线段计算练习题
- 格式:docx
- 大小:189.38 KB
- 文档页数:5
初二数学线段和角度练习题1. 线段的长度计算给定线段AB,其坐标分别为A(2, 3)和B(5, 7),求线段AB的长度。
解析:根据两点间距离公式,我们可以计算出线段AB的长度。
设两点分别为A(x1, y1)和B(x2, y2),则线段AB的长度为√((x2-x1)^2 + (y2-y1)^2)。
根据题目给出的坐标,代入公式中,计算得到线段AB的长度为√((5-2)^2 + (7-3)^2) = √(3^2 + 4^2) = √(9 + 16) = √25 = 5。
2. 角度的计算给定线段CD,其坐标分别为C(1, 2)和D(3, 5),求线段CD与x轴之间的夹角。
解析:首先,我们需要计算出线段CD的斜率。
斜率可以通过两点的坐标差的比值计算得到。
设两点分别为C(x1, y1)和D(x2, y2),则斜率 k = (y2-y1) / (x2-x1)。
根据题目给出的坐标,代入公式中,计算得到斜率 k = (5-2) / (3-1) = 3 / 2 = 1.5。
接下来,我们可以通过斜率求得线段CD与x轴之间的夹角。
夹角的正切值等于斜率 k,即tanθ = k。
通过反正切函数,我们可以得到夹角的度数。
使用计算器或数学软件,求得反正切函数的值为 tan^(-1)(1.5) ≈ 56.31°。
因此,线段CD与x轴之间的夹角约为 56.31°。
3. 角度的比较给定两个角度,角度α = 30°,角度β = 45°,判断角度α是否小于角度β。
解析:由于30°小于45°,角度α小于角度β。
4. 角度的补角和余角给定角度θ = 60°,求其补角和余角。
解析:补角的定义是两角的度数之和为90°,余角的定义是两角的度数之和为180°。
1) 补角:两角的补角之和为90°,即θ + 补角 = 90°。
解方程求得补角的度数为 90° - 60° = 30°。
三年级线段倍数练习题1. 小明画了一个长为8厘米的线段,他想知道这个线段的倍数是多少。
请你帮助小明计算出它的2倍、3倍和5倍分别是多长。
答案:2倍:16厘米3倍:24厘米5倍:40厘米2. 小红画了一个长为15厘米的线段,她也想知道它的倍数。
请你计算出它的2倍、4倍和6倍分别是多长。
答案:2倍:30厘米4倍:60厘米6倍:90厘米3. 小明又画了一个长为10厘米的线段,他想知道它的倍数。
请你计算出它的3倍、6倍和9倍分别是多长。
答案:3倍:30厘米6倍:60厘米4. 小红也画了一个线段,长度为12厘米。
请你计算出它的2倍、3倍和4倍分别是多长。
答案:2倍:24厘米3倍:36厘米4倍:48厘米5. 小明画了一个线段,长度为9厘米。
请你计算出它的4倍、5倍和8倍分别是多长。
答案:4倍:36厘米5倍:45厘米8倍:72厘米6. 小红画了一个线段,长度为20厘米。
请你计算出它的3倍、5倍和7倍分别是多长。
答案:3倍:60厘米5倍:100厘米7. 小明又画了一个线段,长度为16厘米。
请你计算出它的2倍、4倍和8倍分别是多长。
答案:2倍:32厘米4倍:64厘米8倍:128厘米8. 小红画了一个线段,长度为25厘米。
请你计算出它的3倍、6倍和9倍分别是多长。
答案:3倍:75厘米6倍:150厘米9倍:225厘米9. 小明画了一个线段,长度为18厘米。
请你计算出它的2倍、5倍和7倍分别是多长。
答案:2倍:36厘米5倍:90厘米10. 小红也画了一个线段,长度为22厘米。
请你计算出它的4倍、6倍和8倍分别是多长。
答案:4倍:88厘米6倍:132厘米8倍:176厘米以上是三年级线段倍数练习题的答案,希望能够帮助你更好地理解线段的倍数概念。
通过练习,你将更加熟练地计算线段的倍数,为日后的数学学习打下坚实的基础。
加油!。
(完整)初中数学线段与角练习题初中数学线段与角练题1. 已知线段AB的长度为5,线段BC的长度为3,求线段AC 的长度。
思路:根据线段的性质,线段AC的长度等于线段AB的长度加上线段BC的长度。
解答:线段AC的长度为5 + 3 = 8。
2. 已知线段DE的长度为4,点F是线段DE的中点,求线段EF的长度。
思路:根据线段的性质,线段EF的长度等于线段DE的长度除以2。
解答:线段EF的长度为4 ÷ 2 = 2。
3. 角XYZ的度数为37°,角YZW的度数为83°,求角XZW的度数。
思路:根据角度的性质,角XZW的度数等于角XYZ的度数加上角YZW的度数。
解答:角XZW的度数为37° + 83° = 120°。
4. 角ABC的度数为78°,角CDE的度数为42°,角BED的度数为90°,求角ABD的度数。
思路:根据角度的性质,角ABD的度数等于角ABC的度数加上角CDE的度数减去角BED的度数。
解答:角ABD的度数为78° + 42° - 90° = 30°。
5. 已知角MNO的度数为60°,角NOP的度数为120°,求角MOQ的度数。
思路:根据角度的性质,角MOQ的度数等于360°减去角MNO的度数减去角NOP的度数。
解答:角MOQ的度数为360° - 60° - 120° = 180°。
6. 已知角PQR是直角,角RPQ的度数为30°,求角RPQ的补角的度数。
思路:根据角度的性质,角RPQ的补角的度数等于90°减去角RPQ的度数。
解答:角RPQ的补角的度数为90° - 30° = 60°。
线段的和差练习题一、填空题:1. 已知线段AB=5cm,线段BC=7cm,则线段AC的长度为_______cm。
2. 线段DE=10cm,线段EF=3cm,则线段DF的长度为_______cm。
3. 线段GH=6cm,线段HI=2cm,则线段GI的长度为_______cm。
4. 线段JK=8cm,线段KL=4cm,则线段JL的长度为_______cm。
5. 线段MN=12cm,线段NO=9cm,则线段MO的长度为_______cm。
二、选择题:(将正确答案的序号填入括号内)1. 已知线段PQ=5cm,线段QR=3cm,线段RS=7cm,如果将这三段线段相加,得到的结果是:A. 4cmB. 8cmC. 15cmD. 20cm ( )2. 已知线段UV=6cm,线段VW=4cm,线段WX=2cm,如果将这三段线段相加,得到的结果是:A. 2cmB. 6cmC. 12cmD. 18cm ( )3. 已知线段XY=10cm,线段YZ=6cm,线段ZA=8cm,如果将这三段线段相加,得到的结果是:A. 4cmB. 10cmC. 18cmD. 24cm ( )4. 已知线段AB=12cm,线段BC=9cm,线段CD=3cm,如果将这三段线段相加,得到的结果是:A. 5cmB. 9cmC. 12cmD. 24cm ( )5. 已知线段EF=7cm,线段FG=5cm,线段GH=2cm,如果将这三段线段相加,得到的结果是:A. 4cmB. 7cmC. 14cmD. 21cm ( )三、判断题:(将正确答案的序号填入括号内)1. 已知线段KL=6cm,线段LM=3cm,线段KN=9cm,那么线段MN等于15cm。
( )2. 已知线段OP=7cm,线段PQ=4cm,线段OR=11cm,那么线段QR等于15cm。
( )3. 已知线段ST=8cm,线段TU=2cm,线段SW=10cm,那么线段SU等于18cm。
( )4. 已知线段VW=5cm,线段WX=9cm,线段VY=14cm,那么线段XY等于4cm。
小学数学线段和角的练习题一、线段练习题1. 在一张纸上,画一条长为5厘米的线段AB。
将线段AB分成两段,使其中一段的长度为3厘米,找出另一段的长度。
2. 画一条长为8厘米的线段CD,将线段CD平分为三等分,找出每一段的长度。
3. 画一条长为6厘米的线段EF,将线段EF分成四段,其中有一段的长度为2厘米,找出其他三段的长度。
4. 在一张纸上,画一条长为10厘米的线段GH。
将线段GH分成五段,且其中有一段的长度为4厘米,找出其他四段的长度。
二、角的练习题1. 画一个顶点为O的角,使其大小为40°。
将这个角平分为两个相等的角,找出每个角的大小。
2. 画一个顶点为P的角,使其大小为80°。
将这个角划分为四个相等的角,找出每个角的大小。
3. 画一个顶点为Q的角,使其大小为60°。
将这个角分成三段,找出每一段的大小。
4. 画一个顶点为R的角,使其大小为120°。
将这个角平分为六个相等的角,找出每个角的大小。
三、综合练习题1. 在一张纸上,画一条长为7厘米的线段AB。
再画一个顶点为A的角,使其大小为50°。
将线段AB和角A划分为三段,找出每一段的长度和每个角的大小。
2. 画一个顶点为O的角,使其大小为30°。
将这个角平分为四个相等的角,再将每个相等的角分为五段,找出每一段的大小。
3. 在一张纸上,画一条长为12厘米的线段CD。
再画一个顶点为C的角,使其大小为70°。
将线段CD和角C分成四段,找出每一段的长度和每个角的大小。
4. 画一个顶点为P的角,使其大小为140°。
将这个角划分为五个相等的角,再将每个相等的角分为三段,找出每一段的大小和每个角的大小。
以上是小学数学线段和角的练习题,通过解答这些题目可以加深对线段和角的理解,并提升数学应用能力。
希望能对你的学习有所帮助!。
比较线段的长短练习题线段的长短是数学中一个基本的概念,也是我们日常生活中常常遇到的问题。
通过比较线段的长短,我们可以培养自己的观察力和思维能力。
下面,我们来做一些关于线段长短的练习题,通过解题来加深对这个概念的理解。
练习题一:小明有一条长为8厘米的线段,小红有一条长为5厘米的线段,那么小明的线段比小红的线段长多少厘米?解答:小明的线段长为8厘米,小红的线段长为5厘米。
我们可以通过减法来计算小明的线段比小红的线段长多少厘米。
8厘米 - 5厘米 = 3厘米所以,小明的线段比小红的线段长3厘米。
练习题二:小华有一条长为15厘米的线段,小李有一条长为10厘米的线段,那么小华的线段比小李的线段长多少厘米?小华的线段比小红的线段长多少倍?解答:小华的线段长为15厘米,小李的线段长为10厘米。
我们可以通过减法来计算小华的线段比小李的线段长多少厘米。
15厘米 - 10厘米 = 5厘米所以,小华的线段比小李的线段长5厘米。
我们还可以通过除法来计算小华的线段比小李的线段长多少倍。
15厘米÷ 10厘米 = 1.5倍所以,小华的线段比小李的线段长1.5倍。
通过这两道练习题,我们可以看出,比较线段的长短可以通过减法和除法来解决。
在解决问题的过程中,我们需要运用数学知识,进行计算和推理。
这样的练习可以培养我们的思维能力和逻辑思维能力。
练习题三:小明有一条线段长为12厘米,小红有一条线段长为10毫米,那么小明的线段比小红的线段长多少厘米?解答:小明的线段长为12厘米,小红的线段长为10毫米。
我们需要将小红的线段的单位转换为厘米,然后再进行比较。
10毫米 = 1厘米所以,小红的线段长为0.1厘米。
现在我们可以通过减法来计算小明的线段比小红的线段长多少厘米。
12厘米 - 0.1厘米 = 11.9厘米所以,小明的线段比小红的线段长11.9厘米。
通过这道练习题,我们可以看出,比较线段的长短时,需要注意单位的转换。
在解决问题的过程中,我们需要灵活运用数学知识,进行单位转换和计算。
1. 如图所示,点C分线段AB为5:7,点D分线段AB为5:11,若CD=10cm,求AB。
分析:观察图形可知,DC=AC-AD,根据已知的比例关系,AC、AD均可用所求量AB表示,这样通过已知量DC,即可求出AB。
解:因为点C分线段AB为5:7,点D分线段AB为5:11所以又又因为CD=10cm,所以AB=96cm2. 如图,已知线段AB=80cm,M为AB的中点,P在MB上,N为PB的中点,且NB =14cm,求PA的长。
分析:从图形可以看出,线段AP等于线段AM与MP的和,也等于线段AB与PB的差,所以,欲求线段PA的长,只要能求出线段AM与MP的长或者求出线段PB的长即可。
解:因为N是PB的中点,NB=14所以PB=2NB=2×14=28又因为AP=AB-PB,AB=80所以AP=80-28=52(cm)说明:在几何计算中,要结合图形中已知线段和所求线段的位置关系求解,要做到步步有根据。
3. 如图,一条直线上顺次有A、B、C、D四点,且C为AD的中点,,求BC是AB的多少倍?分析:题中已给出线段BC、AB、AD的一个方程,又C为AD的中点,即,观察图形可知,,可得到BC、AB、AD又一个方程,从而可用AD分别表示AB、BC。
解:因为C为AD的中点,所以因为,即又由<1>、<2>可得:即BC=3AB4. 如图,C、D、E将线段AB分成2:3:4:5四部分,M、P、Q、N分别是AC、CD、DE、EB的中点,且MN=21,求PQ的长。
分析:根据比例关系及中点性质,若设AC=2x,则AB上每一条短线段都可以用x的代数式表示。
观察图形,已知量MN=MC+CD+DE+EN,可转化成x的方程,先求出x,再求出PQ。
解:若设AC=2x,则于是有那么即解得:所以5. 已知线段AB=8cm,在直线AB上画线段BC=3cm,求AC的长。
分析:线段AB是固定不变的,而直线上线段BC的位置与C点的位置有关,C点可在线段AB上,也可在线段AB的延长线上,如图5。
四年级数学上册线段练习题题目一:长度比较1. 比较下列线段的长度,并用大于、小于或等于号连接:a) AB _____ ACb) BC _____ CDc) DE _____ EF题目二:线段画图1. 在纸上画出3个不同长度的线段,分别用AB、CD和EF表示。
请保证这三个线段的长度大小不同。
题目三:线段测量1. 使用直尺测量下列线段的长度,并将答案填入空格内:a) AB = ______ cmb) CD = ______ cmc) EF = ______ mm题目四:线段连线1. 请你使用直尺,将下列点按照要求连成线段:a) 将点A和点B用直线连起来。
b) 将点C和点D用直线连起来。
c) 将点E和点F以及点G和点H分别连成两条直线。
题目五:线段分割1. 将下列线段按照要求分成两段,并计算每段的长度:a) 线段AB,将它分成两段,其中一段为4 cm,另一段比这一段长2 cm。
b) 线段CD,将它分成两段,其中一段为6 cm,另一段比这一段短4 cm。
题目六:线段的延长1. 延长下列线段至指定的长度,使用直尺完成:a) 将线段EF延长2 cm。
b) 将线段GH延长3 cm。
题目七:线段的中点1. 找出下列线段的中点,并写出中点的坐标:a) 线段ABb) 线段CDc) 线段EF题目八:线段的平行和垂直1. 判断下列线段是否平行或垂直,并在相应的空格内写上“平行”或“垂直”:a) AB和CDb) EF和GHc) IJ和KL题目九:线段的位置关系1. 根据下列描述,填写空白处的词语,使得句子完整且准确:a) 线段AB和线段CD相交在点E上,那么点E是线段AB和线段CD的_______点。
b) 线段EF在线段GH上的延长线上相交,那么线段EF和线段GH是_______的。
c) 线段IJ与线段KL相互垂直交于点M,那么点M处于线段IJ和线段KL的_______。
题目十:求线段的长或短1. 线段AB长7 cm,线段CD比线段AB长3 cm。
比例线段练习题及答案一、选择题1. 在线段AB上,C为在线段AB上一点,AC:CB=2:3,则下列说法正确的是:A) AC的长度是CB的三分之二B) AC的长度等于CB的五分之二C) CB的长度等于AC的三倍D) CB的长度等于AC的五倍答案:A) AC的长度是CB的三分之二2. 在一个比例尺为1:500的地图上,两个城市的距离是8厘米,则实际距离为:A) 5000米B) 4000米C) 8000米D) 4500米答案:A) 5000米3. 在直角三角形ABC中,角A的正弦值为3/5,则下列说法正确的是:A) AB:AC = 5:3B) AB:BC = 3:5C) BC:AC = 5:3D) AC:BC = 3:5答案:A) AB:AC = 5:34. 已知线段AB与线段CD平行,AB = 5 cm,CD = 10 cm,则线段AB的放大比例为:A) 1:2B) 2:1C) 1:5D) 2:5答案:B) 2:15. 直线段的一个线段上有A、B、C三个点,AB = 5 cm,BC = 3 cm,AC = 8 cm,则下列说法正确的是:A) AB:AC = 5:8B) AB:BC = 5:3C) BC:AC = 3:8D) AB:BC = 8:3答案:D) AB:BC = 8:3二、填空题1. 根据比例线段的定义,比例线段的特点是_________________。
答案:对于线段AB和线段CD,若AB:CD=a:b,则a和b称为AB和CD的长度比例。
2. 已知线段AB = 6 cm,线段BC = 8 cm,若线段AB与线段BC成比例,则线段AB:线段BC = ________。
答案:3:43. 若线段AB与线段CD成比例,线段AB:线段CD = 2:3,且线段AB = 12 cm,则线段CD的长度为__________。
答案:18 cm4. 在一个比例尺为1:200的地图上,两个城市的实际距离为4000米,则地图上的距离为__________。
2019年七年级数学上册线段的计算专题练习一、解答题:1、如图,己知线段AB=80,M为AB的中点,P在MB上,N为PB的中点,且NB=14,(1)求MB的长;(2)求PB的长;(3)求PM的长.2、如图,点C、D是线段AB上两点,点D是AC的中点,若BC=6cm,BD=10cm,求线段AB的长度.3、如图,已知点C是线段AB的中点,点D是线段AC的中点,点E是线段BC的中点.(1)若线段DE=9cm,求线段AB的长.(2)若线段CE=5cm,求线段DB的长.4、点A,B,C在同一直线上,AB=8,AC:BC=3:1,求线段BC的长度.5、如图所示,线段AB=8cm,E为线段AB的中点,点C为线段EB上一点,且EC=3cm,点D为线段AC的中点,求线段DE的长度.6、如图,已知线段AB=32,C为线段AB上一点,且3AC=BC,E为线段BC的中点,F为线段AB的中点,求线段EF的长.7、如图,M是线段AC中点,点B在线段AC上,且AB=4cm,BC=2AB,求线段MC和线段BM的长.8、如图,线段AC=8 cm,线段BC=18 cm,点M是AC的中点,在CB上取一点N,使得CN∶NB=1∶2.求MN的长.9、如图,已知BC=AB=CD,点E,F分别是AB,CD的中点,且EF=60厘米,求AB,CD的长.10、如图,B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动1次,C是线段BD的中点,AD=10cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,①AB= cm.②求线段CD的长度.(2)用含t的代数式表示运动过程中AB的长.(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变,求出EC的长;若发生变化,请说明理由.11、如图,点B、C在线段AD上,CD=2AB+3.(1)若点C是线段AD的中点,求BC-AB的值;(2)若4BC=AD,求BC-AB的值;(3)若线段AC上有一点P(不与点B重合),AP+AC=DP,求BP的长.12、A、B、C、D四个车站的位置如图所示,B、C两站之间的距离BC=2a+b,B、D两站之间的距离BD=4a +3b.求:⑴ C、D两站之间的距离CD;⑵若C站到A、D两站的距离相等,则A、B两站之间的距离AB是多少?13、如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想出MN的长度吗?请画出图形,并说明理由.14、如图,线段AC=6cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN 的长.15、如图,数轴上A,B两点对应的有理数分别为10和15,点P从点A出发,以每秒1个单位长度的速度沿数轴正方向运动,点Q同时从原点O出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t秒.(1)当0<t<5时,用含t的式子填空:BP= ,AQ= ;(2)当t=2时,求PQ的值;(3)当AB=2PQ时,求t的值.16、如图,已知点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=6 ,CB=4 ,求线段MN的长;(2)若点C为线段AB上任一点,其它条件不变,你能猜想线段MN与AB的数量关系吗?并说明你的理由;(3)若点C在线段AB的延长线上,其它条件不变,你上述猜想的结论是否仍然成立?请画出图形,写出你的结论,并说明你的理由;17、如图,P是线段AB上一点,AB=12cm,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上),运动的时间为ts.(1)当t=1时,PD=2AC,请求出AP的长;(2)当t=2时,PD=2AC,请求出AP的长;(3)若C、D运动到任一时刻时,总有PD=2AC,请求出AP的长;(4)在(3)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ的长.18、已知数轴上有A、B、C三点,分别表示有理数﹣26,﹣10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P点对应的数: ;用含t的代数式表示点P和点C的距离:PC=(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A.①点P、Q同时运动运动的过程中有处相遇,相遇时t= 秒.②在点Q开始运动后,请用t的代数式表示P、Q两点间的距离.19、如图,线段AB=12,动点P从A出发,以每秒2个单位的速度沿射线AB运动,M为AP的中点.(1)出发多少秒后,PB=2AM?(2)当P在线段AB上运动时,试说明2BM﹣BP为定值.(3)当P在AB延长线上运动时,N为BP的中点,下列两个结论:①MN长度不变;②MA+PN的值不变,选择一个正确的结论,并求出其值.20、探索性问题:已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0,请回答问题:(1)请直接写出a、b、c的值.a= ,b= ,c= ;(2)数轴上a、b、c三个数所对应的点分别为A、B、C,点A、B、C同时开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒1个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC.①t秒钟过后,AC的长度为(用t的关系式表示);②请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.参考答案1、解:(1)∵M是AB的中点∴MB=40(2)∵N为PB的中点,且NB=14 ∴PB=2NB=2×14=28(3)∵MB=40,PB=28 ∴PM=MB﹣PB=40﹣28=122、解:已知BC=6cm,BD=10cm,∴DC=BD﹣BC=4cm,又点D是AC的中点,∴DA=DC=4cm,所以AB=BD+DA=10+4=14(cm).答:线段AB的长度为14cm.3、解:(1)∵DE=9cm,∴DC+CE=9cm.∵点D是线段AC的中点,点E是线段BC的中点,∴AC=2CD,BC=2CE.∵AB=AC+BC=2(CD+CE)=2DE=18cm;(2)点C是线段AB的中点,∴AB=ACB.∵点E是线段BC的中点,∴BC=2CE=10cm.∵点D是线段AC的中点,∴DC=AC=BC=5cm.∴DB=DC+CB=5+10=15cm.4、解:由于AC:BC=3:1,设BC=x,则AC=3x第一种情况:当点C在线段AB上时,AC+BC=AB.因为 AB=8,所以3x+x=8解得 x=2所以 BC=2第二种情况:当点C在AB的延长线上时,AC﹣BC=AB因为 AB=8,所以3x﹣x=8解得 x=4所以 BC=4综上,BC的长为2或4.5、解:∵线段AB=8cm,E为线段AB的中点,∴BE4cm,∴BC=BE﹣EC=4﹣3=1cm,∴AC=AB﹣BC=8﹣1=7cm,∵点D为线段AC的中点,∴CD=3.5cm,∴DE=CD﹣EC=3.5﹣3=0.5cm.6、解:∵F为线段AB的中点,∴BF=AB=16,∵AC=BC,∴BC=AB=24,∵E为线段BC的中点,∴BE=12,∴EF=BF﹣BE=16﹣12=4.7、解:∵AB=4cm,BC=2AB,∴BC=8cm,∴AC=AB+BC=4+8=12cm,∵M是线段AC中点,∴MC=AM=AC=6cm,∴BM=AM﹣AB=6﹣4=2cm.8、解:BC=18cm所以CN=18×1÷(1+2)=6mM是AC中点所以MC=AC/2=4cm所以MN=MC+CN=4+6=10cm9、解:设BC=x厘米,由题意得:AB=3x,CD=4x∵E,F分别是AB,CD的中点∴BE=AB=x,CF=CD=2x∴EF=BE+CF﹣BC=x+2x﹣x即x+2x﹣x=60,解得x=24∴AB=3x=72(厘米),CD=4x=96(厘米).答:线段AB长为72厘米,线段CD长为96厘米.10、解:(1)①∵B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动,∴当t=2时,AB=2×2=4cm.故答案为:4;②∵AD=10cm,AB=4cm,∴BD=10﹣4=6cm,∵C是线段BD的中点,∴CD=BD=×6=3cm;(2)∵B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动,∴当0≤t≤5时,AB=2t;当5<t≤10时,AB=10﹣(2t﹣10)=20﹣2t;(3)不变.∵AB中点为E,C是线段BD的中点,∴EC=(AB+BD)=AD=×10=5cm.11、解:12、解:⑴ CD=(4a+3b)-(2a+b)=2a+2b 答:C、D两站之间的距离CD为(2a+2b)⑵ AB=AC-BC=CD-BC=(2a+2b)-(2a+b)=b 答:A、B两站之间的距离AB是b.13、解:(1)∵点M、N分别是AC、BC的中点,∴CM=AC=4cm,CN=BC=3cm,∴MN=CM+CN=4+3=7(cm);即线段MN的长是7cm.(2)能,理由如下:如图所示,∵点M、N分别是AC、BC的中点,∴CM=AC,CN=BC,∴MN=CM+CN=(AC﹣BC)=cm.14、解:∵M是AC的中点,AC=6,∴MC=3,又因为CN∶NB=1∶2,BC=15,∴CN=5,∴MN=MC+CN=3+5=8,∴MN的长为8 cm15、解:16、解:17、解:18、解:(1)P点对应的数为﹣26+t;PC=36﹣t;故答案为:﹣26+t;36﹣t;(2)①有2处相遇;分两种情况:Q返回前相遇:3(t﹣16)﹣16=t﹣16,解得:t=24,Q返回后相遇:3(t﹣16)+t=36×2.解得:t=30.综上所述,相遇时t=24秒或30秒.故答案为:24或30;②当16≤t≤24时 PQ=t﹣3(t﹣16)=﹣2t+48,当24<t≤28时 PQ=3(t﹣16)﹣t=2t﹣48,当28<t≤30时 PQ=72﹣3(t﹣16)﹣t=120﹣4t,当30<t≤36时 PQ=t﹣[72﹣3(t﹣16)]=4t﹣120,当36<t≤40时 PQ=3(t﹣16)﹣36=3t﹣84.19、解:20、解:。
线段与角----必考卷检测3
1、下列四个图中,能用∠1、∠AOB、∠O三种方法表示同一个的是()
2、在时刻8:30,时钟上的时针和分针的夹角是为
3、如果∠α=20°,那么∠α余角的补角等于
4、3.76°=______度_____分_______秒.
5、已知线段AB=10cm,直线AB上有一点C,且BC=2cm,点D是线段AB的中点,求线段DC的长.
6、已知一条射线OA,如果从点O再引两条射线OB和OC,使∠AOB=60°, ∠BOC=20°,求
∠AOC的度数.
7.如图,线段AB被点C、D分成了3︰4︰5三部分,且AC的中点M和DB的中点N 之间的距离是80 cm,求AB的长.
第25题图E A /
D C B A
8. 如图,将书页一角斜折过去,使角的顶点A 落在A /处,BC 为折痕,BD 平分
∠A /BE ,求∠CBD 的度数.
9、如图,延长线段AB 到C,使BC=2AB,取AC 的中点D,已知BD=5cm,求AC 的长
10.如图,已知2BOC AOC =∠∠,OD 平分AOB ∠,且20COD =∠,求AOB ∠的度数.
A C D B
11、一个角的余角比它的补角的4
1还少12°,请求出这个角.
12、 如图所示, 直线AB 、CD 相交于O, OE 平分∠AOD, ∠FOC=900, ∠1=360, 求∠2和∠
3的度数.
13、如图,已知∠AOE 是平角,∠DOE=20°,OB 平分∠AOC,且∠COD:∠BOC=2:3,求∠AOC 的度数.
14、如图,∠AOC=∠BOD=90º,∠AOD=130º,求∠BOC 的度数。
15.如图,O 为直线AB 上一点,∠AOC=50°,OD 平分∠AOC ,∠DOE=90°
(1)请你数一数,图中有多少个小于平角的角;
(2)求出∠BOD 的度数;
(3)请通过计算说明OE 是否平分∠BOC.
16、如图,∠AOB=110°,∠COD=70°,OA 平分∠EOC ,OB 平分∠DOF ,求∠EOF 的大小。
D C B A O。