灰色关联分析(算法步骤)
- 格式:doc
- 大小:62.00 KB
- 文档页数:2
灰色关联分析1、作用对于两个系统之间的因素,其随时间或不同对象而变化的关联性大小的量度,称为关联度。
在系统发展过程中,若两个因素变化的趋势具有一致性,即同步变化程度较高,即可谓二者关联程度较高;反之,则较低。
因此,灰色关联分析是指对一个系统发展变化态势的定量描述和比较的方法,其基本思想是通过确定参考数据列和若干个比较数据列的几何形状相似程度来判断其联系是否紧密,它反映了曲线间的关联程度。
2、输入输出描述输入:特征序列为至少两项或以上的定量变量,母序列(关联对象)为 1 项定量变量。
输出:反应考核指标与母序列的关联程度。
3、案例示例案例:分析 09-18 年内,影院数量,观影人数,票价、电影上线数量这些因素对全年电影票房的影响。
其中电影票房是母序列,影院数量,观影人数,票价、电影上线数量是特征序列。
4、案例数据灰色关联分析案例数据5、案例操作Step1:新建分析;Step2:上传数据;Step3:选择对应数据打开后进行预览,确认无误后点击开始分析;step4:选择【灰色关联分析】;step5:查看对应的数据数据格式,【灰色关联分析】要求特征序列为定量变量,且至少有一项;要求母序列为定量变量,且只有一项。
step6:设置量纲处理方式(包括初值化、均值化、无处理)、分辨系数(ρ越小,分辨力越大,一般ρ的取值区间为 ( 0 ,1 ),具体取值可视情况而定。
当ρ≤ 0.5463 时,分辨力最好,通常取ρ = 0.5 )step7:点击【开始分析】,完成全部操作。
6、输出结果分析输出结果 1:灰色关联系数图表说明:关联系数代表着该子序列与母序列对应维度上的关联程度值(数字越大,代表关联性越强)。
输出结果 2:关联系数图分析:输出结果 1 和输出结果 2 是一样的,输出结果 1 用了表格形式来呈现关联系数,输出结果 2 用了图表形式来呈现关联系数。
图表很直观地展现了,大多数年份的银幕数量和电影上线数量对票房影响更大。
灰色关联度计算公式
灰色关联度是由日本学者 Deng 发明的用作测度系统之间关联程度的数学工具,它是互联网上最重要的数据分析及决策指标之一。
它可以有效地抓取两类系统之间的特征,反映他们之间关系的变化,量化两类系统个体之间的关联度程度、动态特征及稳定性,以分析及识别系统中不同对象间的相互关系。
灰色关联度分析的具体表示形式是:分析 A、B 两类系统的互联关系,可以根
据其各自的变量值,进行相互依赖、变换、叠加或引用的计算,来计算两类系统之间的关联度。
灰色关联度的公式也很简单:∆R=XAYA+XBYB,其中 XA 、YB 分别为
A类、B类的变量值,当∆R值越大,表示这两类系统之间的关联性越强。
灰色关联度在互联网领域众多应用之一是深度学习,算法中,×A、YB两者代
表不同但具有内在联系的特征,通过灰色关联度得到的∆R代表其间的关联程度,
常被用来衡量算法的性能及准确性,也有效地增加了机器学习的预测及决策准确度。
此外,灰色关联度在互联网领域还可以用作监控系统运行状态,监测用户行为
及指标、帮助企业细致把控和运营,在众多智能应用及金融风控中发挥着重要作用。
总而言之,灰色关联度是一种非常重要的系统数据分析及决策工具,它可以有
效帮助系统内建立联系,加强企业的管控和运营,也是众多互联网,智能应用,机器学习及金融风控中不可或缺的重要元素。
灰色关联分析法是一种用于比较多个因素之间关联程度的分析方法,其基本思想是通过比较各因素之间的相似程度来评估它们之间的关联程度。
在两因素三水平的情境下,可以使用灰色关联分析法来比较三个水平之间的关联程度。
具体步骤如下:1.确定参考序列和比较序列。
参考序列是用于比较的基准序列,通常选择一个固定值或者已知的最佳水平作为参考序列。
比较序列是待比较的各个因素在不同水平下的观测值序列。
2.数据预处理。
对参考序列和比较序列进行数据预处理,包括数据清洗、缺失值处理、异常值处理等。
3.计算灰色关联度。
根据灰色关联分析法的原理,计算参考序列与各个比较序列之间的灰色关联度。
灰色关联度的计算公式为:(\gamma(x_0, x_i) = \frac{\min_i |x_0(k) - x_i(k)| + \rho \max_i |x_0(k) -x_i(k)|}{|x_0(k) - x_i(k)| + \rho \max_i |x_0(k) - x_i(k)|})其中,(x_0(k))表示参考序列在时刻k的值,(x_i(k))表示第i个比较序列在时刻k 的值,(\min_i |x_0(k) - x_i(k)|)和(\max_i |x_0(k) - x_i(k)|)分别表示第k时刻所有比较序列与参考序列的差的绝对值的最小值和最大值,(\rho)是一个分辨系数,通常取0.5。
4. 判断关联程度。
根据计算出的灰色关联度,判断各个比较序列与参考序列的关联程度。
灰色关联度越接近于1,表示关联程度越高。
通过以上步骤,可以得出各个水平之间的关联程度,从而为决策提供依据。
需要注意的是,灰色关联分析法只是一种定性的分析方法,其结果具有一定的主观性,因此在具体应用时需要根据实际情况进行合理的解释和判断。
灰色关联度方法介绍一、灰色关联度方法的概念灰色关联度方法是一种常用的分析方法,它是将各个因素之间的关系转化为数学模型进行计算,从而得出它们之间的相关程度。
灰色关联度方法主要应用于多因素分析和决策评价等领域。
二、灰色关联度方法的原理灰色关联度方法是基于灰色系统理论的,它通过对数据进行处理,将数据转化为一组序列,然后通过对这些序列进行比较,得出各个因素之间的相关程度。
具体来说,它主要包括以下步骤:1. 数据预处理:将原始数据进行标准化处理,使得各个因素之间具有可比性。
2. 灰色关联度计算:通过对标准化后的数据进行加权平均值计算,并与参考序列进行比较,得出各个因素与参考序列之间的相关程度。
3. 灰色预测模型建立:根据各个因素与参考序列之间的相关程度建立预测模型,并对未来趋势进行预测。
三、灰色关联度方法的应用1. 多因素分析:在复杂多变的环境下,往往需要考虑多种因素的影响,灰色关联度方法可以通过对各个因素之间的关系进行分析,得出它们之间的相关程度,从而帮助决策者进行有效的决策。
2. 决策评价:在决策过程中,需要对各种方案进行评价,灰色关联度方法可以通过对各种方案之间的比较,得出它们之间的相关程度,从而帮助决策者选择最优方案。
3. 经济预测:在经济预测中,需要考虑多种因素的影响,灰色关联度方法可以通过对各个因素之间的关系进行分析,得出它们之间的相关程度,并建立预测模型进行未来趋势预测。
四、灰色关联度方法的优缺点1. 优点:(1)能够充分考虑多个因素之间的相互作用和影响。
(2)具有较高的精确性和可靠性。
(3)能够处理样本数据量较小、数据质量较差等问题。
2. 缺点:(1)需要对数据进行标准化处理,增加了计算复杂度。
(2)依赖于参考序列的选择和权重设置,在实际应用中可能存在一定误差。
(3)不适用于非线性系统和高维数据分析。
五、灰色关联度方法的发展趋势随着计算机技术的不断发展和数据处理能力的提高,灰色关联度方法在多因素分析、决策评价和经济预测等领域得到了广泛应用。
灰色关联度分析法为了适应瞬息万变的市场需求, 企业不断调整自己的核心能力, 在产品的开发设计中更重视供应商的作用。
作为供应链合作关系运行的基础, 供应商的评价选择是一个至关重要的问题, 供应商的业绩对企业的影响越来越大,影响着企业的生存与发展。
因此, 进行科学全面的供应商评价就显得十分必要。
(1)确定比较对象产品质量、技术水平、供应能力、经济效益、市场影响度指标属于效益型指标;产品价格、地理位置、售后服务指标属于成本型指标。
i 指五个待选供应商编号,,5,,1 =i j 指八个指标8,,1j =,ij a 是第i 个供应商第j 个指标变量为了使每个属性变换后的最优值为1 且最差值为0,对数据进行标准0-1变换利润型指标标准化公式)/()(min maxmin j j j ij ij a a a a b --=成本型指标标准化公式)/()(min max max j j ij j ij a a a a b --=数据结果见下表。
(2)计算灰色关联系数)()(max max )()()()(max max )()(min min )(0000t x t x k x k x t x t x t x t x k s tsi s ts s ts -+--+-=ρρξ为比较数列对参考数列在第个指标上的关联系数,其中为]1,0[∈ρ分辨系数。
称式中)()(min min 0t x t x s ts-、)()(max max 0t x t x s ts-分别为两级最小差及两级最大差。
一般来讲,分辨系数ρ越大,分辨率越大;ρ越小,分辨率越小。
在这里ρ取0.5。
(3)计算灰色加权关联度 灰色加权关联度的计算公式为∑==nk i i k w r 1)(ξ这里i r 为第i 个评价对象对理想对象的灰色加权关联度。
关联系数和关联度值(4)评价分析根据灰色加权关联度的大小,对各评价对象进行排序,可建立评价对象的关联序,关联度越大其评价结果越好。
灰色关联分析灰色关联分析是指对一个系统发展变化态势的定量描述和比较的方法,其基本思想是通过确定参考数据列和若干个比较数据列的几何形状相似程度来判断其联系是否紧密,它反映了曲线间的关联程度[1]。
灰色系统理论是由著名学者邓聚龙教授首创的一种系统科学理论(Grey Theory),其中的灰色关联分析是根据各因素变化曲线几何形状的相似程度,来判断因素之间关联程度的方法。
此方法通过对动态过程发展态势的量化分析,完成对系统内时间序列有关统计数据几何关系的比较,求出参考数列与各比较数列之间的灰色关联度。
与参考数列关联度越大的比较数列,其发展方向和速率与参考数列越接近,与参考数列的关系越紧密。
灰色关联分析方法要求样本容量可以少到4个,对数据无规律同样适用,不会出现量化结果与定性分析结果不符的情况。
其基本思想是将评价指标原始观测数进行无量纲化处理,计算关联系数、关联度以及根据关联度的大小对待评指标进行排序。
灰色关联度的应用涉及社会科学和自然科学的各个领域,尤其在社会经济领域,如国民经济各部门投资收益、区域经济优势分析、产业结构调整等方面,都取得较好的应用效果。
[2]关联度有绝对关联度和相对关联度之分,绝对关联度采用初始点零化法进行初值化处理,当分析的因素差异较大时,由于变量间的量纲不一致,往往影响分析,难以得出合理的结果。
而相对关联度用相对量进行分析,计算结果仅与序列相对于初始点的变化速率有关,与各观测数据大小无关,这在一定程度上弥补了绝对关联度的缺陷。
[2]灰色关联分析的步骤[2]灰色关联分析的具体计算步骤如下:第一步:确定分析数列。
确定反映系统行为特征的参考数列和影响系统行为的比较数列。
反映系统行为特征的数据序列,称为参考数列。
影响系统行为的因素组成的数据序列,称比较数列。
设参考数列(又称母序列)为Y={Y(k) | k= 1,2,Λ,n};比较数列(又称子序列)X i={X i(k) | k= 1,2,Λ,n},i= 1,2,Λ,m。
灰色关联分析简介灰色关联分析是一种用于评估多个因素之间相关性的统计分析方法。
它可以帮助我们理解一组因素对于某个指标的影响程度,并且可以用来预测未来的趋势。
原理灰色关联分析基于灰色理论,其核心思想是将样本数据转化为灰色数列,然后通过计算灰色相关度来评估因素之间的关联性。
在灰色关联分析中,我们首先需要确定一个参考数列和一个比较数列,然后根据数列的发展趋势和规律性对它们进行排序。
最后,通过计算两个数列之间的关联度来评估它们之间的关联程度。
灰色关联度的计算方法灰色关联度可以通过以下公式计算:$$ \\rho(i,j) = \\frac{{\\min(\\Delta^*+(k-1)\\Delta^*,\\Delta^*+\\delta^*+(k-1)\\Delta^*,\\Delta^*-\\delta^*+(k-1)\\Delta^*)}}{{\\max(\\Delta^*+(k-1)\\Delta^*,\\Delta^*+\\delta^*+(k-1)\\Delta^*,\\Delta^*-\\delta^*+(k-1)\\Delta^*)}} $$其中,$\\Delta^*$表示相邻数据的差值绝对值的最大值,$\\delta^*$表示数列中数据的最大值与最小值之差。
灰色关联分析步骤1.数据预处理:将原始数据进行标准化处理,使其具有可比性。
2.建立关联矩阵:根据参考数列和比较数列计算灰色关联度,并构建关联矩阵。
3.确定权重:根据关联矩阵的行列和大小确定各因素的权重,权重越大表示因素对目标的影响越大。
4.计算综合关联度:将灰色关联度与权重相乘并求和,得到各个因素的综合关联度。
5.分析结果:根据综合关联度的大小对因素进行排序和评估,得出各因素对目标的贡献程度。
适用领域灰色关联分析在许多领域都有广泛的应用,包括经济、环境、工程等。
它可以用于评估多个因素对某个现象的影响程度,帮助决策者制定合理的决策和策略。
优势与局限灰色关联分析具有以下优势:•可以在样本数据不完整或不完全的情况下进行分析。
灰色关联分析法原理及解题步骤——-—-————--—-—-研究两个因素或两个系统的关联度(即两因素变化大小,方向与速度的相对性)关联程度-—曲线间几何形状的差别程度灰色关联分析是通过灰色关联度来分析和确定系统因素间的影响程度或因素对系统主行为的贡献测度的一种方法。
灰色关联分析的基本思想是根据序列曲线几何形状的相似程度来判断其联系是否紧密1>曲线越接近,相应序列之间的关联度就越大,反之就越小2>灰色关联度越大,两因素变化态势越一致分析法优点它对样本量的多少和样本有无规律都同样适用,而且计算量小,十分方便,更不会出现量化结果与定性分析结果不符的情况。
灰色系统关联分析的具体计算步骤如下1》参考数列和比较数列的确定参考数列——反映系统行为特征的数据序列比较数列--影响系统行为的因素组成的数据序列2》无量纲化处理参考数列和比较数列(1)初值化——矩阵中的每个数均除以第一个数得到的新矩阵(2)均值化——矩阵中的每个数均除以用矩阵所有元素的平均值得到的新矩阵(3)区间相对值化3》求参考数列与比较数列的灰色关联系数ξ(Xi)参考数列X0比较数列X1、X2、X3……………比较数列相对于参考数列在曲线各点的关联系数ξ(i)称为关联系数,其中ρ称为分辨系数,ρ∈(0,1),常取0。
5。
实数第二级最小差,记为Δmin. 两级最大差,记为Δmax. 为各比较数列Xi曲线上的每一个点与参考数列X0曲线上的每一个点的绝对差值。
记为Δoi(k).所以关联系数ξ(Xi)也可简化如下列公式:4》求关联度ri关联系数——比较数列与参考数列在各个时刻(即曲线中的各点)的关联程度值,所以它的数不止一个,而信息过于分散不便于进行整体性比较.因此有必要将各个时刻(即曲线中的各点)的关联系数集中为一个值,即求其平均值,作为比较数列与参考数列间关联程度的数量表示,关联度ri公式如下:5》排关联序因素间的关联程度,主要是用关联度的大小次序描述,而不仅是关联度的大小.将m个子序列对同一母序列的关联度按大小顺序排列起来,便组成了关联序,记为{x},它反映了对于母序列来说各子序列的“优劣"关系。
灰色关联分析方法灰色关联分析方法(Grey Relational Analysis,GRA)是一种多指标决策方法,它用于研究因素之间的关联程度。
与传统的关联分析方法相比,灰色关联分析方法具有较强的适用性和灵活性。
它可以用于分析多个指标之间的关联程度,对于复杂决策问题具有较强的应用能力。
灰色关联分析方法的基本思想是将系统的各个指标转化为灰色数列,再利用灰色关联度来评估指标之间的关联程度。
该方法可以对多个指标进行综合评价,找出各个指标之间的关联程度,并根据关联程度来进行排序和决策。
灰色关联分析方法的具体步骤如下:1. 数据预处理:将原始数据进行标准化处理,以确保各指标在同一数量级上进行比较。
2. 构建灰色数列:将标准化后的数据转化为灰色数列,通过建立灰色微分方程来描述数据序列的发展趋势。
3. 确定关联度测度:根据灰色数列的特点,选择适当的关联度测度方法来计算指标之间的关联程度。
4. 计算关联度:根据所选择的关联度测度方法,计算每个指标与其他指标之间的关联度。
5. 排序和决策:根据计算得到的关联度值进行排序,并作出相应的决策。
灰色关联分析方法的优点有以下几个方面:1. 适用性广泛:灰色关联分析方法适用于各种类型的指标数据,包括定量指标和定性指标。
2. 考虑了指标之间的时序关系:灰色关联分析方法考虑了指标数据的时序性,能够更好地反映指标之间的演变趋势。
3. 简单易行:灰色关联分析方法不需要过多的统计方法和复杂的计算过程,容易被理解和操作。
4. 提供了多指标综合评价的能力:灰色关联分析方法可以将多个指标之间的关联程度综合考虑,对于决策问题的综合评价有着较好的效果。
然而,灰色关联分析方法也存在一些限制和局限性:1. 灵敏度不高:由于灰色关联分析方法只考虑了指标之间的线性关联程度,对于非线性关系的刻画较为困难,灵敏度较低。
2. 依赖于初始数据:灰色关联分析方法对初始数据的选取较为敏感,不同的初始数据可能导致不同的关联度结果。
灰色关联度分析灰色关联分析(Grey Correlation Analysis )是一种分析多因素之间关系的方法,由邓聚龙教授创立,通过不同样本之间关联度分析,对各因素进行排序,对各因素之间关系进行描述的一种统计方法。
我们假设以及知道某一个指标可能是与其他的某几个因素相关的,那么我们想知道这个指标与其他哪个因素相对来说更相关,与哪个因素相对关系弱一点,依次类推,把这些因素排个序,得到一个分析结果,我们就可以知道我们关注的这个指标,与因素中的哪些更相关。
1、确定母数列(参考序列)和子数列(比较序列)设参考数列0X ,比较数列12,,,n X X X ,由于各因素之间的单位等各不相同,可能会造成有的数大有的数很小。
但是这并不是由于它们内禀的性质决定的,而只是由于量纲不同导致的,因此我们需要对它们进行无量纲化。
因此,为了使得不同因素能够进行比较,且保证结果的误差,需要对数据进行无量纲化处理。
GRA 常用的方法是初值化,即把这一个序列的数据统一除以最开始的值,由于同一个因素的序列的量级差别不大,所以通0,1,2,,4.2''0()|()()|(1,2,3,4)j j k X k X k j ∆=-= max 0min 0max max |()()|min min |()()|i i k i i k X k X k X k X k ∆=-∆=- 3、求关联度minmax max ()()j j k k ρζρ∆+∆=∆+∆ 其中,一般调节系数ρ的取值区间为()10,,通常取0.5ρ=。
4、作关联度 4、关联度排序,如果21r r <,则参考数列0x 与比较数列1x 更相似,最终的目的也是为了计算变量之间的关联程度。
GRA 算法本质上来讲就是提供了一种度量两个向量之间距离的方法,对于有时间性的因子,向量可以看成一条时间曲线,而GRA 算法就是度量两条曲线的形态和走势是否相近。
为了避免其他干扰,凸出形态特征的影响,GRA 先做了归一化,将所有向量矫正到同一个尺度和位置,然后计算每个点的距离。
灰色关联分析法对于两个系统之间的因素,其随时间或不同对象而变化的关联性大小的量度,称为关联度。
在系统发展过程中,若两个因素变化的趋势具有一致性,即同步变化程度较高,即可谓二者关联程度较高;反之,则较低。
因此,灰色关联分析方法,是根据因素之间发展趋势的相似或相异程度,亦即“灰色关联度”,作为衡量因素间关联程度的一种方法。
应用于综合评价(灰色综合评价)步骤:(1) 确定比较对象(评价对象)和参考数列(评价标准)。
设评价对象有m 个,评价指标有n 个,参考数列为{}00()|1,2,,x x k k n ==⋅⋅⋅,比较数列为{}()|1,2,,,1,2,,i i x x k k n i m ==⋅⋅⋅=⋅⋅⋅。
(2) 对参考数列和比较数列进行无量纲化处理由于系统中各因素的物理意义不同,导致数据的量纲也不一定相同,不便于比较,或在比较时难以得到正确的结论。
因此在进行灰色关联度分析时,一般都要进行无量纲化的数据处理。
设无量纲化后参考数列为{}00()|1,2,,x x k k n ''==⋅⋅⋅,无量纲化后比较数列为{}()|1,2,,,i i x x k k n ''==⋅⋅⋅1,2,,i m =⋅⋅⋅。
(3) 确定各指标值对应的权重。
可用层次分析法等确定各指标对应的权重[]12,,,n w w w w =⋅⋅⋅,其中(1,2,,)k w k n =⋅⋅⋅为第k 个评价指标对应的权重。
(4) 计算灰色关联系数:0000min min ()()max max ()()()()()max max ()()s s s t s t i i s s tx t x t x t x t k x k x k x t x t ρξρ''''-+-=''''-+- 为比较数列i x 对参考数列0x 在第k 个指标上的关联系数,其中[]0,1ρ∈为分辨系数,称0min min ()()s s t x t x t ''-、0max max ()()s s tx t x t ''-分别为两级最小差及两级最大差。
灰色关联分析灰色关联分析是指对一个系统发展变化态势的定量描述和比较的方法,其基本思想是通过确定参考数据列和若干个比较数据列的几何形状相似程度来判断其联系是否紧密,它反映了曲线间的关联程度[1]。
灰色系统理论是由著名学者邓聚龙教授首创的一种系统科学理论(Grey Theory),其中的灰色关联分析是根据各因素变化曲线几何形状的相似程度,来判断因素之间关联程度的方法。
此方法通过对动态过程发展态势的量化分析,完成对系统内时间序列有关统计数据几何关系的比较,求出参考数列与各比较数列之间的灰色关联度。
与参考数列关联度越大的比较数列,其发展方向和速率与参考数列越接近,与参考数列的关系越紧密。
灰色关联分析方法要求样本容量可以少到4个,对数据无规律同样适用,不会出现量化结果与定性分析结果不符的情况。
其基本思想是将评价指标原始观测数进行无量纲化处理,计算关联系数、关联度以及根据关联度的大小对待评指标进行排序。
灰色关联度的应用涉及社会科学和自然科学的各个领域,尤其在社会经济领域,如国民经济各部门投资收益、区域经济优势分析、产业结构调整等方面,都取得较好的应用效果。
[2]关联度有绝对关联度和相对关联度之分,绝对关联度采用初始点零化法进行初值化处理,当分析的因素差异较大时,由于变量间的量纲不一致,往往影响分析,难以得出合理的结果。
而相对关联度用相对量进行分析,计算结果仅与序列相对于初始点的变化速率有关,与各观测数据大小无关,这在一定程度上弥补了绝对关联度的缺陷。
[2]灰色关联分析的步骤[2]灰色关联分析的具体计算步骤如下:第一步:确定分析数列。
确定反映系统行为特征的参考数列和影响系统行为的比较数列。
反映系统行为特征的数据序列,称为参考数列。
影响系统行为的因素组成的数据序列,称比较数列。
设参考数列(又称母序列)为Y={Y(k) | k= 1,2,Λ,n};比较数列(又称子序列)X i={X i(k) | k= 1,2,Λ,n},i= 1,2,Λ,m。
灰色关联度分析法引言灰色关联度分析法是一种用于揭示变量之间关联程度的方法。
它可以在缺乏足够数据的情况下,通过对变量之间的相关性进行评估,帮助分析人员做出决策。
在本文中,我们将介绍灰色关联度分析法的原理和应用,并探讨其在实际问题中的价值和局限性。
一、灰色关联度分析法的原理灰色关联度分析法是在灰色系统理论基础上发展起来的一种关联性分析方法。
灰色关联度分析法的核心思想是通过模糊度量的方法,将样本数据的数量化描述量和次序特征结合起来,通过计算变量间的关联度,得出它们之间的相关性。
具体而言,灰色关联度分析法的步骤主要包括以下几个方面:1. 数据标准化:将原始数据进行归一化处理,以消除变量之间的量纲差异,使其具有可比性。
2. 确定参考序列:在给定的多个序列中,根据研究目标和实际需求,选择一个作为参考序列,其他序列将与之进行比较。
3. 计算关联度指数:通过计算每个序列与参考序列之间的关联度指数,来评估它们之间的关联程度。
关联度指数的计算通常有多种方法,如灰色关联度、相对系数法等。
4. 判别等级:根据关联度指数的大小,将序列划分为几个等级,以便更直观地评估变量之间的关联程度。
二、灰色关联度分析法的应用灰色关联度分析法在许多领域和问题中都有广泛的应用。
下面将介绍一些典型的应用情况:1. 经济领域:灰色关联度分析法可以用于评估经济指标之间的关联性,识别影响经济发展的主要因素,帮助政府和企业做出相应的调整和决策。
2. 工业制造业:在工业制造领域,灰色关联度分析法可以用于优化生产工艺,提高产品质量,降低成本。
通过分析不同因素对产品质量的影响程度,可以找出关键因素,并制定相应的改进措施。
3. 市场调研:在市场调研中,灰色关联度分析法可以用于分析消费者行为和市场趋势,预测产品的需求量和销售额。
通过对多个变量之间的关联性进行评估,可以为企业的市场营销决策提供有价值的参考和支持。
4. 环境管理:在环境管理领域,灰色关联度分析法可以用于评估各种环境因素对生态系统的影响程度,为环境保护和可持续发展提供科学依据。
灰色关联分析算法步骤 Revised by BLUE on the afternoon of December 12,2020.灰色关联分析灰色关联分析是指对一个系统发展变化态势的定量描述和比较的方法,其基本思想是通过确定参考数据列和若干个比较数据列的几何形状相似程度来判断其联系是否紧密,它反映了曲线间的关联程度。
是由着名学者教授首创的一种系统科学理论(GreyTheory),其中的灰色关联分析是根据各因素变化曲线几何形状的相似程度,来判断因素之间关联程度的方法。
此方法通过对动态过程发展态势的量化分析,完成对系统内时间序列有关几何关系的比较,求出参考数列与各比较数列之间的灰色关联度。
与参考数列关联度越大的比较数列,其发展方向和速率与参考数列越接近,与参考数列的关系越紧密。
灰色关联分析方法要求可以少到4个,对数据无规律同样适用,不会出现量化结果与结果不符的情况。
其基本思想是将评价指标原始观测数进行无量纲化处理,计算关联系数、关联度以及根据关联度的大小对待评指标进行排序。
灰色关联度的应用涉及社会科学和自然科学的各个领域,尤其在社会经济领域,如各部门投资收益、区域经济优势分析、等方面,都取得较好的应用效果。
关联度有绝对关联度和相对关联度之分,绝对关联度采用初始点零化法进行初值化处理,当分析的因素差异较大时,由于变量间的量纲不一致,往往影响分析,难以得出合理的结果。
而相对关联度用相对量进行分析,计算结果仅与序列相对于初始点的变化速率有关,与各观测数据大小无关,这在一定程度上弥补了绝对关联度的缺陷。
灰色关联分析的步骤灰色关联分析的具体计算步骤如下:第一步:确定分析数列。
确定反映系统行为特征的参考数列和影响系统行为的比较数列。
反映系统行为特征的数据序列,称为参考数列。
影响系统行为的因素组成的数据序列,称比较数列。
设参考数列(又称母序列)为Y={Y(k)|k=1,2,Λ,n};比较数列(又称子序列)X i={X i(k)|k=1,2,Λ,n},i=1,2,Λ,m。
灰色关联度分析解法及详细例题解答1.地梭梭生长量与气候因子的关联分析下表为1995年3年梭梭逐月生长量(X0)、月平均气温(X1)、月降水量(X2)、月日照(X3)时数和月平均相对湿度(X4)的原始数据,试排出影响梭梭生长的关联序,并找出主要的影响因子。
1 2 3 4 5 6 7 8 9 10 11 12X0(cm) 0.01 0.5 1.5 10.8 13 16.3 18 19.3 14.8 10.3 8 1X1(℃) 4.2 7.4 10 16.1 21.1 23.9 24.7 24.5 22 18 13.1 6.8 X2(mm) 17 10.8 17.4 19.7 248.7 72.2 96.9 269.5 194.8 58.1 4.9 12.6 X3(hour) 54.5 73.8 84.7 137 149.6 109.5 101.6 164.6 81.6 84 79.3 66.5 X4(%) 81 79 75 75 77 79 83 86 83 82 81 82灰色系统理论提出了灰色关联度的概念,它是提系统中两个因素关联性大小的量度,关联度的大小直接反映系统中的各因素对目标值的影响程度。
运用灰色关联分析法进行因素分析的一般步骤为:第一步:确定分析数列。
确定反映系统行为特征的参考数列和影响系统行为的比较数列。
反映系统行为特征的数据序列,称为参考数列。
(Y)设参考数列(又称母序列)为Y = {Y (k)| k = 1,2,Λ,n};影响系统行为的因素组成的数据序列,称比较数列。
(X)比较数列(又称子序列)Xi = {Xi(k)| k = 1,2,Λ,n},i = 1,2,Λ,m。
第二步,变量的无量纲化由于系统中各因素列中的数据可能因量纲不同,不便于比较或在比较时难以得到正确的结论。
因此为了保证结果的可靠性,在进行灰色关联度分析时,一般都要进行数据的无量纲化处理。
第三步,计算关联系数。
X0(k)与xi(k)的关联系数记,则,称为分辨系数。
灰色关联分析算法步骤文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-灰色关联分析灰色关联分析是指对一个系统发展变化态势的定量描述和比较的方法,其基本思想是通过确定参考数据列和若干个比较数据列的几何形状相似程度来判断其联系是否紧密,它反映了曲线间的关联程度。
是由着名学者教授首创的一种系统科学理论(Grey Theory),其中的灰色关联分析是根据各因素变化曲线几何形状的相似程度,来判断因素之间关联程度的方法。
此方法通过对动态过程发展态势的量化分析,完成对系统内时间序列有关几何关系的比较,求出参考数列与各比较数列之间的灰色关联度。
与参考数列关联度越大的比较数列,其发展方向和速率与参考数列越接近,与参考数列的关系越紧密。
灰色关联分析方法要求可以少到4个,对数据无规律同样适用,不会出现量化结果与结果不符的情况。
其基本思想是将评价指标原始观测数进行无量纲化处理,计算关联系数、关联度以及根据关联度的大小对待评指标进行排序。
灰色关联度的应用涉及社会科学和自然科学的各个领域,尤其在社会经济领域,如各部门投资收益、区域经济优势分析、等方面,都取得较好的应用效果。
关联度有绝对关联度和相对关联度之分,绝对关联度采用初始点零化法进行初值化处理,当分析的因素差异较大时,由于变量间的量纲不一致,往往影响分析,难以得出合理的结果。
而相对关联度用相对量进行分析,计算结果仅与序列相对于初始点的变化速率有关,与各观测数据大小无关,这在一定程度上弥补了绝对关联度的缺陷。
灰色关联分析的步骤灰色关联分析的具体计算步骤如下:第一步:确定分析数列。
确定反映系统行为特征的参考数列和影响系统行为的比较数列。
反映系统行为特征的数据序列,称为参考数列。
影响系统行为的因素组成的数据序列,称比较数列。
设参考数列(又称母序列)为Y={Y(k) | k= 1,2,Λ,n};比较数列(又称子序列)X i={X i(k) | k= 1,2,Λ,n},i= 1,2,Λ,m。
灰色关联分析法(必掌握)与灰色预测模型一样,比赛不能优先使用,灰色关联往往可以与层次分析结合使用。
层次分析用在确定权重上面【1】确定比较对象(评价对象)(就是数据,并且需要进行规范化处理,就是标准化处理,见下面例题的表格数据)和参考数列(评价标准,一般该列数列都是1,就是最优的的情况)【2】确定各个指标权重,可用层次分析确定【3】计算灰色关联系数这是一个比较复杂的公式,给出的代码可以直接运行出来,可以先不管这个公式。
【4】计算灰色加权关联度,计算公式为:其中Ri就是第i个指标对理想对象(参考数列,一般该数列都是1,就是最有情况)的加权关联度。
就可以认为是评价的结果。
【5】评价分析。
例 1 通过对某健将级女子铅球运动员的跟踪调查,获得其 1982 年至 1986 年每年最好成绩及 16 项专项素质和身体素质的时间序列资料,见下表,试对此铅球运动员的专项成绩进行因素分析。
表各项成绩数据clc,clearload x.txt %把原始数据存放在纯文本文件x.txt 中,其中把数据的"替换替换成.for i=1:15x(i,:)=x(i,:)/x(i,1); %标准化数据endfor i=16:17x(i,:)=x(i,1)./x(i,:); %标准化数据end ——————————————————————————————————上面是数据标准化处理,当然这是司老师书中的标准化处理的代码,其他更多关于数据的标准化处理,请参考28数据标准化——————————————————————————————————data=x;n=size(data,2); %求矩阵的列数,即观测时刻的个数ck=data(1,:); %提出参考数列bj=data(2:end,:); %提出比较数列m2=size(bj,1); %求比较数列的个数for j=1:m2t(j,:)=bj(j,:)-ck;endmn=min(min(abs(t'))); %求最小差mx=max(max(abs(t'))); %求最大差rho=0.5; %分辨系数设置ksi=(mn+rho*mx)./(abs(t)+rho*mx); %求关联系数r=sum(ksi')/n %求关联度[rs,rind]=sort(r,'descend') %对关联度进行排序运行结果的r为各指标和成绩的关联度,rind即为各指标和成绩的关联度大小排序的结果。
灰色关联分析
灰色关联分析是指对一个系统发展变化态势的定量描述和比较的方法,其基本思想是通过确定参考数据列和若干个比较数据列的几何形状相似程度来判断其联系是否紧密,它反映了曲线间的关联程度[1]。
灰色系统理论是由著名学者邓聚龙教授首创的一种系统科学理论(Grey Theory),其中的灰色关联分析是根据各因素变化曲线几何形状的相似程度,来判断因素之间关联程度的方法。
此方法通过对动态过程发展态势的量化分析,完成对系统内时间序列有关统计数据几何关系的比较,求出参考数列与各比较数列之间的灰色关联度。
与参考数列关联度越大的比较数列,其发展方向和速率与参考数列越接近,与参考数列的关系越紧密。
灰色关联分析方法要求样本容量可以少到4个,对数据无规律同样适用,不会出现量化结果与定性分析结果不符的情况。
其基本思想是将评价指标原始观测数进行无量纲化处理,计算关联系数、关联度以及根据关联度的大小对待评指标进行排序。
灰色关联度的应用涉及社会科学和自然科学的各个领域,尤其在社会经济领域,如国民经济各部门投资收益、区域经济优势分析、产业结构调整等方面,都取得较好的应用效果。
[2]
关联度有绝对关联度和相对关联度之分,绝对关联度采用初始点零化法进行初值化处理,当分析的因素差异较大时,由于变量间的量纲不一致,往往影响分析,难以得出合理的结果。
而相对关联度用相对量进行分析,计算结果仅与序列相对于初始点的变化速率有关,与各观测数据大小无关,这在一定程度上弥补了绝对关联度的缺陷。
[2]
灰色关联分析的步骤[2]
灰色关联分析的具体计算步骤如下:
第一步:确定分析数列。
确定反映系统行为特征的参考数列和影响系统行为的比较数列。
反映系统行为特征的数据序列,称为参考数列。
影响系统行为的因素组成的数据序列,称比较数列。
设参考数列(又称母序列)为Y={Y(k) | k= 1,2,Λ,n};比较数列(又称子序列)X
i={X i(k) | k = 1,2,Λ,n},i= 1,2,Λ,m。
第二步,变量的无量纲化
由于系统中各因素列中的数据可能因量纲不同,不便于比较或在比较时难以得到正确的结论。
因此在进行灰色关联度分析时,一般都要进行数据的无量纲化处理。
第三步,计算关联系数
x
0(k)与x i(k)的关联系数
记,则
,称为分辨系数。
ρ越小,分辨力越大,一般ρ的取值区间为(0,1),具体取值可视情况而定。
当时,分辨力最好,通常取ρ = 0.5。
第四步,计算关联度
因为关联系数是比较数列与参考数列在各个时刻(即曲线中的各点)的关联程度值,所以它
的数不止一个,而信息过于分散不便于进行整体性比较。
因此有必要将各个时刻(即曲线中的各点)的关联系数集中为一个值,即求其平均值,作为比较数列与参考数列间关联程度的数量表示,
关联度r
i公式如下:
第五步,关联度排序
关联度按大小排序,如果r
1 < r2,则参考数列y与比较数列x2更相似。
在算出X
i(k)序列与Y(k)序列的关联系数后,计算各类关联系数的平均值,平均值r i就称为Y(k)与X i(k)的关联度。