灰色关联度分析解法及详细例题解答
- 格式:doc
- 大小:110.00 KB
- 文档页数:4
灰色关联度分析法为了适应瞬息万变的市场需求, 企业不断调整自己的核心能力, 在产品的开发设计中更重视供应商的作用。
作为供应链合作关系运行的基础, 供应商的评价选择是一个至关重要的问题, 供应商的业绩对企业的影响越来越大,影响着企业的生存与发展。
因此, 进行科学全面的供应商评价就显得十分必要。
(1)确定比较对象产品质量、技术水平、供应能力、经济效益、市场影响度指标属于效益型指标;产品价格、地理位置、售后服务指标属于成本型指标。
i 指五个待选供应商编号,,5,,1 =i j 指八个指标8,,1j =,ij a 是第i 个供应商第j 个指标变量为了使每个属性变换后的最优值为1 且最差值为0,对数据进行标准0-1变换利润型指标标准化公式)/()(min maxmin j j j ij ij a a a a b --=成本型指标标准化公式)/()(min max max j j ij j ij a a a a b --=数据结果见下表。
(2)计算灰色关联系数)()(max max )()()()(max max )()(min min )(0000t x t x k x k x t x t x t x t x k s tsi s ts s ts -+--+-=ρρξ为比较数列对参考数列在第个指标上的关联系数,其中为]1,0[∈ρ分辨系数。
称式中)()(min min 0t x t x s ts-、)()(max max 0t x t x s ts-分别为两级最小差及两级最大差。
一般来讲,分辨系数ρ越大,分辨率越大;ρ越小,分辨率越小。
在这里ρ取0.5。
(3)计算灰色加权关联度 灰色加权关联度的计算公式为∑==nk i i k w r 1)(ξ这里i r 为第i 个评价对象对理想对象的灰色加权关联度。
关联系数和关联度值(4)评价分析根据灰色加权关联度的大小,对各评价对象进行排序,可建立评价对象的关联序,关联度越大其评价结果越好。
从零开始的数学建模:(三)灰⾊关联分析灰⾊关联分析适⽤于⼩样本数据,⼤样本数据推荐使⽤标准化回归分析;基本原理是根据曲线的⼏何形状的相似程度来判断联系是否紧密,也就是说,如果y的曲线和某个x的曲线长得很像,那么这个x或许就是最能影响y的因素;灰⾊关联分析可⽤于系统分析与综合评价⼀、系统分析上的运⽤(1)确定分析序列以⾃变量作为⼦序列,因变量作为母序列,对应本题即第⼀、⼆、三产业作为⼦序列,国内⽣产总值为母序列;(2)对变量进⾏预处理计算每⼀列的均值,并将每⼀列的数除以该均值(注意这⾥使⽤的⽅法和Topsis不⼀样),可得到以下结果:(3)计算极差与关联系数分别计算|x1−x0|、|x2−x0|、|x3−x0|,可求出最⼩值a与最⼤值b,本题计算结果如下:对上述结果执⾏:y=a+ρ|x i−x0|+ρ∗b即可得到关联系数:对以上三列分别求均值,可得到三个数值:0.5084、0.6243、0.7573,因此最终得出结论,第三产业对GDP总量影响最⼤;⼆、综合评价上的运⽤综合评价类问题只有⼀列⼜⼀列数据,需要根据这些数据计算得分;在利⽤灰⾊关联分析之前,仍需要进⾏指标正向化;(1)确定⼦序列与母序列⼦序列即各个因素,取出⼦序列构成的矩阵的每⼀⾏中的最⼤值,组成母序列;(2)对变量进⾏预处理步骤同上,得到z ij;(3)计算极差与关联系数步骤同上,得到r i;(4)计算权重与得分计算各个指标的权重与得分:w i=r ir1+r2+⋯+r ms k=∑w i∗z ij 最后对得分进⾏归⼀化处理即可得到每个样本的评分:S k=s k∑s1+s2+⋯+s n本⽂算法思想参考源于,特此注明Processing math: 100%。
灰色关联度分析解法及详细例题解答精编W O R D版IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】1.地梭梭生长量与气候因子的关联分析下表为1995年3年梭梭逐月生长量(X0)、月平均气温(X1)、月降水量(X2)、月日照(X3)时数和月平均相对湿度(X4)的原始数据,试排出影响梭梭生长的关联序,并找出主要的影响因子。
灰色系统理论提出了灰色关联度的概念,它是提系统中两个因素关联性大小的量度,关联度的大小直接反映系统中的各因素对目标值的影响程度。
运用灰色关联分析法进行因素分析的一般步骤为:第一步:确定分析数列。
确定反映系统行为特征的参考数列和影响系统行为的比较数列。
反映系统行为特征的数据序列,称为参考数列。
(Y)设参考数列(又称母序列)为Y = {Y(k)|k= 1,2,Λ,n};影响系统行为的因素组成的数据序列,称比较数列。
(X)比较数列(又称子序列)Xi = {Xi(k)|k= 1,2,Λ,n},i?= 1,2,Λ,m。
第二步,变量的无量纲化由于系统中各因素列中的数据可能因量纲不同,不便于比较或在比较时难以得到正确的结论。
因此为了保证结果的可靠性,在进行灰色关联度分析时,一般都要进行数据的无量纲化处理。
第三步,计算关联系数。
X0(k)与xi(k)的关联系数记,则,称为分辨系数。
ρ越小,分辨力越大,一般ρ的取值区间为(0,1),具体取值可视情况而定。
当时,分辨力最好,通常取ρ = 0.5。
ξi(k)继比较数列xi的第k个元素与参考数列xo的第k个元素之间的关联系数。
第四步,计算关联度因为关联系数是比较数列与参考数列在各个时刻(即曲线中的各点)的关联程度值,所以它的数不止一个,而信息过于分散不便于进行整体性比较。
因此有必要将各个时刻(即曲线中的各点)的关联系数集中为一个值,即求其平均值,作为比较数列与参考数列间关联程度的数量表示,关联度ri公式如下:第五步,关联度排序关联度按大小排序,如果r1<r2,则参考数列y与比较数列x2更相似。
灰色关联分析法原理及解题步骤---------------研究两个因素或两个系统的关联度(即两因素变化大小,方向与速度的相对性)关联程度——曲线间几何形状的差别程度灰色关联分析是通过灰色关联度来分析和确定系统因素间的影响程度或因素对系统主行为的贡献测度的一种方法。
灰色关联分析的基本思想是根据序列曲线几何形状的相似程度来判断其联系是否紧密1> 曲线越接近,相应序列之间的关联度就越大,反之就越小 2> 灰色关联度越大,两因素变化态势越一致分析法优点它对样本量的多少和样本有无规律都同样适用,而且计算量小,十分方便,更不会出现量化结果与定性分析结果不符的情况。
灰色系统关联分析的具体计算步骤如下 1》参考数列和比较数列的确定参考数列——反映系统行为特征的数据序列比较数列——影响系统行为的因素组成的数据序列2》无量纲化处理参考数列和比较数列(1) 初值化——矩阵中的每个数均除以第一个数得到的新矩阵(2) 均值化——矩阵中的每个数均除以用矩阵所有元素的平均值得到的新矩阵(3) 区间相对值化3》求参考数列与比较数列的灰色关联系数ξ(Xi) 参考数列X0比较数列X1、X2、X3……………比较数列相对于参考数列在曲线各点的关联系数ξ(i)称为关联系数,其中ρ称为分辨系数,ρ?(0,1),常取0.5.实数第二级最小差,记为Δmin。
两级最大差,记为Δmax。
为各比较数列Xi曲线上的每一个点与参考数列X0曲线上的每一个点的绝对差值。
记为Δoi(k)。
所以关联系数ξ(Xi)也可简化如下列公式:4》求关联度ri关联系数——比较数列与参考数列在各个时刻(即曲线中的各点)的关联程度值,所以它的数不止一个,而信息过于分散不便于进行整体性比较。
因此有必要将各个时刻(即曲线中的各点)的关联系数集中为一个值,即求其平均值,作为比较数列与参考数列间关联程度的数量表示,关联度ri公式如下:5》排关联序因素间的关联程度,主要是用关联度的大小次序描述,而不仅是关联度的大小。
灰色关联度分析讲解第五章灰色关联度分析目录壹、何谓灰色关联度分析------------------------- 5-2 贰、灰色联度分析实例详说与练习 ----------------- 5-8第五章灰色关联度分析壹、何谓灰色关联度分析一.关联度分析灰色系统分析方法针对不同问题性质有几种不同做法,灰色关联度分析(Grey Relational Analysis)是其中的一种。
基本上灰色关联度分析是依据各因素数列曲线形状的接近程度做发展态势的分析。
灰色系统理论提出了对各子系统进行灰色关联度分析的概念,意图透过一定的方法,去寻求系统中各子系统(或因素)之间的数值关系。
简言之,灰色关联度分析的意义是指在系统发展过程中,如果两个因素变化的态势是一致的,即同步变化程度较高,则可以认为两者关联较大;反之,则两者关联度较小。
因此,灰色关联度分析对于一个系统发展变化态势提供了量化的度量,非常适合动态(Dynamic)的历程分析。
灰色关联度可分成「局部性灰色关联度」与「整体性灰色关联度」两类。
主要的差别在于「局部性灰色关联度」有一参考序列,而「整体性灰色关联度」是任一序列均可为参考序列。
二.直观分析依据因素数列绘制曲线图,由曲线图直接观察因素列间的接近程度及数值关系,表一某老师给学生的评分表数据数据为例,绘制曲线图如图一所示,由曲线图大约可直接观察出该老师给分总成绩主要与考试成绩关联度较高。
表一某一老师给学生的评分表单位:分/ %由曲线图直观分析,是可大略分析因素数列关联度,可看出考试成绩与总成绩曲线形状较接近,故较具关联度,但若能以量化分析予以左证,将使分析结果更具有说服力。
三.量化分析量化分析四步曲:1.标准化(无量纲化):以参照数列(取最大数的数列)为基准点,将各数据标准化成介于0至1之间的数据最佳。
2.应公式需要值,产生对应差数列表,内容包括:与参考数列值差(绝对值)、最大差、最小差、ζ(Zeta)为分辨系数,0<ζ<1,可设ζ = 0.5(采取数字最终务必使关联系数计算:ξi(k)小于1为原则,至于分辨系数之设定值对关联度并没影响,请参考p14例) 3. 关联系数ξi (k )计算:应用公式 maxoi(k)maxmin )(?+??+?=ζζξk i 计算比较数列X i 上各点k 与参考数列X 0 参照点的关联系数,最后求各系数的平均值即是X i 与X 0 的关联度r i 。
1.地梭梭生长量与气候因子的关联分析
下表为1995年3年梭梭逐月生长量(X0)、月平均气温(X1)、月降水量(X2)、月日照(X3)时数和月平均相对湿度(X4)的原始数据,试排出影响梭梭生长的关联序,并找出主要的影响因子。
灰色系统理论提出了灰色关联度的概念,它是提系统中两个因素关联性大小的量度,关联度的大小直接反映系统中的各因素对目标值的影响程度。
运用灰色关联分析法进行因素分析的一般步骤为:
第一步:确定分析数列。
确定反映系统行为特征的参考数列和影响系统行为的比较数列。
反映系统行为特征的数据序列,称为参考数列。
(Y)设参考数列(又称母序列)为Y = {Y (k)| k = 1,2,Λ,n};影响系统行为的因素组成的数据序列,称比较数列。
(X)比较数列(又称子序列)Xi = {Xi(k)| k = 1,2,Λ,n},i = 1,2,Λ,m。
第二步,变量的无量纲化
由于系统中各因素列中的数据可能因量纲不同,不便于比较或在比较时难以得到正确的结论。
因此为了保证结果的可靠性,在进行灰色关联度分析时,一般都要进行数据的无量纲化处理。
第三步,计算关联系数。
X
0(k)与x
i
(k)的关联系数
记,则
,称为分辨系数。
ρ越小,分辨力越大,一般ρ的取值区间为(0,1),具体
取值可视情况而定。
当时,分辨力最好,通常取ρ = 。
ξi(k)继比较数列xi的第k个元素与参考数列xo的第k个元素之间的关联系数。
第四步,计算关联度
因为关联系数是比较数列与参考数列在各个时刻(即曲线中的各点)的关联程度值,所以它的数不止一个,而信息过于分散不便于进行整体性比较。
因此有必要将各个时刻(即曲线中的各点)的关联系数集中为一个值,即求其平均值,作为比较数列与参考数列间关联程度的数量表示,关联度ri公式如下:
第五步,关联度排序
关联度按大小排序,如果r1 < r2,则参考数列y与比较数列x2更相似。
在算出Xi(k)序列与Y(k)序列的关联系数后,计算各类关联系数的平均值,平均值ri就称为Y(k)与Xi(k)的关联度。
本题解答过程:
第一步:数据处理
X 0(k)= {,,,,13,,18,,,,8,1 }
X 1(k)= {,,10,,,,,,22,18,, }
X 2(k)= {17,,,,,,,,,,, }
X 3(k)= {,,,137,,,,,,84,, }
X 4(k)= {81,79,75,75,77,79,83,86,83,82,81,82}
-81
第二步:计算关联系数
0min min ()()i x k x k -=|,,,-81︳=
0max max ()()i x k x k -=|,,,︳=
ρ,称为分辨系数。
ρ越小,分辨力越大,一般ρ的取值区间为(0,1),具体取值可视情况而定。
通常取ρ = 。
ξi (k )继比较数列xi 的第k 个元素与参考数列xo 的第k 个元素之间的关联系数。
0000min min ()()max max ()()
()()()max max ()()
i i i i i x k x k x k x k k x k x k x k x k ρερ-+-=
-+-
=
=
将相应0()x k 与()i x k 的数值代入式min max
max
()i k ερ∆+∆=
∆+∆中,得
ε1 ε2 ε3 ε4 第三步:算出关联度
由公式10
1
1()i i i R k n ε==∑分别计算出月平均气温(X1)、月降水量(X2)、月日照(X3)
时数和月平均相对湿度(X4)关于梭梭逐月生长量(X0)的关联度1,2,34,R R R R 。
1,2,34,R R R R = , , , ;
第四步:比较关联度大小得出结论
由1R >2R >4R >3R 说明梭梭逐月生长量与月平均气温关系最密切,而月降水量、月平均相对湿度和月日照的密切程度依次较小。
说明影响梭梭逐月生长量的主要影响因子是月平均气温。