纳米生物技术ppt课件
- 格式:ppt
- 大小:1.74 MB
- 文档页数:15
1.纳米技术诞生历史,相关定义纳米生物技术是指用于研究生命现象的纳米技术,它是纳米技术和生物学的结合,同时也是一门涉及物理学、化学、量子学、机械学、材料学、电子学、计算机学、生物学、医学等众多领域的综合性交叉学科。
是国际生物技术领域的前沿和热点问题,在医药卫生领域有着广泛的应用和明确的产业化前景,特别是纳米药物载体、纳米生物传感器和成像技术以及微型智能化医疗器械等,将在疾病的诊断、治疗和卫生保健方面发挥重要作用。
(纳米材料的特性主要有:量子尺寸效应、小尺寸效应、表明和界面效应、宏观量子隧道效应。
当微粒小于100 nm 时,物质的很多性能发生质变,从而呈现不同于宏观物质的奇异现象:低熔点、高比热容、高膨胀系数;高反应活性、高扩散率;高强度、高韧性;奇特磁性;极强的吸波性。
纳米微粒的尺寸一般比生物体内的细胞小得多,这就为生物学研究提供了一个新的研究途径,利用纳米生物技术操纵生物大分子,被认为有可能引发第二次生物学的革命。
) 对于纳米科技的历史, 可以追溯到30 多年前著名物理学家、诺贝尔奖获得者Richard Feynman 于美国物理学会年会上的一次富有远见性的报告. 1959 年他在《低部还有很大空间》的演讲中提出:物理学的规律不排除用单个原子制造物品的可能。
也就是说, 人类能够用最小的机器制造更小的机器。
直至达到分子或原子状态, 最后可以直接按意愿操纵原子并制造产品。
他在这篇报告中幻想了在原子和分子水平上操纵和控制物质.他的设想包括以下几点: (1) 如何将大英百科全书的内容记录到一个大头针头部那么大的地方; (2) 计算机微型化; (3)重新排列原子.他提醒到, 人类如果有朝一日能按自己的主观意愿排列原子的话, 世界将会发生什么? (4) 微观世界里的原子. 在这种尺度上的原子和在体块材料中原子的行为表现不同.在原子水平上, 会出现新的相互作用力、新颖的性质以及千奇百怪的效应. 就物理学家来说, 一个原子一个原子地构建物质并不违背物理学规律.这正是关于纳米技术最早的构想。
纳米生物技术纳米生物技术是一种交叉学科领域,将纳米技术和生物学相结合,利用纳米材料的特殊性质来研究和应用生物学问题。
纳米生物技术的应用范围非常广泛,包括药物传递、生物成像、生物传感器、组织工程等领域。
一、纳米生物技术的概念纳米生物技术是一种交叉学科领域,将纳米技术和生物学相结合,利用纳米材料的特殊性质来研究和应用生物学问题。
纳米生物技术的应用范围非常广泛,包括药物传递、生物成像、生物传感器、组织工程等领域。
二、纳米生物技术的应用1.药物传递纳米生物技术可以用于药物的传递和释放。
通过将药物包裹在纳米粒子中,可以提高药物的生物利用度,减少药物的副作用。
同时,纳米粒子可以通过靶向作用将药物精确地传递到需要治疗的部位,提高药物的治疗效果。
2.生物成像纳米生物技术可以用于生物成像。
通过将纳米粒子标记在生物分子上,可以实现对生物分子的高灵敏度、高分辨率成像。
同时,纳米粒子可以通过靶向作用将成像剂精确地传递到需要成像的部位,提高成像的准确性。
3.生物传感器纳米生物技术可以用于生物传感器。
通过将纳米粒子与生物分子相结合,可以实现对生物分子的高灵敏度、高选择性检测。
同时,纳米粒子可以通过靶向作用将传感器精确地传递到需要检测的部位,提高检测的准确性。
4.组织工程纳米生物技术可以用于组织工程。
通过将纳米粒子与细胞相结合,可以实现对细胞的精确操控和控制。
同时,纳米粒子可以通过靶向作用将细胞精确地传递到需要修复的组织部位,提高组织修复的效果。
三、纳米生物技术的发展纳米生物技术的发展已经取得了很大的进展。
目前,已经有很多纳米生物技术产品进入市场,如纳米药物、纳米生物传感器等。
同时,纳米生物技术也成为了研究的热点领域,吸引了越来越多的研究者投入其中。
然而,纳米生物技术也面临着一些挑战。
例如,纳米粒子的毒性和安全性问题需要得到更加深入的研究。
同时,纳米生物技术的标准化和规范化也需要进一步完善。
总之,纳米生物技术是一种非常有前景的技术,将会对生物医学领域产生重要的影响。