线段计算专题(2)
- 格式:doc
- 大小:37.00 KB
- 文档页数:1
必刷题专题2 与全等三角形有关的线段和角的证明及计算刷难关知识点一求角度和线段的长度1. [2019四川成都中考,中]如图,在△ABC中,AB=AC,点D,E都在边BC上,∠BAD=∠CAE,若BD=9,则CE的长为.2. [中]正方形ABCD中,E为BC上的一点,F为CD上的一点,BE+DF=EF,求∠EAF 的度数.3. [2018江苏常州一模,较难]如图,四边形ABCD中,对角线AC,BD交于点O,AB=AC,点E是BD上一点,且AE=AD,∠EAD=∠BAC.(1)求证:∠ABD=∠ACD;(2)若∠ACB=65°,求∠BDC的度数.知识点二角度和线段之间关系的证明4. [2020辽宁鞍山立山区月考,中]如图,在△ABC中,P是∠BAC的平分线上一点,且AC>AB,则PB,PC,AB,AC之间有什么数量关系?5. [中]在△ABC中,BD是∠ABC的平分线,AD⊥BD,垂足是D.求证:∠2=∠1+∠C.6. [较难]如图(1),△ABC≌△DEF,将△ABC和△DEF的顶点B与顶点E重合,把△DEF绕点B顺时针方向旋转,这时AC与DF相交于点O.(1)当△DEF旋转至如图(2)位置,点B(E),C,D在同一直线上时,∠AFD 与∠DCA的数量关系是(2)当△DEF继续旋转至如图(3)位置时,(1)中的结论还成立吗?请说明理由.知识点三线段位置关系7. [2020浙江湖州校级月考,中]如图,已知AB∥CD,OA=OD,AE=DF,请问EB 与CF有什么样的位置关系?8. [2020甘肃兰州月考,中]如图,已知AB⊥AC,AD⊥AE,AB=AC,AD=AE,求证:(1)BE= DC;(2)BE⊥DC9. [2020河南漯河校级月考,较难]如图所示,∠BAC=∠DAE=90°,M是BE的中点,AB=AC,AD=AE,则AM与CD有什么样的位置关系?参考答案1. 答案:9解析:∵AB=AC,∴△ABC为等腰三角形,∴∠B=∠C.在△BAD和△CAE中,BAD=CAE AB=ACB=C∠∠⎧⎪⎨⎪∠∠⎩,,,∴△BAD≌△CAE(ASA),∴BD=CE=9.2.答案:【解】如图,延长EB到点G,使得BG=DF,连接AG.在正方形ABCD中,∠D=∠ABC=90°,AB=AD,∴∠ABG=∠ADF=90°.在△ABG和△ADF中,AB=ADABG=ADFBG=DF⎧⎪∠∠⎨⎪⎩,,,∴△ABG≌△ADF(SAS),∴∠DAF=∠BAG,AF=AG. 又∵EF=DF+BE=BG+BE=EG,∴在△AEG和△AEF中,AE=AEGE=FEAG=AF⎧⎪⎨⎪⎩,,,∴△AEG≌△AEF(SSS),∴∠EAG =∠EAF.∵∠DAF+∠EAF+∠BAE=90°,∴∠EAG+∠EAF=90°,∴∠EAF=45°.解析:3.答案:(1)【证明】∵∠BAC=∠EAD,∴∠BAC-∠EAC=∠EAD-∠EAC,即∠BAE=∠CAD.在△ABE和△ACD中,∵AB=ACBAE=CADAE=AD⎧⎪∠∠⎨⎪⎩,,,∴△ABE≌△ACD.∴∠ABD=∠ACD.(2)【解】∵∠BOC是△ABO和△DCO的外角,∴∠BOC=∠ABD+∠BAC,∠BOC=∠ACD+∠BDC,∴∠ABD+∠BAC=∠ACD+∠BDC.∵∠ABD=∠ACD,∴∠BAC=∠BDC.∵∠ACB=65°,AB=AC,∴∠ABC=∠ACB=65°,∴∠BAC=180°-∠ABC-∠ACB=180°-65°-65°=50°,∴∠BDC=∠BAC=50°.4. 答案:【解】如图,在AC 上取点G ,使AG=AB ,连接PG.∵AD 平分∠BAC ,∴∠BAP=∠GAP.在△ABP 和△AGP 中,AB=AG BAP=GAP AP=AP ⎧⎪∠∠⎨⎪⎩,,,∴△ABP ≌△AGP (SAS ),∴PB=PG.在△PGC 中,由三边关系定理得PC-PG<CG<PC+PG.∵CG=AC-AG=AC-AB ,∴PC-PB<AC-AB<PC+PB.5. 答案:【证明】如图,延长AD 交BC 于E.∵AD ⊥BD ,∴∠BDA=∠BDE=90°.∵∠ABD=∠EBD ,BD=BD ,∴△BDA ≌△BDE (ASA ),∴∠2=∠BEA.∵∠BEA=∠1+∠C,∴∠2=∠1+∠C.6. 答案:【解】(1)∵△ABC ≌△DEF ,∴∠A=∠D.又∵∠AOD=∠A+∠AFD ,∠AOD=∠D+∠DCA ,∴∠AFD=∠DCA.(2)(1)中的结论成立.理由如下:∵△ABC ≌△DEF ,∴AB=DE ,BC=EF ,∠ABC=∠DEF ,∠BAC=∠EDF ,∴∠ABC-∠FBC=∠DEF-∠FBC ,即∠ABF= ∠DEC .在△ABF 与△DEC 中,AB=DE ABF=DEC BF=EC ⎧⎪∠∠⎨⎪⎩,,,∴△ABF ≌△DEC (SAS ),∴∠BAF=∠EDC ,∴∠BAC-∠BAF=∠EDF-∠EDC ,即∠FAC=∠CDF. 又∵∠AOD=∠FAC+∠AFD=∠CDF+∠DCA ,∴∠AFD=∠DCA.7.答案:【解】如图.∵AB∥CD,∴∠3=∠4.在△ABO和△DCO中,2=1AO=DO4=3∠∠⎧⎪⎨⎪∠∠⎩,,,∴△ABO≌△DCO(ASA),∴OB=OC. 又∵OA=OD,AE=DF,∴EO=FO.在△EBO和△FCO中,EO=FO2=1BO=CO⎧⎪∠∠⎨⎪⎩,,,∴△EBO≌△FCO(SAS),∴∠EBO=∠FCO,∴EB∥CF.8.答案:【证明】(1)∵AB⊥AC,AD⊥AE,∴∠DAE=∠CAB=90°,∴∠DAC=∠BAE.在△DAC和△EAB中,AD=AEDAC=EABAC=AB⎧⎪∠∠⎨⎪⎩,,,∴△DAC≌△EAB(SAS),∴BE=CD.(2)设AC与BE交于点M.∵△DAC≌△EAB,∴∠ACD=∠ABE.∵∠BAC=90°,∴∠ABM+∠AMB=90°.∵∠AMB=∠QMC,∴∠QMC+∠ACQ=90°,∴∠MQC=90°,即BE⊥DC.9.答案:【解】如图,延长AM到点F,使MF=AM,交CD于点N,连接BF,EF.在△ABM和△FEM中,AM=FMAMB=FMEBM=EM⎧⎪∠∠⎨⎪⎩,,,∴△ABM≌△FEM(SAS).∴AB=FE=AC,∠ABM=∠FEM,∠BAM=∠EFM,∴AB∥EF,∴∠AEF+∠BAE=180°.∵∠BAC=∠DAE=90°,∴∠CAD+∠BAE=180°,∴∠AEF=∠CAD,在△FEA和△CAD中,FE=CAAEF=DACAE=DA⎧⎪∠∠⎨⎪⎩,,,∴△FEA≌△CAD(SAS),∴∠EFA=∠ACD=∠BAF.∵∠BAC=90°,∴∠BAF+∠CAF=90°,∴∠ACD+∠CAF=90°,即∠ANC=90°,∴AM⊥CD.。
4.2.2 线段长短的比较与运算观察图形,你能比较出每组图形中线段 a 和b 的长短吗?很多时候,眼见未必为实. 准确比较线段的长短还需要更加严谨的办法.作一条线段等于已知线段已知:线段a,作一条线段AB,使AB=a.第一步:用直尺画射线AF第二步:用圆规在射线AF 上截取AB = a.∴ 线段AB 为所求.在数学中,我们常限定用无刻度的直尺和圆规作图,这就是尺规作图.(教师动画演示叠合的过程,呈现三种情况)设计意图在总结生活经验的基础上,引导学生归纳两人身高的比较方法以及需要注意的问题,再将方法迁移到“线段的长短比较”的数学问题中来,促进学生理解,锻炼学生几何语言的表达、概括能力,感受数学的严谨性,逐步培养学生用数学的眼光观察世界的能力,用数学的语言表达世界的能力.问题1 如图1(几何画板显示),当点C是线段AB 上一点时,图中有几条线段,它们的大小关系呢?生:有3条,分别是线段AC、CB、AB问题2:如图,线段AB和AC的大小关系是怎样的?线段AC与线段AB的差是哪条线段?你还能从图中观察出其他线段间的和、差关系吗?答案:AB<ACAB+BC=ACAC-AB=BCAC-BC=AB师:如果点C在线段AB 上移动(不与A、B两点重合),以上不等量关系和等量关系还成立吗?生:不等量关系中 AC<AB,CB<AB成立,而 AC>CB 不一定成立了;而等量关系都成立.师:利用几何画板的度量功能,可以把线段的长度都度量出来,请观察动画,当点C在线段AB上移动时,这3条线段的长度如何变化?(动画演示)生:当C刚开始移动时,有AC>CB,随着点C向点A方向移动,线段AC的长度越来越小,线段CB的长度越来越大,而线段AB 的长度保持不变.师:在点C移动的过程中,线段AC 和线段CB 的长度有没有可能相等?能找出相等时刻点C的位置吗?生1:有可能相等(上台演示).生2:如果能够折叠,将 AB=8.18厘米线段折叠,使点 A 与点B 重合AC=4.09厘米CB=4.09厘米重合,折痕与线段的交点就是点C.师:我们把这时的点C叫做线段AB 的中点,你能说说什么是线段的中点吗?生:线段AB上有一点C ,将线段AB 分成相等的两条线段AC 和CB ,就说点C是线段AB 的中点.强调:点C把线段AB分成相等的两条线段AC与BC,点C叫做线段AB的中点.符号语言:∴M是AB的中点∴AM=BM=12 AB想一想:什么是三等分点?四等分点呢?设计意图:利用直观图形,由线段的大小关系过渡到线段的和差关系,自然合理.利用多媒体动画及度量工具,揭示线段中点的含义.线段中点的表示采用两种表示法,渗透线段的倍分关系,为以后学习线段的三等分点、四等分点以及线段的几倍与几分之一打下基础.在概念的学习中,让学生体会一般与特殊的关系,通过不断逼近中点的演示,渗透极限思想,培养学生用数学的思维思考世界的能力.问题3:如图,从A地到B地有四条道路,除它们外能否再修一条从A地到B地的最短道路?如果能,请联系你以前所学的知识,在图上画出最短路线.强调1:两点的所有连线中,线段最短.简单地说:两点之间,线段最短.过关练习 1.如图,下列关系式中与图不符的是( )A.AD-CD=ACB. AB+BC=ACC.BD-BC=AB+BCD. AD-BD=AC-BC答案:C2.若AB = 6 cm,点C 是线段AB 的中点,点D 是线段CB 的中点,问:线段AD 的长是多少?3.如图,已知点C在线段AB上,线段AC=12,BC=8,点M,N分别是AC,BC的中点,求线段MN的长度;根据上面的计算过程与结果,设AC+BC=a,其他条件不变,你能猜出MN的长度吗?用简练的语言表述你发现的规律.解:(1)因为MC=12AC,NC=12BC,所以MN=12AC+12BC=12×12+12×8=10Aa aM B(2)因为MC =12AC ,NC =12BC ,所以MN =12AC +12BC =12×12+12×8=10如图,A ,B ,C 三点在一条直线上,线段4. AB = 4 cm ,BC = 6 cm ,若点 D 为线段 AB 的中点,点 E 为线段 BC 的中点,求线段 DE 的长.课堂小结设计意图 通过师生共同回顾本节课的学习内容和探究历程,构建知识框架,梳理知识的发生、发展过程,总结知识获得的方法,加深学生对所学知识的理解,感受数学的逻辑性和严密性.鼓励学生大胆发表自己的见解,培养语言表达和与人交流的能力.四、达标测评 检测小卷五、布置作业A 层作业:数学书128页练习1-3题B 层作业:练习卷C 层作业:拓展训练A DB E C线段长短的比较与运算 线段长短的比较基本事实线段的和差度量法叠合法中点两点之间线段最短 思想方法方程思想 分类思想基本作图。
线段的长短比较-重难点题型【例1】(2021•鼓楼区校级模拟)如图,C是线段AB的中点,D是CB上一点,下列说法中错误的是()A.CD=AC﹣BD B.CD=12BC C.CD=12AB﹣BD D.CD=AD﹣BC【变式1-1】(2021秋•荔湾区期末)延长线段AB到C,使BC=12AB,反向延长AC到D,使AD=12AC,若AB=8cm,则CD=cm.【变式1-2】(2021春•长兴县月考)如图,在线段AB上有C、D两点,CD长度为1cm,AB长为整数,则以A,B,C,D为端点的所有线段长度和不可能为()A.16cm B.21cm C.22cm D.31cm【变式1-3】(2021秋•天津期末)如图,B,C两点把线段AD分成2:5:3三部分,M为AD的中点,BM=6cm.求CM和AD的长.【题型2 线段中点的有关计算】【例2】(2021春•松北区期末)如图,点G是AB的中点,点M是AC的中点,点N是BC的中点,则下列式子不成立的是()A.MN=GB B.CN=12(AG−GC)C.GN=12(BG+GC)D.MN=12(AC+GC)【变式2-1】(2021秋•邵阳县期末)如图,点C 、D 是线段AB 上任意两点,点M 是AC 的中点,点N 是DB 的中点,若AB =a ,MN =b ,则线段CD 的长是( )A .2b ﹣aB .2(a ﹣b )C .a ﹣bD .12(a +b )【变式2-2】(2021秋•奉化区校级期末)两根木条,一根长10cm ,另一根长12cm ,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为( ) A .1cmB .11cmC .1cm 或11cmD .2cm 或11cm【变式2-3】(2021秋•江岸区校级月考)如图,点M 在线段AN 的延长线上,且线段MN =20,第一次操作:分别取线段AM 和AN 的中点M 1,N 1;第二次操作:分别取线段AM 1和AN 1的中点M 2,N 2;第三次操作:分别取线段AM 2和AN 2的中点M 3,N 3;……连续这样操作10次,则每次的两个中点所形成的所有线段之和M 1N 1+M 2N 2+…+M 10N 10=( )A .20(12+122+123+⋯+1210) B .20+1029 C .20−10210 D .20+10210 【题型3 线段n 等分点的有关计算】【例3】(2021春•东平县期末)如图,已知AB 和CD 的公共部分BD =13AB =14CD ,线段AB ,CD 的中点E ,F 之间的距离是10cm ,则AB 的长是 .【变式3-1】(2021春•奉贤区期末)如图,已知BD =16cm ,BD =25AB ,点C 是线段BD 的中点,那么AC = cm .【变式3-2】(2021秋•宝鸡期末)如图,P是线段AB上一点,AB=12cm,M、N两点分别从P、B出发以1cm/s、3cm/s的速度同时向左运动(M在线段AP上,N在线段BP上),运动时间为ts.(1)若M、N运动1s时,且PN=3AM,求AP的长;(2)若M、N运动到任一时刻时,总有PN=3AM,AP的长度是否变化?若不变,请求出AP的长;若变化,请说明理由;(3)在(2)的条件下,Q是直线AB上一点,且AQ=PQ+BQ,求PQ的长.【变式3-3】(2021秋•甘井子区期末)已知,点D是射线AB上的点,线段AB=4a,BD =nAB(0<n<1),点C是线段AD的中点.(1)如图1,若点D在线段AB上,当a=1,n=12时,求线段CD的长;(2)如图2,若点D在线段AB的延长线上,当n=12时,求线段CD的长;(用含a的式子表示)(3)若点D在射线AB上,请直接写出线段CD的长.(用含a和n的式子表示)【题型4 线段的数量关系】【例4】(2021秋•江门期末)如图,点B 在线段AC 上,D 是AC 的中点.若AB =a ,BC =b ,则BD =( )A .12b −12a B .12a −12bC .b −12aD .a −12b【变式4-1】(2021秋•沙湾区期末)如图,已知A ,B ,C ,D 是同一直线上的四点,看图填空:AC = +BC ,BD =AD ﹣ ,AC < .【变式4-2】(2021春•莱阳市期末)线段AB 的长为2cm ,延长AB 到点C ,使AC =3AB ,再延长BA 到点D ,使BD =2BC ,则线段CD 的长为 cm .【变式4-3】(2021秋•成都期末)已知点C 在线段AB 上,AC =2BC ,点D ,E 在直线AB 上,点D 在点E 的左侧.若AB =15,DE =6,线段DE 在线段AB 上移动. ①如图1,当E 为BC 中点时,求AD 的长;②点F (异于A ,B ,C 点)在线段AB 上,AF =3AD ,CF =3,求AD 的长;【题型5 两点之间线段最短】【例5】(2021春•莱州市期末)如图,A ,C 两村相距6km ,B ,D 两村相距5km .现要建一个自来水厂,使得该厂到四个村的距离之和最小.下列说法正确的是( )A .自来水厂应建在AC 的中点B .自来水厂应建在BD 的延长线上C .自来水厂到四个村的距离之和最小为11kmD .自来水厂到四个村的距离之和可能小于11km【变式5-1】(2021秋•丛台区校级期末)下列生活,生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着直线AB架设;④把弯曲的公路改直,就能缩短路程,其中可用“两点确定一条直线”来解释的现象有()A.①②B.①③C.②④D.③④【变式5-2】(2021秋•兴义市期末)如图,一只蚂蚁从长方体的一个顶点A沿表面爬行到顶点C处,有多条爬行线路,其中沿AC爬行一定是最短路线,其依据的数学道理是.【变式5-3】(2021秋•渠县期末)知识是用来为人类服务的,我们应该把它们用于有意义的方面.下面就两个情景请你作出评判.情景一:从教室到图书馆,总有少数同学不走人行道而横穿草坪,这是为什么呢?试用所学数学知识来说明这个问题.情景二:A、B是河流l两旁的两个村庄,现要在河边修一个抽水站向两村供水,问抽水站修在什么地方才能使所需的管道最短?请在图中表示出抽水站点P的位置,并说明你的理由:你赞同以上哪种做法?你认为应用数学知识为人类服务时应注意什么?【题型6 两点间的距离】【例6】(2021秋•罗湖区校级期末)如果在数轴上的A、B两点所表示的有理数分别是x,y,且|x|=3,|y|=1,则A,B两点间的距离是()A.4B.2C.4或2D.以上都不对【变式6-1】(2021秋•奉化区校级期末)如图,已知点A、点B是直线上的两点,点C在线段AB上,且BC=4厘米.点P、点Q是直线上的两个动点,点P的速度为1厘米/秒,点Q的速度为2厘米/秒.点P、Q分别从点C、点B同时出发在直线上运动,则经过多少时间线段PQ的长为5厘米.【变式6-2】(2021秋•秦淮区期末)直线l上的三个点A、B、C,若满足BC=12AB,则称点C是点A关于点B的“半距点”.如图1,BC=12AB,此时点C就是点A关于点B的一个“半距点”.若M、N、P三个点在同一条直线m上,且点P是点M关于点N的“半距点”,MN=6cm.(1)MP=cm;(2)若点G也是直线m上一点,且点G是线段MP的中点,求线段GN的长度.【变式6-3】(2021秋•姜堰区期末)如图,点C在线段AB上,AC=6cm,CB=4cm,点M以1cm/s的速度从点A沿线段AC向点C运动;同时点N以2cm/s从点C出发,在线段CB上做来回往返运动(即沿C→B→C→B→…运动),当点M运动到点C时,点M、N都停止运动,设点M运动的时间为ts.(1)当t=1时,求MN的长;(2)当t为何值时,点C为线段MN的中点?(3)若点P是线段CN的中点,在整个运动过程中,是否存在某个时间段,使PM的长度保持不变?如果存在,求出PM的长度;如果不存在,请说明理由.【题型7 简单的线段的长短比较】【例7】(2021秋•攀枝花校级期中)从A地到B地有两条路,第一条从A地直接到B地,第二条从A地经过C,D到B地,两条路相比,第一条的长度第二条的长度(填“<”“>”“=”)【变式7-1】(2021秋•双流区期末)体育课上,小明在点O处进行了四次铅球试投,铅球分别落在图中的M,N,P,Q四个点处,则表示他最好成绩的点是()A.M B.N C.P D.Q【变式7-2】(2021秋•南海区期末)我们知道,比较两条线段的长短有两种方法:一种是度量法,是用刻度尺量出它们的长度,再进行比较;另一种方法是叠合法,就是把其中的一条线段移到另一条线段上去,将其中的一个端点重合在一起加以比较.(1)已知线段AB,C是线段AB上一点(如图①).请你应用叠合法,用尺规作图的方法,比较线段AC与BC的长短,并简单说明理由(要求保留作图痕迹);(2)如图②,小明用刻度尺量得AC=4cm,BC=3cm,若D是AC的中点,E是BC的中点,求DE的长.【变式7-3】(2021秋•宁波期末)已知数轴上的三点A、B、C所对应的数a、b、c满足a <b<c、abc<0和a+b+c=0.那么线段AB与BC的大小关系是()A.AB>BC B.AB=BC C.AB<BC D.不确定的【题型8 与线段的长短比较有关的应用】【例8】(2021秋•南沙区期末)如图,某工厂有三个住宅区,A、B、C各区分别住有职工15人、20人、45人,且这三个区在一条大道上(A、B、C三点共线),已知AB=1500m,BC=1000m,为了方便职工上下班,该工厂打算从以下四处中选一处设置接送车停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.A住宅区B.B住宅区C.C住宅区D.B、C住宅区中间D处【变式8-1】(2021秋•海淀区校级期中)如图,在公路MN两侧分别有A1,A2…A7,七个工厂,各工厂与公路MN(图中粗线)之间有小公路连接.现在需要在公路MN上设置一个车站,选择站址的标准是“使各工厂到车站的距离之和越小越好”.则下面结论中正确的是()①车站的位置设在C点好于B点;②车站的位置设在B点与C点之间公路上任何一点效果一样;③车站位置的设置与各段小公路的长度无关.A.①B.②C.①③D.②③【变式8-2】一条直街上有5栋楼,按从左至右顺序编号为1、2、3、4、5,第k号楼恰好有k(k=1、2、3、4、5)个A厂的职工,相邻两楼之间的距离为50米.A厂打算在直街上建一车站,为使这5栋楼所有A厂职工去车站所走的路程之和最小,车站应建在距1号楼米处.【变式8-3】(2021•烟台)先阅读下面的材料,然后解答问题:在一条直线上有依次排列的n(n>1)台机床工作,我们要设置一个零件供应站P,使这n台机床到供应站P的距离总和最小,要解决这个问题先“退”到比较简单的情形.如图(1),如果直线上有2台机床时,很明显设在A1和A2之间的任何地方都行,因为甲和乙所走的距离之和等于A1到A2的距离.如图(2),如果直线上有3台机床时,不难判断,供应站设在中间一台机床,A2处最合适,因为如果P不放在A2处,甲和丙所走的距离之和恰好是A1到A3的距离,可是乙还得走从A2到P的这一段,这是多出来的,因此P放在A2处最佳选择.不难知道,如果直线上有4台机床,P应设在第二台与第3台之间的任何地方,有5台机床,P应设在第3台位置.问题:(1)有n台机床时,P应设在何处?(2)根据(1)的结论,求|x﹣1|+|x﹣2|+|x﹣3|+…|x﹣617|的最小值.。
2020年中考数学冲刺难点突破几何证明问题专题二几何证明之圆中的线段长度问题1、如图所示,已知A,B两点的坐标分别为(2,0),(0,10),P是△AOB外接圆⊙C上的一点,OP交AB于点D.(1)当OP⊥AB时,求OP;(2)当∠AOP=30°时,求AP.解:(1)∵A,B两点的坐标分别为(2,0),(0,10),∴AO=2,OB=10,∵AO⊥BO,∴AB==4,∵OP⊥AB,∴=,CD=DP,∴CD=,∴OP=2CD=;(2)连接CP,∵∠AOP=30°,∴∠ACP=60°,∵CP=CA,∴△ACP为等边三角形,∴AP=AC=AB=2.2、如图,在Rt△ABC中,∠BAC=90°,点D为BC边的中点,以AD为直径作⊙O,分别与AB,AC交于点E,F,过点E作EG⊥BC于G.(1)求证:EG是⊙O的切线;(2)若AF=6,⊙O的半径为5,求BE的长.(1)证明:如图,连接EF,∵∠BAC=90°,∴EF是⊙O的直径,∴OA=OE,∴∠BAD=∠AEO,∵点D是Rt△ABC的斜边BC的中点,∴AD=BD,∴∠B=∠BAD,∴∠AEO=∠B,∴OE∥BC,∵EG⊥BC,∴OE⊥EG,∵点E在⊙O上,∴EG是⊙O的切线;(2)∵⊙O的半径为5,∴EF=2OE=10,在Rt△AEF中,AF=6,根据勾股定理得,AE==8,由(1)知OE∥BC,∵OA=OD,∴BE=AE=8.3、如图,已知AB是⊙O的直径,AB=4,点C是AB延长线上一点,且BC=2,点D是半圆的中点,点P是⊙O上任意一点.(1)当PD与AB交于点E且PC=CE时,求证:PC与⊙O相切;(2)在(1)的条件下,求PC的长;(3)点P是⊙O上动点,当PD+PC的值最小时,求PC的长.解:(1)证明:如图1,∵点D是半圆的中点,∴∠APD=45°,连接OP,∴OA=OP,∴∠OAP=∠OPA,∴∠PEC=∠OAP+∠APE=∠OPA+∠APE=∠APE﹣∠OPE+∠APE=2∠APE﹣∠OPE=90°﹣∠OPE,∵PC=EC,∴∠CPE=∠PEC=90°﹣∠APE,∴∠OPC=∠OPE+∠CPE=∠OPE+90°﹣∠OPE=90°,∵点P在⊙O上,∴PC是⊙O的切线;(2)解:由(1)知,∠OPC=90°,∵AB=4,∴OP=OB=AB=2,∵BC=2,∴OC=OB+BC=4,根据勾股定理得,CP==2;(3)解:连接OD,如图2,∵D是半圆O的中点,∴∠BOD=90°,要使PD+PC的值最小,则连接CD交⊙O于P',即点P在P'的位置时,PD+PC最小,由(2)知,OC=4,在Rt△COD中,OD=OB=2,根据勾股定理得,CD==2,连接BP,AD,则四边形ADP'B是⊙O的内接四边形,∴∠CBP'=∠CDA,∵∠BCP=∠DCA,∴△CBP'∽△CDA,∴=,∴,∴CP'=.4、如图,已知AB是⊙O的弦,点C是弧AB的中点,D是弦AB上一动点,且不与A、B重合,CD的延长线交于⊙O点E,连接AE、BE,过点A作AF⊥BC,垂足为F,∠ABC=30°.(1)求证:AF是⊙O的切线;(2)若BC=6,CD=3,则DE的长为9;(3)当点D在弦AB上运动时,的值是否发生变化?如果变化,请写出其变化范围;如果不变,请求出其值.(1)证明:如图1中,连接AC,OC,OA.∵∠AOC=2∠ABC=60°,OA=OC,∴△AOC是等边三角形,∴∠CAO=60°,∵=,∴AB⊥OC,∴∠OAD=∠OAC=30°,∵∠ABC=30°,∴∠ABC=∠OAD,∴OA∥BF,∵AF⊥BF,∴OA⊥AF,∴AF是⊙O的切线.(2)解:∵=,∴∠CBD=∠BEC,∵∠BCD=∠BCE,∴△BCD∽△ECB,∴=,∴=,∴EC=12,∴DE=EC﹣CD=12﹣3=9.故答案为9.(3)解:结论:=,的值不变.理由:如图2中,连接AC,OC,OC交AB于H,作AN∥EC交BE的延长线于N.∵=,∴OC⊥AB,CB=CA,∴BH=AH=AB,∵∠ABC=30°,∴BH=BC,∴AC=AB,∵CE∥AN,∴∠N=∠CEB=30°,∠EAN=∠AEC=∠ABC=30°,∴∠CEA=∠ABC=30°,∠EAN=∠N,∴∠N=∠AEC,AE=EN,∵∠ACE=∠ABN,∴△ACE∽△ABN,∴==,∴=,∴的值不变.5、如图1所示,以点M(﹣1,0)为圆心的圆与y轴,x轴分别交于点A,B,C,D,与⊙M相切于点H的直线EF交x轴于点E(﹣5,0),交y轴于点F(0,).(1)求⊙M的半径r;(2)如图2所示,连接CH,弦HQ交x轴于点P,若cos∠QHC=,求的值;(3)如图3所示,点P为⊙M上的一个动点,连接PE,PF,求PF+PE的最小值.解:(1)如图1,连接MH,∵E(﹣5,0),F(0,﹣),M(﹣1,0),∴OE=5,OF=,EM=4,∴在Rt△OEF中,tan∠OEF==,∴∠OEF=30°,∵EF是⊙M的切线,∴∠EHM=90°,∴sin∠MEH=sin30°=,∴MH=ME=2,即r=2;(2)如图2,连接DQ、CQ,MH.∵∠QHC=∠QDC,∠CPH=∠QPD,∴△PCH∽△PQD,∴,由(1)可知,∠HEM=30°,∴∠EMH=60°,∵MC=MH=2,∴△CMH为等边三角形,∴CH=2,∵CD是⊙M的直径,∴∠CQD=90°,CD=4,∴在Rt△CDQ中,cos∠QHC=cos∠QDC=,∴QD=CD=3,∴;(3)连MP,取CM的点G,连接PG,则MP=2,G(﹣2,0),∴MG=CM=1,∴,又∵∠PMG=∠EMP,∴△MPG∽△MEP,∴,∴PG=PE,∴PF+PE=PF+PG,当F,P,G三点共线时,PF+PG最小,连接FG,即PF+PE有最小值=FG,在Rt△OGF中,OG=2,OF=,∴FG===.∴PF+PE的最小值为.6、如图,⊙O的直径AB=10,弦BC=,点P是⊙O上的一动点(不与点A、B重合,且与点C分别位于直径AB的异侧),连接PA,PC,过点C作PC的垂线交PB的延长线于点D.(1)求tan∠BPC的值;(2)随着点P的运动,的值是否会发生变化?若变化,请说明理由,若不变,则求出它的值;(3)运动过程中,AP+2BP的最大值是多少?请你直接写出它来.解:(1)连接AC,∵AB是⊙O的直径,∴∠ACB=90°,在Rt△ABC中,AB=10,BC=2,∴AC==4,∴tan∠BPC=tan∠BAC==;(2)的值不会发生变化,理由如下:∵∠PCD=∠ACB=90°,∴∠1+∠PCB=∠2+∠PCB,∴∠1=∠2,∵∠3是圆内接四边形APBC的一个外角,∴∠3=∠PAC,∴△CBD∽△CAP,∴=,在Rt△PCD中,=tan∠BPC=,∴==;(3)由(2)知BD=AP,∴AP+2BP=2(AP+BP)=2(BD+BP)=2PD=,由tan∠BPC=,得:cos∠BPC=,∴AP+2BP=PC≤AB=10,∴AP+2BP的最大值为10.7、在图1至图3中,⊙O的直径BC=30,AC切⊙O于点C,AC=40,连接AB交⊙O于点D,连接CD,P是线段CD上一点,连接PB.(1)如图1,当点P,O的距离最小时,求PD的长;(2)如图2,若射线AP过圆心O,交⊙O于点E,F,求tan F的值;(3)如图3,作DH⊥PB于点H,连接CH,直接写出CH的最小值.解:(1)如图1,连接OP,∵AC切⊙O于点C,∴AC⊥BC.∵BC=30,AC=40,∴AB=50.由,即,解得CD=24,当OP⊥CD时,点P,O的距离最小,此时.(2)如图2,连接CE,∵EF为⊙O的直径,∴∠ECF=90°.由(1)知,∠ACB=90°,由AO2=AC2+OC2,得(AE+15)2=402+152,解得.∵∠ACB=∠ECF=90°,∴∠ACE=∠BCF=∠AFC.又∠CAE=∠FAC,∴△ACE∽△AFC,∴.∴.(3)CH的最小值为.解:如图3,以BD为直径作⊙G,则G为BD的中点,DG=9,∵DH⊥PB,∴点H总在⊙G上,GH=9,∴当点C,H,G在一条直线上时,CH最小,此时,,,即CH的最小值为.8、如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.(1)求证:BC是⊙O的切线;(2)求证:AD2=AB•AF;(3)若BE=8,sin B=,求AD的长,解:(1)如图1,连接OD,则OA=OD,∴∠ODA=∠OAD,∵AD是∠BAC的平分线,∴∠OAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∴∠ODB=∠C=90°,∵点D在⊙O上,∴BC是⊙O的切线;(2)如图2,连接OD,DF,EF,∵AE是⊙O的直径,∴∠AFE=90°=∠C,∴EF∥BC,∴∠B=∠AEF,∵∠AEF=∠ADF,∴∠B=∠ADF,由(1)知,∠BAD=∠DAF,∴△ABD∽△ADF,∴,∴AD2=AB•AF;(3)如图3,连接OD,由(1)知,OD⊥BC,∴∠BDO=90°,设⊙O的半径为R,则OA=OD=OE=R,∵BE=8,∴OB=BE+OE=8+R,在Rt△BDO中,sin B=,∴sin B==,∴R=5,∴AE=2OE=10,AB=BE+2OE=18,连接EF,由(2)知,∠AEF=∠B,∠AFE=∠C=90°,∴sin∠AEF=sin B=,在Rt△AFE中,sin∠AEF===,∴AF=由(2)知,AD2=AB•AF=18×=,∴AD==.9、如图,AB为圆O的直径,C为圆O上一点,D为BC延长线一点,且BC=CD,CE⊥AD于点E.(1)求证:直线EC为圆O的切线;(2)设BE与圆O交于点F,AF的延长线与CE交于点P,①求证:PC2=PF•PA②若PC=5,PF=4,求sin∠PEF的值.证明:(1)∵CE⊥AD于点E,∴∠DEC=90°,∵BC=CD,∴C是BD的中点,又∵O是AB的中点,∴OC是△BDA的中位线,∴OC∥AD,∴∠OCE=∠CED=90°,∴OC⊥CE,又∵点C在圆上,∴CE是圆O的切线;(2)①连接AC,∵OC⊥CE,∴∠ECO=90°,∵AB是直径,∴∠ACB=90°=∠ECO,∴∠ECA=∠OCB,∵OC=OB,∴∠OCB=∠OBC=∠ACE,∵∠ABF=∠ACF,∴∠OBC﹣∠ABF=∠ACE﹣∠ACF,∴∠EBC=∠ECF,且∠EBC=∠CAP,∴∠ECF=∠CAP,且∠CPF=∠CPA,∴△PCF∽△PAC,∴∴PC2=PF•PA②∵AB是直径,点F在圆上,∴∠AFB=∠PFE=90°=∠CEA,∵∠EPF=∠EPA,∴△PEF∽△PAE,∴∴PE2=PF•PA∴PE=PC在直角△PEF中,sin∠PEF=.10、如图1,在平面直角坐标系内,A,B为x轴上两点,以AB为直径的⊙M交y轴于C,D两点,C为的中点,弦AE交y轴于点F,且点A的坐标为(﹣2,0),CD=8.(1)求⊙M的半径;(2)动点P在⊙M的圆周上运动.①如图1,当EP平分∠AEB时,求PN•EP的值;②如图2,过点D作⊙M的切线交x轴于点Q,当点P与点A,B不重合时,是否为定值?若是,请求出其值;若不是,请说明理由.解:(1)如图1中,连接CM.∵AM⊥CD,∴OC=OD=4,设CM=AM=r,在Rt△CMO中,∵CM2=OC2+OM2,∴r2=42+(r﹣2)2,解得r=5,∴⊙M的半径为5.(2)①如图2中,连接AP,BP.∵AB是直径,∴∠APB=∠AEB=90°,∵PE平分∠AEP,∴∠AEP=∠PEB=45°,∴=,∴PA=PB,∵AB=10,∠APB=90°,∴PA=PB=×AB=5,∵∠PAN=∠AEP=45°,∠APN=∠APE,∴△APN∽△EPA,∴PN•PE=PA2=50.②如图3中,连接PM,DM.∵DQ是⊙M的切线,∴DQ⊥DM,∴∠MDQ=∠MOD=90°,∵∠DMO=∠QMD,∴△DMO∽△QMD,∴=,∴DM2=MO•MQ,∵MP=MD,∴MP2=MO•MQ,∴=,∵∠PMO=∠PMQ,∴△PMO∽△QMP,∵DM2=MO•MQ,∴25=3MQ,∴MQ=,∴==.11、如图,AB为⊙O的直径,CD⊥AB于点G,E是CD上一点,且BE=DE,延长EB至点P,连接CP,使PC=PE,延长BE与⊙O交于点F,连结BD,FD.(1)连结BC,求证:△BCD≌△DFB;(2)求证:PC是⊙O的切线;(3)若tan F=,AG﹣BG=,求ED的值.解:(1)证明:因为BE=DE,所以∠FBD=∠CDB,在△BCD和△DFB中:∠BCD=∠DFB∠CDB=∠FBDBD=DB所以△BCD≌△DFB(AAS).(2)证明:连接OC.因为∠PEC=∠EDB+∠EBD=2∠EDB,∠COB=2∠EDB,所以∠COB=∠PEC,因为PE=PC,所以∠PEC=∠PCE,所以∠PCE=∠COB,因为AB⊥CD于G,所以∠COB+∠OCG=90°,所以∠OCG+∠PEC=90°,即∠OCP=90°,所以OC⊥PC,所以PC是圆O的切线.(3)因为直径AB⊥弦CD于G,所以BC=BD,CG=DG,所以∠BCD=∠BDC,因为∠F=∠BCD,tan F=,所以∠tan∠BCD==,设BG=2x,则CG=3x.连接AC,则∠ACB=90°,由射影定理可知:CG2=AG•BG,所以AG=,因为AG﹣BG=,所以,解得x=,所以BG=2x=,CG=3x=2,所以BC=,所以BD=BC=,因为∠EBD=∠EDB=∠BCD,所以△DEB∼△DBC,所以,因为CD=2CG=4,所以DE=.12、如图1,在直角坐标系中,直线l与x、y轴分别交于点A(2,0)、B(0,)两点,∠BAO的角平分线交y轴于点D.点C为直线l上一点,以AC为直径的⊙G经过点D,且与x轴交于另一点E.(1)求出⊙G的半径r,并直接写出点C的坐标;(2)如图2,若点F为⊙G上的一点,连接AF,且满足∠FEA=45°,请求出EF的长?解:(1)连接GD,EC.∵∠OAB的角平分线交y轴于点D,∴∠GAD=∠DAO,∵GD=GA,∴∠GDA=∠GAD,∴∠GDA=∠DAO,∴GD∥OA,∴∠BDG=∠BOA=90°,∵GD为半径,∴y轴是⊙G的切线;∵A(2,0),B(0,),∴OA=2,OB=,在Rt△AOB中,由勾股定理可得:AB===设半径GD=r,则BG=﹣r,∵GD∥OA,∴△BDG∽△BOA,∴=,∴r=2(﹣r),∴r=,∵AC是直径,∴∠AEC=∠AOB=90°,∴EC∥OB,∴==,∴==,∴EC=2,AE=,∴OE=2﹣=,∴C的坐标为(,2);(2)过点A作AH⊥EF于H,连接CE、CF,∵AC是直径,∴AC=2×=∴∠AEC=∠AFC=90°∵∠FEA=45°∴∠FCA=45°∴在Rt△AEH中,由勾股定理可知:AF=CF=,设OE=a∴AE=2﹣a∵CE∥OB∴△ACE∽△ABO∴=,∴CE=2,∵CE2+AE2=AC2,∴22+(2﹣a)2=∴a=或a=(不合题意,舍去)∴AE=∴在Rt△AEH中,由勾股定理可得,AH=EH=,∴在Rt△AEH中,由勾股定理可知:FH2=AF2﹣AH2=()2﹣()2=2,∴FH=,∴EF=EH+FH=.13、如图,AB是⊙O的直径,弦CD⊥AB于点H,连接AC,过弧BD上一点E作EG∥AC交CD的延长线于点G,连接AE交CD于点F,且EG=FG,连接CE.(1)求证:△ECF∽△GCE;(2)求证:EG是⊙O的切线;(3)延长AB交GE的延长线于点M,若,求EM的值.(1)证明:如图1中,∵AC∥EG,∴∠G=∠ACG,∵AB⊥CD,∴=,∴∠CEF=∠ACD,∴∠G=∠CEF,∵∠ECF=∠ECG,∴△ECF∽△GCE;(2)证明:如图2中,连接OE,∵GF=GE,∴∠GFE=∠GEF=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线.(3)解:如图3中,连接OC.设⊙O的半径为r.在Rt△AHC中,tan∠ACH=tan∠G=,∵AH=3,∴HC=4,在Rt△HOC中,∵OC=r,OH=r﹣3,HC=4,∴(r﹣3)2+(4)2=r2,∴r=,∵GM∥AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴=,∴=,∴EM=.14、如图,AB为⊙O的直径,CD⊥AB于点E,F是CD上一点,且BF=DF,延长FB至点P,连接CP,使PC=PF,延长BF与⊙O交于点G,连结BD,GD.(1)连结BC,求证:CD=GB;(2)求证:PC是⊙O的切线;(3)若tan G=,且AE﹣BE=,求FD的值.解:(1)∵BF=DF,∴∠BDF=∠DBF,在△BCD与△DGB中,,∴△BCD≌△DGB(AAS),∴CD=GB;(2)如图1,连接OC,∵∠COB=2∠CDB,∠CFB=∠CDB+∠DBF=2∠CDB,∴∠COB=∠CFB,∵PC=PF,∴∠COB=∠CFB=∠PCF,∵AB⊥CD,∴∠COB+∠OCE=90°,∴∠PCF+∠OCE=∠PCO=90°,∴OC⊥CP,∵OC是半径,∴PC是⊙O的切线;(3)如图2,连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∵AB⊥CD,∴=,∴∠BDE=∠A=∠G,∵tan G=,∴tan A=,即AE=3DE,同理可得:DE=3BE,∴AE﹣BE=3DE﹣DE=,解得:DE=,∴CD=2DE=2,∴BE==,∴BD==,∵∠BCD=∠FDB,∠BDC=∠FBD,∴△BCD∽△FDB,∴,∵BC=BD,∴FD===.。
科目数学课题 4.2直线、射线、线段(2)授课教师马晓丽单位满洲里市第五中学教材版本人教版课型新授课教材分析(1)教学内容:本节课是人教版教材七年级(上)第四章《图形认识初步》第二节的第二课时.主要内容是理解两点之间线段最短的性质、掌握比较线段长短的方法,了解线段的中点及其倍分关系.(2)教材地位及作用:本节教材是在图形初步认识的基础上,进一步对学生正确识别图形和准确作图进行初步的培养,注意体现数形结合及数学语言的准确表达,为以后学习空间与图形其他知识奠定必要的基础.学情分析(1)知识基础:学生在小学已经初步了解一些平面图形的基本特征,在本节的第一节课中,又已学习了直线、射线、线段等有关基础知识,对平面图形有了初步的认识.(2)认识水平与能力:七年级学生已经具有一定的直觉思维能力,能通过直观感受来认识理解几何图形,参与意识、合作意识较强,并具有初步的观察、分析、概括能力.(3)任教班级学生特点:借班上课,据了解孩子基础知识掌握情况较不理想,面对问题没有养成积极思考的习惯,且思维能力较弱,抽象概括能力欠佳,更别说具备利用几何语言准确表述及利用数形结合的方法解决问题的能力了.教学目标知识与技能:(1)了解两点之间线段最短的性质;(2)掌握比较线段长短的两种方法并会应用;(3)能用尺规作一条线段等于已知线段;(4)理解线段的中点以及线段倍分的关系.数学思考:(1)培养学生初步观察、分析、概括的能力;(2)初步学会运用数学语言进行表述的能力;(3)初步理解数形结合的思想.解决问题:通过现实问题情境引导学生积极探索,从而掌握线段公理以及比较线段长短的方法,并能用所学的方法解决一些简单的实际问题.情感态度:(1)通过探究活动培养学生团结协作的精神;(2)通过对实际生活中线段问题的探究,从中体会数学的应用价值,激发学习兴趣.教学重点(1)比较线段长短的方法;(2)线段中点的概念以及线段倍分的关系.教学难点(1)探讨比较线段长短的方法;(2)线段中点的应用.教法本节采用“探究—发现”模式.教师的教法突出活动的组织设计与方法的引导,教学准备多媒体课件、圆规、三角板、刻度尺、题签.突出重点、突破难点的策略从生活背景入手,结合多媒体直观演示,并通过学生动手作图,互动研讨,加深对数形结合思想的理解,并配合由浅入深的练习,使学生掌握比较线段长短的方法,了解线段中点及其倍分的关系.教学过程师生活动设计意图复习旧知:师:直线、射线、线段三者之间有何区别和联系?学生:梳理知识新知探究1:两点之间线段最短、两点间距离创设情境1:展示生活中的场景:可爱的狗狗走哪条路回家最近呢?学生:积极思考,直观感受“两点之间,线段最短”。
线段的计算解算式在几何学中,线段是指在两个点之间的一段连续的直线。
计算线段的长度是一种基本的几何运算,根据给定的起点和终点坐标,可以通过解算式来求得线段的长度。
本文将介绍线段长度的计算方法,并给出相应的解算式。
1. 线段长度的计算方法线段的长度可以通过两点间的距离公式来计算。
设线段的起点坐标为(x1, y1),终点坐标为(x2, y2),则线段的长度d可以由以下公式计算:d = √((x2 - x1)^2 + (y2 - y1)^2)其中,^2表示平方,√表示开平方。
这个公式基于勾股定理,即两点间的直线距离等于两点间欧几里得距离。
通过这个公式,我们可以计算得到线段的长度。
2. 线段长度的解算式根据上述计算方法,我们可以得到线段长度的解算式如下:d = √((x2 - x1)^2 + (y2 - y1)^2)其中,d表示线段的长度,(x1, y1)表示起点坐标,(x2, y2)表示终点坐标。
通过将具体的坐标值代入解算式,可以得到准确的线段长度。
3. 示例计算现在,我们通过一个示例来展示线段长度的计算过程。
假设线段的起点坐标为(1, 2),终点坐标为(4, 6)。
代入解算式,可以得到线段的长度:d = √((4 - 1)^2 + (6 - 2)^2)= √(3^2 + 4^2)= √(9 + 16)= √25= 5因此,线段的长度为5。
4. 总结通过解算式计算线段的长度是一种常用的几何运算。
通过给定起点和终点的坐标,我们可以使用线段两点间的距离公式来计算线段的长度。
这个解算式可以帮助我们准确地计算任意线段的长度,对于几何学的研究和实际应用都具有重要意义。
在实际应用中,线段长度的计算解算式可以用于测量距离、设计建筑、制作地图等领域。
同时,由于计算方法的简洁性和准确性,线段长度的解算式也经常被应用于计算机图形学和计算机视觉等领域。
综上所述,线段长度的计算解算式是一种重要的几何工具,通过解算式我们可以准确地计算线段的长度。
求线段长专题(2)
1、如图,C是线段AB的中点,D是线段BC的中点,已知图中所有线段的和为39,求线段BC的长。
2、如图,已知B为线段AC上一点,M是线段AB的中点,N为线段AC的中点,P为NA的中点,Q
为MA的中点,求MN;PQ的值。
3、如图,点C在线段AB上,M是AC的中点,N是BC的中点,若AC:CB=3:2,且MC+NB=12.5cm,
求MC的长。
4、如图,线段AB被点C、D分成了3:4:5三部分,且AC的中点M和DB的中点N之间的距离是
40cm,求AB的长。
5、如图,C、D、E将线段AB分成2:3:4:5四部分,M、P、Q、N分别是AC,CD,DE,EB的
中点,且MN=21,求线段PQ的长度。
6、如图,同一直线上有A、B、C、D四点,已知DB= AD,AC= CB,CD=4cm,求AB的长。
7、已知线段AB=10,在直线AB上画线段BC,使BC=4,求线段AC的长。
8、已知点A在数轴上对应的数为—10,点B在数轴上对应的数为了4,点C在数轴上,且AC:BC=1:
5,求点C对应的数。
9、已知线段AB=20,C、D为直线AB上的两点,且AC=12,BD=16,求线段CD的长。
10、线段AB、BC均在直线l上,若AB=12cm,AC=4cm,M、N分别是AB、AC的中点,求MN的长。
C
A
C
B
Q
P N
D
A
5 2
3
A。