第2章 力学中的守恒定律答案
- 格式:doc
- 大小:427.00 KB
- 文档页数:10
练习册第2章《质点⼒学的运动定律守恒定律》答案(1)第2章质点⼒学的运动定律守恒定律⼀、选择题1(C),2(E),3(D),4(C),5(C),6(B),7(C),8(C),9(B),10(C),11(D),12(A),13(D)⼆、填空题(1). ω2=12rad/s ,A=0.027J (2). 290J (3). 3J (4). 18 N ·s(5). j t i t 2323+ (SI) (6). 16 N ·s , 176 J (7). 16 N ·s ,176 J (8). M k l /0,Mknm M Ml +0(9). j i5- (10).2m v ,指向正西南或南偏西45°三、计算题1. 已知⼀质量为m 的质点在x 轴上运动,质点只受到指向原点的引⼒的作⽤,引⼒⼤⼩与质点离原点的距离x 的平⽅成反⽐,即2/x k f -=,k 是⽐例常数.设质点在 x =A 时的速度为零,求质点在x =A /4处的速度的⼤⼩.解:根据⽜顿第⼆定律x m t x x m t m xk f d d d d d d d d 2vv v v =?==-= ∴ ??-=-=4/202d d ,d d A Ax mx kmx x k v v v v vk mAA A m k 3)14(212=-=v ∴ )/(6mA k =v2. 质量为m 的⼦弹以速度v 0⽔平射⼊沙⼟中,设⼦弹所受阻⼒与速度反向,⼤⼩与速度成正⽐,⽐例系数为K,忽略⼦弹的重⼒,求:(1) ⼦弹射⼊沙⼟后,速度随时间变化的函数式; (2) ⼦弹进⼊沙⼟的最⼤深度.解:(1) ⼦弹进⼊沙⼟后受⼒为-Kv ,由⽜顿定律tmK d d vv =- ∴ ??=-=-v v v v vv 0d d ,d d 0t t m K t m K∴ mKt /0e -=v v(2) 求最⼤深度解法⼀: t xd d =vt x mKt d ed /0-=vt x m Kt txd e d /000-?=v∴ )e 1()/(/0mKt K m x --=vK m x /0m ax v =解法⼆: x m t x x m t m K d d )d d )(d d (d d vvv v v ===- ∴ v d K mdx -=v v d d 000m a x ??-=K mx x∴ K m x /0m ax v =3. ⼀物体按规律x =ct 3在流体媒质中作直线运动,式中c 为常量,t 为时间.设媒质对物体的阻⼒正⽐于速度的平⽅,阻⼒系数为k ,试求物体由x =0运动到x =l 时,阻⼒所作的功.解:由x =ct 3可求物体的速度: 23d d ct tx==v 物体受到的阻⼒⼤⼩为: 343242299x kc t kc k f ===v ⼒对物体所作的功为:=W W d =-lx x kc 03432d 9 =7273732l kc -4. ⼀质量为2 kg 的质点,在xy 平⾯上运动,受到外⼒j t i F 2244-= (SI)的作⽤,t = 0时,它的初速度为j i430+=v (SI),求t = 1 s 时质点的速度及受到的法向⼒n F .解: j t i m F a 2122/-==t a d /d v = ∴ t j t i d )122(d 2-=v=?vv vd ?-t t j t i 02d )122(∴ j t i t 3042-=-v vj t i t j t i t )44()23(42330-++=-+=v v当t = 1 s 时, i51=v 沿x 轴故这时, j a a y n12-==j a m F n n24-== (SI)5.⼀辆⽔平运动的装煤车,以速率v 0从煤⽃下⾯通过,每单位时间内有质量为m 0的煤卸⼊煤车.如果煤车的速率保持不变,煤车与钢轨间摩擦忽略不计,试求:(1) 牵引煤车的⼒的⼤⼩;(2) 牵引煤车所需功率的⼤⼩;(3) 牵引煤车所提供的能量中有多少转化为煤的动能?其余部分⽤于何处?解:(1) 以煤车和?t 时间内卸⼊车内的煤为研究对象,⽔平⽅向煤车受牵引⼒F 的作⽤,由动量定理: 000)(v v M t m M t F -+=?? 求出: 00v m F = (2) 2000v v m F P ==(3) 单位时间内煤获得的动能: 2021v m E K =单位时间内牵引煤车提供的能量为 P E ===21/E E K 50%即有50%的能量转变为煤的动能,其余部分⽤于在拖动煤时不可避免的滑动摩擦损耗.6.⼀链条总长为l ,质量为m ,放在桌⾯上,并使其部分下垂,下垂⼀段的长度为a .设链条与桌⾯之间的滑动摩擦系数为µ.令链条由静⽌开始运动,则(1)到链条刚离开桌⾯的过程中,摩擦⼒对链条作了多少功?(2)链条刚离开桌⾯时的速率是多少?解:(1)建⽴如图坐标.某⼀时刻桌⾯上全链条长为y ,则摩擦⼒⼤⼩为 g lym f µ=摩擦⼒的功 ??--==0d d al al f y gy lmy f W µ=22al y lmg-µ =2)(2a l lmg--µ(2)以链条为对象,应⽤质点的动能定理 ∑W =222121v v m m - 其中 ∑W = W P +W f ,v 0 = 0 W P =?la x P d =la l mg x x l mg la 2)(d 22-=? 由上问知 la l mg W f 2)(2--=µal -a-a1)(22)(v m a l l mg l a l mg =---µ得 []21222)()(a l a l lg ---=µv7. 如图所⽰,在中间有⼀⼩孔O 的⽔平光滑桌⾯上放置⼀个⽤绳⼦连结的、质量m = 4 kg 的⼩块物体.绳的另⼀端穿过⼩孔下垂且⽤⼿拉住.开始时物体以半径R 0 = 0.5 m 在桌⾯上转动,其线速度是4 m/s .现将绳缓慢地匀速下拉以缩短物体的转动半径.⽽绳最多只能承受 600 N 的拉⼒.求绳刚被拉断时,物体的转动半径R 等于多少?解:物体因受合外⼒矩为零,故⾓动量守恒.设开始时和绳被拉断时物体的切向速度、转动惯量、⾓速度分别为v 0、J 0、ω0和v 、J 、ω.则ωωJ J =00 ①因绳是缓慢地下拉,物体运动可始终视为圆周运动.①式可写成R mR R mR //20020v v =整理后得: v v /00R R =②物体作圆周运动的向⼼⼒由绳的张⼒提供 R m F /2v = 1分再由②式可得: 3/12020)/(F mR R v =当F = 600 N 时,绳刚好被拉断,此时物体的转动半径为R = 0.3 m8.设两个粒⼦之间相互作⽤⼒是排斥⼒,其⼤⼩与粒⼦间距离r 的函数关系为3r k f =,k 为正值常量,试求这两个粒⼦相距为r 时的势能.(设相互作⽤⼒为零的地⽅势能为零.)解:两个粒⼦的相互作⽤⼒ 3r k f =已知f =0即r =∞处为势能零点, 则势能∞∞∞=?==r r P P r r kW E d d 3r f)2(2r k =1. 汽车发动机内⽓体对活塞的推⼒以及各种传动部件之间的作⽤⼒能使汽车前进吗?使汽车前进的⼒是什么⼒?参考解答:汽车发动机内⽓体对活塞的推⼒以及各种传动部件之间的作⽤⼒都是汽车系统的内⼒,内⼒只会改变内部各质点的运动状态,不会改变系统的总动量,所以不能使汽车前进。
工程力学教程第二版课后习题答案工程力学是一门应用力学原理研究工程结构和材料力学性能的学科。
作为工程学的基础课程之一,工程力学的学习对于培养工程师的分析和解决实际工程问题的能力至关重要。
而工程力学教程第二版是一本经典的教材,其中的课后习题是帮助学生巩固所学知识的重要辅助材料。
本文将为读者提供工程力学教程第二版课后习题的答案,帮助读者更好地理解和掌握工程力学的知识。
第一章:静力学1. 问题:一根长度为L,截面为矩形的梁,其宽度为b,高度为h。
梁的两端分别固定在支座上,中间有一个集中力P作用在梁上。
求梁在P作用下的最大弯矩和最大剪力。
答案:根据静力学原理,我们可以通过平衡力和力矩来求解该问题。
首先,根据平衡力的原理,梁在P作用下的最大剪力等于P。
其次,根据力矩的原理,梁在P作用下的最大弯矩等于P乘以梁的长度L的一半。
因此,最大弯矩为PL/2。
第二章:动力学1. 问题:一个质量为m的物体以速度v沿着水平方向运动,突然撞击到一个质量为M的静止物体上。
求撞击后两个物体的速度。
答案:根据动量守恒定律,撞击前后两个物体的总动量保持不变。
设撞击后质量为m的物体的速度为v1,质量为M的物体的速度为v2。
由动量守恒定律可得mv = mv1 + Mv2。
另外,根据能量守恒定律,撞击前后两个物体的总动能保持不变。
设撞击前质量为m的物体的动能为1/2mv^2,撞击后质量为m的物体的动能为1/2mv1^2,质量为M的物体的动能为0(静止)。
由能量守恒定律可得1/2mv^2 = 1/2mv1^2 + 0。
综上所述,可以解得v1 = (m - M)v / (m + M),v2 = 2m / (m + M)。
第三章:应力分析1. 问题:一个长方体的尺寸为a×b×c,其材料的杨氏模量为E,泊松比为v。
求该长方体在x、y、z方向上的应力分量。
答案:根据应力分析的原理,我们可以通过应力的定义和杨氏模量、泊松比的关系来求解该问题。
力学第三版习题答案第一章:力学的基本概念- 习题1:解释质量、重量、惯性的区别和联系。
答案:质量是物体的固有属性,与物体所含物质的多少有关。
重量是地球对物体的引力作用,与物体的质量和地球的引力加速度有关。
惯性是物体保持其运动状态不变的能力,与物体的质量成正比。
- 习题2:一个物体的质量为2kg,求其在地球表面受到的重力。
答案:重力G = mg,其中m是质量,g是地球的引力加速度(约为9.8m/s²)。
因此,G = 2kg * 9.8m/s² = 19.6N。
第二章:牛顿运动定律- 习题3:一个物体在水平面上受到一个恒定的力F=10N,求其加速度。
答案:根据牛顿第二定律F=ma,其中F是作用力,m是物体的质量,a是加速度。
如果物体的质量为m,则a = F/m = 10N/m。
第三章:功和能量- 习题4:一个物体从静止开始,经过一段距离后,速度达到v,求外力所做的功。
答案:功W = ΔK,其中ΔK是动能的变化。
动能K = 1/2mv²,因此W = 1/2mv² - 0 = 1/2mv²。
第四章:动量和动量守恒- 习题5:一个质量为m的物体以速度v1撞击一个静止的质量为2m的物体,求碰撞后两物体的速度。
答案:在没有外力作用的情况下,系统动量守恒。
设碰撞后两物体的速度分别为v2和v3,则mv1 = mv2 + 2mv3。
解得v2 = (3/3)v1,v3 = (-1/3)v1。
第五章:圆周运动- 习题6:一个物体在水平面上做匀速圆周运动,其速度为v,求其向心加速度。
答案:向心加速度a_c = v²/r,其中r是圆周运动的半径。
第六章:刚体的转动- 习题7:一个均匀的圆盘,其质量为M,半径为R,关于通过其中心的轴转动。
求其转动惯量。
答案:对于均匀圆盘,其转动惯量I = 1/2MR²。
第七章:流体力学- 习题8:解释伯努利定律,并给出其数学表达式。
第2章 动量守恒定律与能量守恒定律一 基本要求1 理解冲量、动量等概念。
掌握动量定理及动量守恒定律,能运用它们解简单系统在平面内运动的力学问题。
2 理解功的概念,能计算变力做功的问题 。
3 理解保守力做功的特点和势能的概念,会计算重力、弹性力和万有引力做的功及对应的势能 。
4 理解动能定理、功能原理和机械能守恒定律,掌握运用守恒定律解问题 的思想和方法 。
二 基本概念 1 质点的动量、冲量质点的动量定义:m =p υ,p 为矢量,也是状态量。
质点的冲量定义 :21t t dt =⎰I F ,它也是矢量,是过程量。
2 冲力 在解决冲击、碰撞问题时,将两个物体在碰撞瞬间的相互作用力称为冲力,冲力作用时间短,量值变化也很大,所以很难确定每一时刻的冲力,常用平均冲力的冲量来代替变力的冲量 。
3内力和外力 对于质点系,其内部各个质点之间的相互作用力称为内力,质点系以外的其他物体对其中的任一质点的作用力称为外力。
4功 功率(1)功 力对质点所作的功为力在质点位移方向的分量与位移大小的乘积。
cos BBAAW dW d F dr θ==⋅=⎰⎰⎰F r(2) 功率 功随时间的变化率,反映的是做功的快慢。
dW P dt =cos d d P F dt dtυθ⋅==⋅=⋅=F r r F F υ5动能 质量为m 的物体,当它具有速度υ时,定义212m υ为质点在速度为υ时的动能,用k E 表示。
6保守力和非保守力 如果力F 对物体做的功只与物体初、末位置有关而与物体所经过的路径无关,我们把具有这种特点的力称为保守力,否则称为非保力。
保守力做功0ld ⋅=⎰F l ,非保守力作功 0ld ⋅≠⎰F l 。
重力、弹性力、万有引力均为保守力,而摩擦力、汽车的牵引力等都是非保守力。
7势能 系统某点的势能等于在保守力作用下将物体从该点沿任意路径移动到零势能点保守力做的功,用p E 表示。
8机械能,系统的动能和势能统称为机械能,用E 表示。
高考回归复习—力学实验之验证动量守恒定律1.如图所示,用“碰撞实验器”可以验证动量守恒定律,即研究两个小球在轨道水平部分碰撞前后的动量关系。
(1)实验中,直接测定小球碰撞前后的速度是不容易的。
但是,可以通过仅测量________(选填选项前的符号),间接地解决这个问题。
A.小球开始释放高度hB.利用秒表精确测量小球从抛出点到落地的时间tC.小球做平抛运动的射程(2)图中O点是小球抛出点在地面上的垂直投影。
实验时,先让球1多次从斜轨上S位置静止释放,找到其平均落地点的位置P,测量平抛射程OP。
然后,把被碰小球2静置于轨道的水平部分末端,再将入射球1从斜轨上S位置静止释放,与小球2相碰,并多次重复。
接下来要完成的必要步骤是________(填选项前的符号)。
A.用天平测量两个小球的质量1m、2mB.测量球1开始释放高度hC.测量抛出点距地面的高度HD.分别找到球1、球2相碰后平均落地点的位置M、NE.测量平抛射程OM、ON(3)若两球相碰前后的动量守恒,其表达式可表示为______________________(用(2)中测量的量表示)若碰撞是弹性碰撞,那么还应满足的表达式为______________________(用(2)中测量的量表示)。
2.国庆同学在做“探究碰撞中的不变量”实验中,所用装置如图甲所示,已知槽口末端在白纸上的投影位置为O点。
回答以下问题:(1)为了完成本实验,下列必须具备的实验条件或操作步骤是___________;A .斜槽轨道末端的切线必须水平B .入射球和被碰球半径必须相同C .入射球和被碰球的质量必须相等D .必须测出桌面离地的高度HE.斜槽轨道必须光滑(2)国庆同学在实验中正确操作,认真测量,得出的落点情况如图乙所示,则入射小球质量和被碰小球质量之比为____________;(3)为了完成本实验,测得入射小球质量m 1,被碰小球质量m 2,O 点到M 、P 、N 三点的距离分别为y 1、y 2、y 3,若两球间的碰撞是弹性碰撞,应该有等式_______成立。
《第2章 质点力学的运动定律 守恒定律》一 选择题1. 水平地面上放一物体A ,它与地面间的滑动摩擦系数为μ.现加一恒力F 如图所示.欲使物体A 有最大加速度,则恒力F 与水平方向夹角θ 应满足(A) sin θ =μ. (B) cos θ =μ. (C) tg θ =μ. (D) ctg θ =μ.[ ]2. 一质点在力F = 5m (5 - 2t ) (SI)的作用下,t =0时从静止开始作直线运动,式中m 为质点的质量,t 为时间,则当t = 5 s 时,质点的速率为(A) 50 m ·s -1. (B) 25 m ·s -1.(C) 0. (D) -50 m ·s -1.[ ]3. 体重、身高相同的甲乙两人,分别用双手握住跨过无摩擦轻滑轮的绳子各一端.他们从同一高度由初速为零向上爬,经过一定时间,甲相对绳子的速率是乙相对绳子速率的两倍,则到达顶点的情况是(A) 甲先到达. (B) 乙先到达.(C) 同时到达. (D) 谁先到达不能确定.[ ]4.一质点在如图所示的坐标平面内作圆周运动,有一力)(0j y i x F F+=作用在质点上.在该质点从坐标原点运动到(0,2R )位置过程中,力F 对它所作的功为(A) 20R F . (B) 202R F . (C) 203R F . (D) 204R F .[ ]5. 对质点组有以下几种说法:(1) 质点组总动量的改变与内力无关. (2) 质点组总动能的改变与内力无关. (3) 质点组机械能的改变与保守内力无关.在上述说法中: (A) 只有(1)是正确的. (B) (1)、(3)是正确的.(C) (1)、(2)是正确的. (D) (2)、(3)是正确的.[ ] 6. 一火箭初质量为M 0,每秒喷出的质量(-d M /d t )恒定,喷气相对火箭的速率恒定为u.设火箭竖直向上发射,不计空气阻力,重力加速度g 恒定,则t = 0时火箭加速度a在竖直方向(向上为正)的投影式为 (A) g t M M u a --=)d d (0. (B) g tM M u a +=)d d (0.(C) d d (0t M M u a -=. (D) g tM M u a -=d d (0 [ ]7. 一竖直向上发射之火箭,原来静止时的初质量为m 0经时间t 燃料耗尽时的末质量为m ,喷气相对火箭的速率恒定为u ,不计空气阻力,重力加速度g 恒定.则燃料耗尽时火箭速率为(A) 2/ln0gt m m u -=v . (B) gt m m u -=0ln v . (C) gt m m u +=0ln v . (D) gt mmu -=0ln v .[ ]二 填空题 1. 某质点在力F =(4+5x )i(SI)的作用下沿x 轴作直线运动,在从x =0移动到x =10 m的过程中,力F所做的功为__________.2.质量为m =0.5kg 的质点,在Oxy 坐标平面内运动,其运动方程为x =5t ,y =0.5t 2(SI),从t =2s 到t =4s 这段时间内,外力对质点作的功为_____________.3. 设作用在质量为1 kg 的物体上的力F =6t +3(SI ).如果物体在这一力的作用下,由静止开始沿直线运动,在0到2.0 s 的时间间隔内,这个力作用在物体上的冲量大小I=__________.4. 质量m =1 kg 的物体,在坐标原点处从静止出发在水平面内沿x 轴运动,其所受合力方向与运动方向相同,合力大小为F =3+2x (SI),那么,物体在开始运动的3 m 内,合力所作的功W =_________;且x =3 m 时,其速率v =_________.5. 质量为0.05 kg 的小块物体,置于一光滑水平桌面上.有一绳一端连接此物,另一端穿过桌面中心的小孔(如图所示).该物体原以3 rad/s 的角速度在距孔0.2 m 的圆周上转动.今将绳从小孔缓慢往下拉,使该物体之转动半径减为0.1 m .则拉力所做的功为____________________.6. 粒子B 的质量是粒子A 的质量的4倍,开始时粒子A 的速度j i43+=0A v ,粒子B 的速度j i72-=0B v ;在无外力作用的情况下两者发生碰撞,碰后粒子A 的速度变为j i 47-=A v ,则此时粒子B 的速度B v=____________________.7. 一维保守力的势能曲线如图所示,有一粒子自右向左运动,通过此保守力场区域时,在 _________________ 区间粒子所受的力F x > 0; 在 _________________ 区间粒子所受的力F x < 0; 在x = _______________ 时粒子所受的力F x = 0.三 计算题1. 一质点沿x 轴运动,其加速度a 与位置坐标x 的关系为a =2+6 x 2 (SI),如果质点在原点处的速度为零,试求其在任意位置处的速度.2. 质点沿曲线 j t i t r22+= (SI) 运动,其所受摩擦力为 v 2-=f (SI).求摩擦力在t = 1 s 到t = 2 s 时间内对质点所做的功.3. 一辆水平运动的装煤车,以速率v 0从煤斗下面通过,每单位时间内有质量为m 0的煤卸入煤车.如果煤车的速率保持不变,煤车与钢轨间摩擦忽略不计,试求: (1) 牵引煤车的力的大小; (2) 牵引煤车所需功率的大小;(3) 牵引煤车所提供的能量中有多少转化为煤的动能?其余部分用于何处?4. 一链条总长为l ,质量为m ,放在桌面上,并使其部分下垂,下垂一段的长度为a .设链条与桌面之间的滑动摩擦系数为 .令链条由静止开始运动,则(1)到链条刚离开桌面的过程中,(2)链条刚离开桌面时的速率是多少?a5. 如图所示,在中间有一小孔O 的水平光滑桌面上放置一个用绳子连结的、质量m = 4 kg 的小块物体.绳的另一端穿过小孔下垂且用手拉住.开始时物体以半径R 0 = 0.5 m 在桌面上转动,其线速度是4 m/s .现将绳缓慢地匀速下拉以缩短物体的转动半径.而绳最多只能承受 600 N 的拉力.求绳刚被拉断时,物体的转动半径R 等于多少?6. 小球A ,自地球的北极点以速度0v 在质量为M 、半径为R 的地球表面水平切向向右飞出,如图所示,地心参考系中轴OO '与0v 平行,小球A 的运动轨道与轴OO '相交于距O 为3R 的C 点.不考虑空气阻力,求小球A 在C点的速度v 与0v 之间的夹角θ.7. 一个具有单位质量的质点在随时间 t 变化的力j t i t t F)612()43(2-+-= (SI) 作用下运动.设该质点在t = 0时位于原点,且速度为零.求t = 2秒时,该质点受到对原点的力矩和该质点对原点的角动量.四研讨题1. 汽车发动机内气体对活塞的推力以及各种传动部件之间的作用力能使汽车前进吗?使汽车前进的力是什么力?2. 在经典力学范围内,若某物体系对某一惯性系满足机械能守恒条件,则在相对于上述惯性系作匀速直线运动的其它参照系中,该物体系是否一定也满足机械能守恒条件?请举例说明.3. 在车窗都关好的行驶的汽车内,漂浮着一个氢气球,当汽车向左转弯时,氢气球在车内将向左运动还是向右运动?4. 为了避免门与墙壁的撞击,常常在门和墙上安装制动器,目前不少制动器安装在靠近地面的位置上(如图),在开关门的过程中,门与制动器发生碰撞,从而门受到撞击力的作用。
2 质点力学的运动定律守恒定律2.1直线运动中的牛顿运动定律1. 水平地面上放一物体A,它与地面间的滑动摩擦系数为μ.现加一恒力F如图所示.欲使物体A有最大加速度,则恒力F与水平方向夹角θ 应满足(A) sinθ =μ.(B) cosθ =μ.(C) tgθ =μ.(D) ctgθ =μ.答案:(C)参考解答:按牛顿定律水平方向列方程:,)sin(cos amFgmFAA=--μθθ显然加速度a可以看作θ的函数,用高等数学求极值的方法,令,0dd=θa,有.μθ=tg分支程序:凡选择回答错误的,均给出下面的进一步讨论:1.一质量为m的木块,放在木板上,当木板与水平面间的夹角θ由00变化到090的过程中,画出木块与木板之间摩擦力f随θ变化的曲线(设θ角变化过程中,摩擦系数μ不变).在图上标出木块开始滑动时,木板与水平面间的夹角θ0,并指出θ0与摩擦系数μ的关系.(A) 图(B)正确,sinθ0 =μ.(B) 图(A)正确,tgθ 0=μ.FθA答案: (B)参考解答:(1) 当θ较小时,木块静止在木板上,静摩擦力;sin θmg f =(正确画出θ为0到θ 0之间的f -θ 曲线)(2) 当θ=θ 0时 (tg θ 0=μ),木块开始滑动; (3) 0θθ>时,滑动摩擦力,cos θμmg f =(正确画出θ为θ 0到90°之间的f -θ曲线) .2.2曲线运动中的牛顿运动定律1. 如图所示,假设物体沿着竖直面上圆弧形轨道下滑,轨道是光滑的,在从A 至C 的下滑过程中,下面哪个说法是正确的?(A) 它的加速度大小不变,方向永远指向圆心. (B) 它的速率均匀增加. (C) 它的合外力大小变化,方向永远指向圆心. (D) 它的合外力大小不变. (E) 轨道支持力的大小不断增加. 答案: (E)参考解答:根据牛顿定律法向与切向分量公式:.dtd ,2υυm F R m F t n == .cos ,sin θθmg F mg N F t n =-= 物体做变速圆周运动,从A 至C 的下滑过程中速度增大,法向加AROθC速度增大。
第二章 力学中的守恒定律答案2.1 在下面两种情况中,合外力对物体作的功是否相同?(1)使物体匀速铅直地升高 h 。
(2) 使物体匀速地在水平面上移动h 。
如果物体是在人的作用下运动的,问在两种情况中对物体作的功是否相同?答:合外力对物体做功不同。
2.2 A 和B 是两个质量相同的小球,以相同的初速度分别沿着摩擦系数不同的平面滚动。
其中A 球先停止下来,B 球再过了一些时间才停止下来,并且走过的路程也较长,问摩擦力对这两个球所作的功是否相同?答:摩檫力对两球做功相同。
2.3 有两个大小形状相同的弹簧:一个是铁做成的,另一个是铜做成的,已知铁制弹簧的倔强系数比铜大。
(1) 把它们拉长同样的距离,拉哪一个做功较大? (2) 用同样的力来拉,拉哪一个做功较大?答:(1)拉铁的所做功较大; (2)拉铜的做功较大。
2.4 当你用双手去接住对方猛掷过来的球时,你用什么方法缓和球的冲力。
答:手往回收,延长接球时间。
2.5 要把钉子钉在木板上,用手挥动铁锤对钉打击,钉就容易打进去。
如果用铁锤紧压着钉,钉就很难被压进去,这现象如何解释?答:前者动量变化大,从而冲量大,平均冲力也大。
2.6 "有两个球相向运动,碰撞后两球变为静止,在碰撞前两球各以一定的速度运动,即各具有一定的动量。
由此可知,由这两个球组成的系统,在碰撞前的总动量不为零,但在碰撞后,两球的动量都为零,整个系统的总动量也为零。
这样的结果不是和动量守恒相矛盾吗?"指出上述讨论中的错误。
答:上述说法是错误的,动能守恒是成立的。
虽然碰前各自以一定的速度不为零,相应的动量也不为零,但动量是矢量,系统的总动量在碰前为0,满足动量守恒定律。
2.7 试问:(1) 一个质点的动量等于零,其角动量是否一定等于零?一个质点的角动量等于零,其动量是否一定等于零?(2) 一个系统对某惯性系来说动量守恒,这是否意味着其角动量也守恒? 答:(1)一个质点的动量等于零,其角动量也一定为零;一个质点的角动量等于零,其动量不一定为零。
(2)一个系统对某惯性系来说动量守恒,这并不意味其角动量也守恒。
* * * * * *2.8 一蓄水池,面积为250S m =,所蓄的水面比地面低5.0m ,水深d=1.5m 。
用抽水机把这池里的水全部抽到地面上,问至少要作多少功?解:池中水的重力为53105.7105.150100.1⨯=⨯⨯⨯⨯===sdg mg F ρ 将水全部抽到地面,其发生的平均位移为 m d h l 75.525.152=+=+=抽水机所做的功即克服重力所做的功,所以)(103.475.5105.765J Fl A ⨯=⨯⨯==2.9 以45牛顿的力作用在一质量为15千克的物体上,物体最初处于静止状态。
试计算在第一与第三秒内所作的功,以及第三秒末的瞬时功率。
解:已知015,450===υkgm N F据牛顿第二定律得物体的加速度2/315/45s m m Fa ===m at s 5.132121211=⨯==(1秒内的位移)m at s 621222==m at s 5.133321212233=⨯⨯== (3秒内的位移)3秒末速率s m at /3333ρυ=⨯==∴ 第1秒内所做功为)(5.675.14511J Fs A =⨯==第3秒内所做功为 )(.).()(J s s F A 5337651345233=-⨯=-=3秒末的功率 W F P 405945=⨯=υ=2.10 一质量为的小石块从点自静止开始下滑,到达点时速率为,再沿滑行后停止。
已知滑行轨道是圆周的1/4,圆周半径为, 为水平面(如图2.20所示)。
试求:(1) 在AB 段,摩擦力所作的功;(2) 水平轨道BC 与石块间的摩擦系数。
解:已知,m R m Bc sm kg g m b 0133020020.,/,..===υ==(1)从A 到B 机械能的减少量为)(.).(.J m mgh B 106032118902021W 22=⨯-⨯⨯=υ-= 此即摩檫力在AB 段所做的功。
(2)在BC 段,摩檫力对物体做负功,其量值等于小石块在B 点的功能,则摩檫力N Bcm f B 03.03302.0212122=⨯⨯==υ摩察系数 15089020030....=⨯==μmg f Bc 2.11 一质量为kg 1023-⨯的子弹,在枪筒中前进时所受到的合力为F 98000400F ,x -=, 以N 为单位,x 以m 为单位。
子弹出枪口速度为1s 300m -⋅。
试计算枪筒的长度。
解:设枪筒的长度为L ,则子弹飞出枪口时合外力所做的功为⎰⎰-=-==L LL L dx x Fdx A 0294000400)98000400( 据功能原理得 221υ=m A 即 903001022194000400232=⨯⨯⨯=--L L 整理得:0810634002=+-L L 解之得m L 45.0=,即枪筒的长度为0.45m 2.12 用50米/秒的初速度竖直向上抛出一物体。
(1) 在什么高度它的动能和势能相等? (2) 在什么高度势能等于动能的一半? (3) 在什么高度动能等于势能的一半? 解(1)m m m E 12505021212200=⨯⨯==υ 若动能等于势能,据机械能守恒便得10h 6252012521mg m mE E E k p ===== 由此得 )(5.62106256251m mg m h ===(2)若势能等于动能的一半,则由机械能守恒便得0231E mgh E p == )(7.411031250302m m mmg E h =⨯==∴ (3)若动能等于势能的一半,据机械能守恒得0332E mgh E p == )(3.83103125023203m m mmg E h =⨯⨯==∴ 2.13 一个质量为m 的物体,从一光滑斜面上自高h 由静止滑下,冲入一静止的装着砂子的小车,问小车将以多大速度运动?小车和砂子的总质量为M ,不计小车与地面的摩擦。
解:先由机械能守恒得2021υm mgh =由此得物体冲入装着砂子的小车前瞬间的速度gh 20=υ再用动量守恒得 υυ)(0M m m +=从而得小车运动速度gh mM mm M m 20+=+=υυ2.14 质量为m 的小物体可沿翻圈装置无摩擦地滑行,如图2.21所示,该物体从A 点由静止开始运动,A 点比圈底高H=3R 。
(1) 当物体到达该翻圈的水平直径的末端B 点时,求其切向加速度和法向加速度以及对轨道的正压力;(2) 求该物体在任一位置时对轨道的正压力,此位置用图中所示的θ角表示。
在所得的结果中,令23/π=θ,对B 点的正压力进行验算。
(3) 为什么使物体完成翻圈运动,要求H 有足够的值 解已知 m ,H=3R(1)据能量守恒得mgR m R mg B +=⋅2213υ 由此得Rg B 4=υ则法向加速度g Ra Bn 42==υ向心力 mg ma F n 4==心,它是靠轨道对物体的压力来提供的,据牛顿第三定律便知物体对轨道的压力大小为4mg ,方向向左。
物体在B 点的切向加速度 βτR a = 而 θωω=θ⋅θω=ω=βd d dt d d d dt d 为此先确定在任一点(极角为θ)速率随θ的变化关系,同时据能量守恒得)cos (2132θυR R mg m Rmg -+=由此得 θυcos 24Rg Rg +=,)cos 2(2/θυω+==RgR )cos 2(2sin 221θθθω+⋅-=RgR gd d B 点处,πθ23=,则R g d d =⎥⎦⎤⎢⎣⎡==πθθωωβ23 g R a ==∴βτ(2)在任一位置(用θ标记),由(1)已得)cos 2(2θυ+=Rg则向心力 )cos ()(θ+=θ+⋅=υ=22cos 222 mg Rg RmR mF 心 向心力由轨道对物体的压力(f )及物体重力的分力共同来充当,因此有cos 心F mg f =-θ则)cos 34()cos 2(2cos θθθ+=++=mg mg mg f物体对轨道的正压力大小等于f ,方向与轨道对物体的压力相反(牛三)指离圆心。
在B 点,2πθ=, mg mg f 4)04(=+=与(1)中结果相同。
(3)因为只有当H 有足够的值,才能保证在圈顶时,物体具有一定的速度(动能),使得所需向心力大于物体的重力,而不致使物体掉下来。
2.15 如图2.22所示,一质量为kg 100.=m 的小球,系在绳的一端,放在倾角o30=α的光滑斜面上,绳的另一端固定在斜面上的O 点,绳长0.2m ,当小球在最低点A 处,若在垂直于绳的方向给小球初速度0υ(即0υ与斜面的水平底边平行),使小球可以完成圆周运动。
(1) 0υ至少等于多大?(2) 在最高点B 处,小球的速度和加速度多大?(3) 如何求出小球在任一位置C 时绳子的张力C T ?(小球位置用θ=∠AOC 表示)(4) 如将一根同样长度的细棒(不计重量)替代绳子,其它条件都仍如上述,0υ至少多大方能使小球刚好完成圆周运动?解:1)据机械能守恒得mg l m m B α+υ=υsin 22121220 (1) 球在最高点不掉下来,应用 lm m g T B B 2υ=α+sin (2)而0≥B T 则由(1),(2)可得0υ的最小值为s m gl /...sin 22212089550=⨯⨯⨯=α=υ 2)由式(2)中0=B T 得 s m gl B /...sin 990212089=⨯⨯=α=υ 法向加速度22/9.42.098.0s m la Bn ===υ由于B 点处合力方向为竖直方向,在B 点 0=τa 2/99.0s m a a n ==3) 在任一位置C ,应用机械能守恒定律得[]αθ-α+υ=υsin cos sin l l mg m m 2C 202121 由此得)cos (sin cos sin sin sin )cos (sin θ+α=θα+α-α=θ-α-υ=υ2322512202C gl gl gl gl gl 向心力 )c o s (s i n θ+α=υ=232mg lm F c心 它由重力分力和绳子的张力共同提供c T mg F +θα-=cos sin 心∴ =c T θα+θα+α=θα+cos sin cos sin sin cos sin mg mg mg mg F 23 心=N )cos (.)cos (sin θ+=θ+α147113mg4)若将绳换成细棒,此时,B 处向心力小于重力也不会使小球掉下,∴只需0≥B υ 则可按1)中(1)式得0υ的最小值。
s m gl /...sin 981212089440=⨯⨯⨯=α=υ 2.16 如图2.23所示,设m h 0100.=。