数控机床加工的切削用量
- 格式:docx
- 大小:52.90 KB
- 文档页数:6
单元4数控机床加工的切削用量教学目的1、了解数控机床的运动(主运动、进给运动);2、了解数控机床加工刀具的角度及其作用;3、了解数控机床加工中有关切削层的参数及其作用;4、了解数控机床加工中的切削用量及其选用原则。
5、掌握常用不同材料零件在粗加工、半精加工和精加工时的切削用量选用;教学重点1、数控机床加工刀具的角度及其作用;2、数控加工中粗加工、半精加工和精加工时的切削用量选择;教学难点1、刀具的角度及其作用;2、切削用量选用教学方法讲练结合教学内容一、车削加工与刀具1. 车削加工原理在普通车床和一般数控车床上,可以进行工件的外表面、端面、内表面以及内外螺纹的加工。
对于车削中心,除上述各种加工外,还可进行铳削、钻削等加工。
从上述介绍可以看出:在切削过程中,刀具和工件之间必须具有相对运动,这种相对运动称为切削运动。
根据切削运动在切削过程中的作用不同可以分为主运动、和进给运动。
各种机床的主运动和进给运动参见下表。
主运动是指机床提供的主要运动。
主运动使刀具和工件之间产生相对运动,从而使刀具的前刀面接近工件并对工件进行切削。
在车床上,主运动是机床上主轴的回转运动,即车削加工时工件的旋转运动。
2)进给运动进给运动是指由机床提供的使刀具与工件之间产生的附加相对运动。
进给运动与主运动相配合,可以形成完整的切削加工。
在普通车床上,进给运动是机床刀架(溜板)的直线移动。
它可以是纵向的移动(与机床主轴轴线平行),也可以是横向的移功(与机床主轴轴线垂直),但只能是一亇方向的移动。
在数控车床上,数控车床可以同时实现两亇方向的进给,从而加工出各种具有复杂母线的回转体工件。
在数控车床中,主运动和进给运动是由不同的电机来驱动的,分别称为主轴电机和坐标轴伺服电机。
它们由机床的控制系统进行控制,自动完成切削加工。
2. 切削用量切削用量是指机床在切削加工时的状态参数。
不同类型的机床对切削用量参数的表述也略有不同,但其基本的含义都是一致的,如下图所示。
数控加工中切削用量的合理选择【摘要】文章介绍了切削用量的三要素,并对数控机床加工时切削用量的合理选择进行了详细阐述,为数控机床编程与操作人员提供参考。
关键词】切削用量;加工质量;刀具耐用度;选择原则前言:数控加工中切削用量的原则是,粗加工时,一般以提高生产率为主,但也应考虑经济和加工成本;半精加工和精加工时,应在保证加工质量的前提下,兼顾切削效率、经济性和加工成本。
具体数值应根据机床说明书、切削用量手册,并结合经验而定。
切削用量是表示机床主运动和进给运动大小的重要参数。
切削用量的确定是数控加工工艺中的重要内容,切削用量的大小对加工效率、加工质量、刀具磨损和加工成本均有显著影响一、切削用量的选择原则数控加工中选择切削用量,就是在保证加工质量和刀具耐用度的前提下,充分发挥机床性能和刀具切削性能,使切削效率最高,加工成本最低。
(一)加工质量:加工质量分为加工精度和加工表面质量。
1•加工精度是指零件加工后实际几何参数(尺寸、形状和位置)与理想几何参数相符的程度。
符合程度愈高,加工精度愈高。
实际值与理想值之差称为加工误差,所谓保证加工精度,即指控制加工误差。
⑴尺寸精度:加工表面的实际尺寸与设计尺寸的尺寸误差不超过一定的尺寸公差范围。
在国标中尺寸公差分20级(IT01、ITO、IT1〜IT18 )。
尺寸精度的获得方法:①试切法:试切一一测量一一调整一一再试切。
用于单件小批生产。
②调整法:通过预调好的机床、夹具、刀具、工件,在加工中自行获得尺寸精度。
用于成批大量生产。
③尺寸刀具法:用一定形状和尺寸的刀具加工获得。
生产率高,但刀具制造复杂。
④自动控制法:用一定装置,边加工边自动测量控制加工。
切削测量补偿调整。
⑵几何形状精度:加工表面的实际几何要素对理想几何要素的变动量不超过一定公差范围。
在国标中形状公差有六项:直线度、平面度、圆度、圆柱度、线轮廓度、面轮廓度。
几何形状精度的获得方法:成形运动法①轨迹法:利用刀具与工件间的相对运动轨迹来获得形状。
数控机床加工的切削用量包括切削速度V c (或主轴转速n)、切削深度a p 和进给量f ,其选用原则与普通机床基本相似,合理选择切削用量的原则是:粗加工时,以提高劳动生产率为主,选用较大的切削量;半精加工和精加工时,选用较小的切削量,保证工件的加工质量。
1. 数控车床切削用量 1)切削深度a p在工艺系统刚性和机床功率允许的条件下,尽可能选取较大的切削深度,以减少进给次数。
当工件的精度要求较高时,则应考虑留有精加工余量,一般为0.1~0.5mm 。
切削深度ap计算公式:a p =式中: d w —待加工表面外圆直径,单位mm d m —已加工表面外圆直径,单位mm. 2)切削速度Vc① 车削光轴切削速度V c 光车切削速度由工件材料、刀具的材料及加工性质等因素所确定,表1为硬质合金外圆车刀切削速度参考表。
切削速度Vc 计算公式: Vc=式中: d —工件或刀尖的回转直径,单位mm n —工件或刀具的转速,单位r/min表1 硬质合金外圆车刀切削速度参考表2mw d d注:表中刀具材料切削钢及灰铸铁时耐用度约为60min。
②车削螺纹主轴转速n切削螺纹时,车床的主轴转速受加工工件的螺距(或导程)大小、驱动电动机升降特性及螺纹插补运算速度等多种因素影响,因此对于不同的数控系统,选择车削螺纹主轴转速n存在一定的差异。
下列为一般数控车床车螺纹时主轴转速计算公式:n≤–k式中:p—工件螺纹的螺距或导程,单位mm。
k—保险系数,一般为80。
3)进给速度进给速度是指单位时间内,刀具沿进给方向移动的距离,单位为mm/min,也可表示为主轴旋转一周刀具的进给量,单位为mm/r。
⑴确定进给速度的原则①当工件的加工质量能得到保证时,为提高生产率可选择较高的进给速度。
②切断、车削深孔或精车时,选择较低的进给速度。
③刀具空行程尽量选用高的进给速度。
④进给速度应与主轴转速和切削深度相适应。
⑵进给速度V f的计算 V f = n f式中:n—车床主轴的转速,单位r/min。
数控车床切削用量的选择数控车床切削量(AP、F、V)的选择是否合理,对于充分发挥机床的潜力和切削性能,实现高质量、高产量、低成本和安全运行具有紧要作用。
2.3.3介绍了切割剂量选择的一般原则。
这里重要讨论转向剂量选择的原则:对于毛坯模型,首先考虑的是选择尽可能大的背拔模量ap,其次是较大的进给量f,然后确定合适的切削速度V。
加添背切量ap可以削减切削次数,加添切削量进给f有利于断屑,因此依据上述原则选择粗车切削量有利于提高生产效率,削减刀具消耗,降低加工成本。
汽车精加工时,加工精度和表面粗糙度要求高,加工余量小且均匀。
因此,在选择精车切削量时,应要关注如何保证加工质量,并在此基础上尽可能提高生产率。
所以精车应选择小(但不能太小)的后退刀距ap和进给f,并选择切削性能高的刀具材料和合理的几何参数,以提高切削速度V。
一、确定退稿量。
数控数控车床设备在工艺系统刚度和机床功率允许的情况下,尽可能大的反向进给,削减进给次数。
假如零件精度较高,应考虑留出精车余量,留出的精车余量一般比一般车削要小,常取0.1~0.5㎜。
二、进给f(部分数控机床使用进给速度VF)进给量f的选择应与后切量和主轴转速相适应。
在保证工件加工质量的前提下,可选择更高的进给速度(2000mm/min以下)。
切削、车削深孔或精车时,应选择较低的进给速度。
可以在刀具空闲时设置可能的较高进给速度,尤其是在长距离回零时。
粗车一般取F=0.3~0.8mm/r,细车常取F=0.1~0.3mm/r,截断F=0.05~0.2mm/r。
三、确定数控车床主轴转速。
1)轻车在圆外时的主轴转速。
轻型车圆时,应依据加工零件的直径和零件、刀具材料和加工性能所允许的切削速度来确定主轴转速。
除计算和选表外,还可依据实际阅历确定切割速度。
需要注意的是,交流变频数控车床低速输出扭矩小,切削速度不能太低。
确定切削速度后,采纳公式n=1000vc/πd计算主轴转速N(r/min)。
数控车削中切削用量的选择一、数控车削中切削用量的概念及意义数控车削中的切削用量是指在加工过程中,刀具与工件之间的相对运动状态下,单位时间内去除的金属量。
它是衡量加工效率和加工质量的重要指标之一。
在数控车床加工中,合理选择切削用量可以提高生产效率,降低成本,同时还能保证产品质量。
二、影响切削用量的因素1. 刀具材料:不同材料的刀具对于不同材料的工件有着不同的适应性和耐磨性。
2. 刀具形状:不同形状的刀具适用于不同形状和精度要求的零件。
3. 切削速度:切削速度越高,单位时间内去除金属量越大。
4. 进给速度:进给速度越大,单位时间内去除金属量越大。
5. 切削深度:切削深度越大,单位时间内去除金属量越大。
6. 工件硬度:硬度较高的工件需要使用更耐磨损的刀具以及更小而深入地进行切割以提高切削用量。
三、如何选择合适的切削用量1. 根据工件材料和形状选择刀具:不同材料和形状的工件需要使用不同的刀具,以达到最佳加工效果。
2. 根据加工要求选择切削速度和进给速度:根据加工要求确定切削速度和进给速度,以达到最佳的加工效率和质量。
3. 根据机床性能选择最佳切削深度:根据机床性能选择最佳的切削深度,以达到最佳的加工效率和质量。
4. 根据刀具磨损情况及时更换:定期检查并更换磨损严重的刀具,以保证加工质量。
5. 选择合适的冷却液:根据不同材料和形状的工件,选择合适的冷却液以降低温度、减少摩擦、延长刀具寿命等。
四、常见问题及解决方法1. 切屑太长或太细怎么办?答:调整进给速度或者增大/减小齿数可以改变每个齿面上去除金属量,从而改变切屑形状。
2. 切削力过大怎么办?答:减小切削深度或者降低切削速度可以减小切削力,同时也可以延长刀具寿命。
3. 刀具磨损过快怎么办?答:增加冷却液的流量或者更换更耐磨的刀具可以延长刀具寿命。
4. 加工表面粗糙度过大怎么办?答:调整进给速度或者增大/减小齿数可以改变每个齿面上去除金属量,从而改善表面质量。
数控机床加工的切削用量包括切削速度V c (或主轴转速n)、切削深度a p 和进给量f ,其选用原则与普通机床基本相似,合理选择切削用量的原则是:粗加工时,以提高劳动生产率为主,选用较大的切削量;半精加工和精加工时,选用较小的切削量,保证工件的加工质量。
1. 数控车床切削用量 1)切削深度a p在工艺系统刚性和机床功率允许的条件下,尽可能选取较大的切削深度,以减少进给次数。
当工件的精度要求较高时,则应考虑留有精加工余量,一般为0.1~0.5mm 。
切削深度ap计算公式:a p =式中: d w —待加工表面外圆直径,单位mm d m —已加工表面外圆直径,单位mm. 2)切削速度Vc① 车削光轴切削速度V c 光车切削速度由工件材料、刀具的材料及加工性质等因素所确定,表1为硬质合金外圆车刀切削速度参考表。
切削速度Vc 计算公式: Vc=式中: d —工件或刀尖的回转直径,单位mm n —工件或刀具的转速,单位r/min表1 硬质合金外圆车刀切削速度参考表2mw d d注:表中刀具材料切削钢及灰铸铁时耐用度约为60min。
②车削螺纹主轴转速n切削螺纹时,车床的主轴转速受加工工件的螺距(或导程)大小、驱动电动机升降特性及螺纹插补运算速度等多种因素影响,因此对于不同的数控系统,选择车削螺纹主轴转速n存在一定的差异。
下列为一般数控车床车螺纹时主轴转速计算公式:n≤–k式中:p—工件螺纹的螺距或导程,单位mm。
k—保险系数,一般为80。
3)进给速度进给速度是指单位时间内,刀具沿进给方向移动的距离,单位为mm/min,也可表示为主轴旋转一周刀具的进给量,单位为mm/r。
⑴确定进给速度的原则①当工件的加工质量能得到保证时,为提高生产率可选择较高的进给速度。
②切断、车削深孔或精车时,选择较低的进给速度。
③刀具空行程尽量选用高的进给速度。
④进给速度应与主轴转速和切削深度相适应。
⑵进给速度V f的计算 V f = n f式中:n—车床主轴的转速,单位r/min。
数控加工中切削用量的确定曹永志1 (1. 廊坊技师学院, 河北廊坊065000 ; 2.嵩2杨北华航天工业学院, 河北廊坊065000)摘要: 数控加工在当今的冷加工中应用越来越多, 其切削用量与普通机床有很大不同。
本文对数控加工中切削用量的确定做了简要的分析, 提供了一些选取原则和方法, 并对应该注意的问题进行了分析, 以供数控操作人员参考。
关键词: 数控加工; 切削用量; 切削速度; 切削深度; 进给量中图分类号: TG506 文献标识码: A 文章编号: 1673 - 7938 (2008) 05 - 0031 - 03随着数控机床在生产实际中的广泛应用,操作者要在人机交互状态下即时选择刀具和确定切削用量,编程人员必须熟悉刀具的选择方法和切削用量的确定原则,这样才能保证零件的加工质量和加工效率,充分发挥数控机床的优点,提高企业的经济效益和生产水帄。
1 数控加工特点与切削用量的确定与传统加工相比,数控加工的显著特点是:自动化程度高、加工质量稳定; 适合复杂型面零件的加工;高速化、高精度、高效率;工艺复杂、一机多用;柔性化高。
“工欲善其事,必先利其器”。
刀具的切削用量的确定是数控加工工艺中的重要内容,它不仅影响数控机床的加工效率,而且直接影响加工质量, 因此,数控加工中切削用量确定至关重要。
编程人员必须掌握切削用量确定的基本原则,在编程时充分考虑数控加工的特点。
2 数控加工切削用量的确定切削用量是在机床调整前必须确定的重要参数,它对切削力、功率消耗、刀具磨损、刀具耐用度、加工精度和表面质量等均有明显的影响。
因此,合理选择切削用量对提高切削效率,保证加工质量和降低加工成本具有重要的作用。
所谓“合理的”切削用量是指充分利用刀具切削性能和机床动力性能(功率、扭矩) ,在保证质量的前提下,获得高的生产率和低的加工成本的切削用量。
要确定合理的切削用量,既要从理论上充分认识切削用量,又要将理论上得出的切削用量运用到实际中去,这样才能综合机床、刀具、加工材料确定最佳的切削用量。
数控车削加工中的切削用量包括背吃刀量ap、主轴转速n或切削速度vc(用于恒线速度切削)、进给速度vf或进给量f。
这些参数均应在机床给定的允许范围内选取。
切削用量的选用原则(1)切削用量的选用原则粗车时,应尽量保证较高的金属切除率和必要的刀具耐用度。
选择切削用量时应首先选取尽可能大的背吃刀量ap,其次根据机床动力和刚性的限制条件,选取尽可能大的进给量f,最后根据刀具耐用度要求,确定合适的切削速度vc。
增大背吃刀量ap可使走刀次数减少,增大进给量f有利于断屑。
精车时,对加工精度和表面粗糙度要求较高,加工余量不大且较均匀。
选择精车的切削用量时,应着重考虑如何保证加工质量,并在此基础土尽量提高生产率。
因此,精车时应选用较小(但不能太小)的背吃刀量和进给量,并选用性能高的刀具材料和合理的几何参数,以尽可能提高切削速度。
(2)切削用量的选取方法①背吃刀量的选择粗加工时,除留下精加工余量外,一次走刀尽可能切除全部余量。
也可分多次走刀。
精加工的加工余量一般较小,可一次切除。
在中等功率机床上,粗加工的背吃刀量可达8~10mm;半精加工的背吃刀量取0.5~5mm;精加工的背吃刀量取0.2~1.5mm。
②进给速度(进给量)的确定粗加工时,由于对工件的表面质量没有太高的要求,这时主要根据机床进给机构的强度和刚性、刀杆的强度和刚性、刀具材料、刀杆和工件尺寸以及已选定的背吃刀量等因素来选取进给速度。
精加工时,则按表面粗糙度要求、刀具及工件材料等因素来选取进给速度。
进给速度νf 可以按公式ν f =f×n计算,式中f表示每转进给量,粗车时一般取0.3~0.8mm/r;精车时常取0.1~0.3mm/r;切断时常取0.05~0.2mm/r。
③切削速度的确定切削速度vc可根据己经选定的背吃刀量、进给量及刀具耐用度进行选取。
实际加工过程中,也可根据生产实践经验和查表的方法来选取。
粗加工或工件材料的加工性能较差时,宜选用较低的切削速度。
数控机床加工的切削用量包括切削速度V c (或主轴转速n)、切削深度a p 和进给量f ,其选用原则与普通机床基本相似,合理选择切削用量的原则是:粗加工时,以提高劳动生产率为主,选用较大的切削量;半精加工和精加工时,选用较小的切削量,保证工件的加工质量。
1. 数控车床切削用量 1)切削深度a p
在工艺系统刚性和机床功率允许的条件下,尽可能选取较大的切削深度,以减少进给次数。
当工件的精度要求较高时,则应考虑留有精加工余量,一般为0.1~0.5mm 。
切削深度ap 计算公式:a p =
式中: d w —待加工表面外圆直径,单位mm d m —已加工表面外圆直径,单位mm. 2)切削速度Vc
① 车削光轴切削速度V c 光车切削速度由工件材料、刀具的材料及加工性质等因素所确定,表1为硬质合金外圆车刀切削速度参考表。
切削速度Vc 计算公式: Vc=
式中: d —工件或刀尖的回转直径,单位mm n —工件或刀具的转速,单位r/min
表1 硬质合金外圆车刀切削速度参考表
2
m
w d d
注:表中刀具材料切削钢及灰铸铁时耐用度约为60min。
②车削螺纹主轴转速n切削螺纹时,车床的主轴转速受加工工件的螺距(或导程)大小、驱动电动机升降特性及螺纹插补运算速度等多种因素影响,因此对于不同的数控系统,选择车削螺纹主轴转速n存在一定的差异。
下列为一般数控车床车螺纹时主轴转速计算公式:
n≤–k
式中:p—工件螺纹的螺距或导程,单位mm。
k—保险系数,一般为80。
3)进给速度
进给速度是指单位时间内,刀具沿进给方向移动的距离,单位为mm/min,也可表示为主轴旋转一周刀具的进给量,单位为mm/r。
⑴确定进给速度的原则
①当工件的加工质量能得到保证时,为提高生产率可选择较高的进给速度。
②切断、车削深孔或精车时,选择较低的进给速度。
③刀具空行程尽量选用高的进给速度。
④进给速度应与主轴转速和切削深度相适应。
⑵进给速度V f的计算V f = n f
式中:n—车床主轴的转速,单位r/min。
f—刀具的进给量,单位mm/r。
表2为硬质合金车刀车粗车外圆和端面进给量参考表,表3为按表面粗糙度选择进给量参考表。
表2 硬质合金车刀粗车外圆及端面进给量参考表
注:1)断续加工和加工有冲击的工件,表内进给量应乘系数k=0.75~0.85;
2)加工无外皮工件,表内进给量应乘系数k=1.1;
3) 加工耐热钢及其合金,进给量不大于1mm/r;
4) 加工淬硬钢,应减少进给量。
当钢的硬度为44~56HRC,应乘系数k=0.8;当钢的
硬度为57~62 HRC时,应乘系数k=0.5。
表3 按表面粗糙度选择进给量参考表
注:rε=0.5mm,一般选择刀杆截面为12X12 mm2;
rε=1mm,一般选择刀杆截面为30X30 mm2;
rε=2mm, 一般选择刀杆截面为30X45 mm2。
2. 数控铣床切削用量选择
数控铣床的切削用量包括切削速度v c 、进给速度v f 、背吃刀量a p和侧吃刀量a c。
切削用量的选择方法是考虑刀具的耐用度,先选取背吃刀量或侧吃刀量,其次确定进给速度,最后确定切削速度。
1)背吃刀量a p(端铣)或侧吃刀量a c(圆周铣)
如下图所示,背吃刀量a p为平行于铣刀轴线测量的切削层尺寸,单位为mm,端铣时a p为切削层深度,圆周铣削时a p为被加工表面的宽度。
侧吃刀量ac为垂直于铣刀轴线测量的切削层尺寸,单位为mm,端铣时a c为被加工表面宽度,圆周铣削时a c为切削层深度。
端铣背吃刀量和圆周铣侧吃刀量的选取主要由加工余量和对表面质量要求决定。
①工件表面粗糙度要求为Ra3.2~12.5µm,分粗铣和半精铣两步铣削加工,粗铣后留半精铣余量0.5 ~ 1.0mm。
图铣刀铣削用量
②工件表面粗糙度要求为Ra0.8~3.2µm,可分粗铣、半精铣、精铣三步铣削加工。
半精铣时端铣背吃刀量或圆周铣削侧吃刀量取1.5~2mm,精铣时圆周铣侧吃刀量取0.3~0.5mm,端铣背吃刀量取0.5~1mm。
2)进给速度v f
进给速度指单位时间内工件与铣刀沿进给方向的相对位移,单位为mm/min。
它与铣刀转速n、铣刀齿数Z及每齿进给量f z(单位为mm/z)有关。
进給速度的计算公式:v f = f z Z n
式中: 每齿进给量f z的选用主要取决于工件材料和刀具材料的机械性能、工件表面粗糙度等因素。
当工件材料的强度和硬度高,工件表面粗糙度的要求高,工件刚性差或刀具强度低,f z 值取小值。
硬质合金铣刀的每齿进给量高于同类高速钢铣刀的选用值,每齿进给量的选用参考表见表4。
表4 铣刀每齿进给量f z参考表
3)切削速度
铣削的切削速度与刀具耐用度T、每齿进给量fz、背吃刀量ap、侧吃刀量ae以及铣刀齿数Z成反比,与铣刀直径d成正比。
其原因是fz、ap、ae、Z增大时,使同时工作齿数增多,刀刃负荷和切削热增加,加快刀具磨损,因此刀具耐用度限制了切削速度的提高。
如果加大铣刀直径则可以改善散热条件,相应提高切削速度。
表5列出了铣削切削速度的参考值。
表5 铣削时的切削速度参考表。