB=25. (2)z =x 2+y 2的几何意义是可行域上的点到原点O 的距离的平方.结合图形可知,可行域上的点到原点的距离中,d min =|OC |=2,d max =|OB |=29.∴2≤z ≤29.求目标函数的最值,必须先准确地作出线性约束条件表示的可行域,再根据目标函数的几何意义确定取得最优解的点,进而求出目标函数的最值. 『训练3』 『解析』如图,当P 取点⎝⎛⎭⎫0,12,Q 取点(0,-1)时,|PQ |有最小值为32. 『答案』A 『例4』『审题视点』 题目的设问是“该企业如何安排生产,才能获得最大利润”,这个利润是由两种产品的利润所决定的,因此A ,B 两种产品的生产数量决定着该企业的总利润,这里两种产品的生产数量是问题的主要变量,故可以设出A ,B 两种产品的生产数量,列不等式组和建立目标函数.解 设生产A ,B 两种产品分别为x 吨,y 吨,利润为z 万元,依题意,得 ⎩⎪⎨⎪⎧3x +10y ≤300,9x +4y ≤360,4x +5y ≤200,x ≥0,y ≥0.目标函数为z =7x +12y . 作出可行域,如图阴影所示.当直线7x +12y =0向右上方平行移动时,经过M (20,24)时z 取最大值. ∴该企业生产A ,B 两种产品分别为20吨和24吨时,才能获得最大利润.线性规划的实际应用问题,需要通过审题理解题意,找出各量之间的关系,最好是列成表格,找出线性约束条件,写出所研究的目标函数,转化为简单的线性规划问题. 『训练4』『解析』设派用甲型卡车x 辆,乙型卡车y 辆,获得的利润为z 元,z =450x +350y ,由题意,x 、y 满足关系式⎩⎪⎨⎪⎧x +y ≤12,2x +y ≤19,10x +6y ≥72,0≤x ≤8,0≤y ≤7,作出相应的平面区域,z =450x +350y =50(9x +7y ),在由⎩⎪⎨⎪⎧x +y =12,2x +y =19确定的交点(7,5)处取得最大值4 900元.『答案』C。
山东省冠县武训高级中学高考数学复习题库:7.3 二元一次不等式(组)与简单的线性规划问题一、选择题1.不等式x -2y >0表示的平面区域是( ).解析 将点(1,0)代入x -2y 得1-2×0=1>0. 答案 D2.设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +2y -5>0,2x +y -7>0,x ≥0,y ≥0.若x ,y 为整数,则3x +4y 的最小值是( ). A .14B .16C .17D .19解析 线性区域边界上的整点为(3,1),因此最符合条件的整点可能为(4,1)或(3,2),对于点(4,1),3x +4y =3×4+4×1=16;对于点(3,2),3x +4y =3×3+4×2=17,因此3x +4y 的最小值为16. 答案 B3. 设变量x ,y 满足10,020,015,x y x y y -⎧⎪≤+≤⎨⎪≤≤⎩…则2x +3y 的最大值为( )A. 20B.35C. 45D. 55解析 画出可行域,根据图形可知当x=5,y=15时2x +3y 最大,最大值为55,故选D. 答案 D4.某厂生产的甲、乙两种产品每件可获利润分别为30元、20元,生产甲产品每件需用A 原料2 kg 、B 原料4 kg ,生产乙产品每件需用A 原料3 kg 、B 原料2 kg.A 原料每日供应量限额为60 kg ,B 原料每日供应量限额为80 kg.要求每天生产的乙种产品不能比甲种产品多超过10件,则合理安排生产可使每日获得的利润最大为( ) A .500元 B .700元 C .400元 D .650元解析 设每天生产甲乙两种产品分别为x ,y 件,则x ,y 满足⎩⎪⎨⎪⎧2x +3y ≤60,4x +2y ≤80,y -x ≤10,x ≥0,y ≥0,x ,y ∈N *.利润z =30x +20y.2x +3y =60和直线4x +2y =80的交点B 处取得最大值,解方程组得B (15,10),代入目标函数得z max =30×15+20×10=650. 答案 D5.设实数x ,y 满足条件⎩⎪⎨⎪⎧4x -y -10≤0,x -2y +8≥0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为12,则2a +3b的最小值为( ). A.256B.83C.113D .4解析 由可行域可得,当x =4,y =6时,目标函数z =ax +by 取得最大值,∴4a +6b =12,即a 3+b 2=1.∴2a +3b =⎝ ⎛⎭⎪⎫2a +3b ·⎝ ⎛⎭⎪⎫a 3+b 2=136+b a +a b ≥136+2=256. 答案 A6.已知不等式组⎩⎪⎨⎪⎧x +y ≤1,x -y ≥-1,y ≥0表示的平面区域为M ,若直线y =kx -3k 与平面区域M有公共点,则k 的取值范围是( ).A.⎝ ⎛⎦⎥⎤0,13B.⎝⎛⎦⎥⎤-∞,13 C.⎣⎢⎡⎦⎥⎤-13,0D.⎝⎛⎦⎥⎤-∞,-13 解析 如图所示,画出可行域,直线y =kx -3k 过定点(3,0),由数形结合,知该直线的斜率的最大值为k =0,最小值为k =0-13-0=-13.答案 C7.设双曲线4x 2-y 2=1的两条渐近线与直线x =2围成的三角形区域(包含边界)为D ,P (x ,y )为D 内的一个动点,则目标函数z =12x -y 的最小值为( )A .-2B .-322C .0D .-522解析 曲线4x 2-y 2=1的两条渐近线方程为2x -y =0,2x +y =0,与直线x =2围成的三角形区域如图中的阴影部分所示,所以目标函数z =12x -y 在点P (2,22)处取得最小值为z =122-22=-32 2. 答案 二、填空题8.若点P (m,3)到直线4x -3y +1=0的距离为4,且点P 在不等式2x +y <3表示的平面区域内,则m =________.解析 由题意可得⎩⎪⎨⎪⎧|4m -9+1|5=4,2m +3<3,解得m =-3.答案 -39.在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0,ax -y +1≥0(a 为常数)所表示的平面区域内的面积等于2,则a 的值为________.解析 等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0表示的区域为图中阴影部分.又因为ax -y +1=0恒过定点(0,1), 当a =0时,不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0,ax -y +1≥0.所表示的平面区域的面积为12,不合题意;当a <0时,所围成的区域面积小于12,所以a >0,此时所围成的区域为三角形,其面积为S =12×1×(a +1)=2,解之得a =3. 答案310.铁矿石A 和B 的含铁率a ,冶炼每万吨铁矿石的CO 2的排放量b 及每万吨铁矿石的价格c 如下表:某冶炼厂至少要生产2万吨),则购买铁矿石的最少费用为________百万元.解析 可设需购买A 矿石x 万吨,B 矿石y 万吨,则根据题意得到约束条件为:⎩⎪⎨⎪⎧x ≥0,y ≥0,0.5x +0.7y ≥1.9,x +0.5y ≤2,目标函数为z =3x +6y ,作图可知当目标函数经过(1,2)点时目标函数取得最小值,最小值为z min =3×1+6×2=15(百万元).答案 1511.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧3≤2x +y ≤9,6≤x -y ≤9,则z =x +2y 的最小值为________.解析 根据⎩⎪⎨⎪⎧3≤2x +y ≤9,6≤x -y ≤9得可行域如图所示;根据z =x +2y 得y =-x 2+z 2,平移直线y =-x2,在M 点z 取得最小值.根据⎩⎪⎨⎪⎧x -y =92x +y =3得⎩⎪⎨⎪⎧x =4y =-5,此时z =4+2×(-5)=- 6.答案 -612.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y≥1,x -y≥-12x -y≤2,,目标函数z =ax +2y 仅在点(1,0)处取得最小值,则a 的取值范围是________.解析y =-a 2x +12z ,根据图象判断,当目标函数的斜率-1<-a2<2时,目标函数z =ax +2y 仅在点(1,0)处取得最小值,这时a的取值范围是(-4,2). 答案 (-4,2) 三、解答题13.设集合A ={(x ,y )|x ,y,1-x -y 是三角形的三边长}. (1)求出x ,y 所满足的不等式; (2)画出点(x ,y )所在的平面区域.解析 (1)已知条件即⎩⎪⎨⎪⎧x +y >1-x -y >0,x +1-x -y >y >0,y +1-x -y >x >0,化简即⎩⎪⎨⎪⎧-x +12<y <-x +1,0<y <12,0<x <12.(2)区域如下图.14.画出2x -3<y ≤3表示的区域,并求出所有正整数解.解析 先将所给不等式转化为⎩⎪⎨⎪⎧y >2x -3,y ≤3.而求正整数解则意味着x ,y 还有限制条件,即求⎩⎪⎨⎪⎧y >2x -3,y ≤3,x >0,y >0的整数解.所给不等式等价于⎩⎪⎨⎪⎧y >2x -3,y ≤3.依照二元一次不等式表示平面区域可得如图(1).对于2x -3<y ≤3的正整数解,再画出⎩⎪⎨⎪⎧y >2x -3,y ≤3,x >0,y >0表示的平面区域.如图(2)所示:可知,在该区域内有整数解为(1,1)、(1,2)、(1,3)、(2,2)、(2,3)共五组.15.若a ≥0,b ≥0,且当⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1时,恒有ax +by ≤1,求以a ,b 为坐标的点P (a ,b )所形成的平面区域的面积. 解析 作出线性约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1对应的可行域如图所示,在此条件下,要使ax +by ≤1恒成立,只要ax +by 的最大值不超过1即可.令z =ax +by ,则y =-a b x +z b.因为a ≥0,b ≥0,则-1<-a b ≤0时,b ≤1,或-a b≤-1时,a ≤1. 此时对应的可行域如图,所以以a ,b 为坐标的点P (a ,b )所形成的面积为 1.16.某营养师要为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C ;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童S 这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?解析 设需要预订满足要求的午餐和晚餐分别为x 个单位和y 个单位,所花的费用为z 元,则依题意得:z =2.5x +4y ,且x ,y 满足⎩⎪⎨⎪⎧x ≥0,y ≥0,12x +8y ≥64,6x +6y ≥42,6x +10y ≥54,即⎩⎪⎨⎪⎧x ≥0,y ≥0,3x +2y ≥16,x +y ≥7,3x +5y ≥27.让目标函数表示的直线2.5x +4y =z 在可行域上平移,由此可知z=2.5x +4y 在(4,3)处取得最小值.因此,应当为该儿童预订4个单位的午餐和3个单位的晚餐,就可满足要求.。