(优选)第七章不对称故障分析
- 格式:ppt
- 大小:1.98 MB
- 文档页数:111
7.4 简单不对称短路故障分析在中性点接地的电力系统中,简单不对称短路故障有单相接地短路、两相短路以及两相接地短路。
无论是哪一种短路,利用对称分量法分析时,都可以制订出正、负、零序网络,并经化简后从简化序网列写出各序网络故障点的电压平衡方程式,如式(7-11)。
如果略去正常分量只计故障分量,并忽略各元件电阻,可将式(7-11)改写为(7-45)式中,即是短路发生前故障点的电压。
要求解出上式中的三个电流序分量和三个电压序分量,应根据不对称短路的边界条件补充三个方程式。
由于短路类型不同,短路点的边界条件不同,补充的方程亦不同。
下面对三种不对称短路分别进行讨论。
7.4.1 单相接地短路设在中性点接地的电力系统中相接地短路,如图7-29,由图可列出短路点的边界条件图7-29 单相接地短路示意图(7-46)将上述边界条件转化为正、负、零序分量表示由有即(7-47)由有联立求解式(7-45)和式(7-47),即可解出、、和、、,但这种解析法较繁,工程中不适用。
若按照边界条件,将正、负、零序网串联,如图7-30所示,也可求出单相接地短路时短路点电流和电压的各序分量。
这种由三个序网按不同的边界条件组合成的网络称复合序网。
在复合序网中,同时满足了序网方程和边界条件,因此复合序网中的电流和电压各序分量就是要求解的未知量。
图7-30 单相接地短路复合序网从复合序网中直接可得(7-48)则短路点的故障相电流为(7-49)在近似计算中,一般有,从式(4-129)看出,当,则单相接地短路电流大于同一地点的三相短路电流,反之则单相接地短路电流小于三相短路电流。
从序网方程式(7-45)可求出短路点电压的各序分量、、,然后利用对称分量法的合成算式即可求得短路点非故障相电压代入和,则(7-50)同理可得(7-51)从式(7-50)和式(7-51)看出:当,非故障相电压较正常运行时低,极限情况时,当,则、,故障后非故障相电压不变。
当,非故障相电压较正常运行时高,极限情况时,,相当于中性点不接地系统发生单相接地短路时,中性点电位升高至相电压,而非故障相电压升高为线电压的情况。
153第七章 电力系统不对称故障分析电力系统是三相输电系统,由于各相之间存在电磁耦合,因此各相之间存在互阻抗和互导纳。
例如如图7-1所示的三相系统,各相除了具有损耗r a 、r b 、r c ,自感L a 、L b 、L c ,以及对地电容外C a 、C b 、C c 外,相间还存在互感m ab 、m bc 、m ca 和互电容C ab 、C bc 、C ca 。
图7-1 三相电磁耦合系统根据电路理论可知,如果三相系统的自阻抗和自导纳参数相等,相间的互阻抗、互导纳参数也分别相等,那么这样的三相系统称为三相“平衡系统”。
只有在三相平衡系统中,当电源电压对称时系统中各个节点或支路的电压和电流才是对称的。
以7-1系统为例,假设三相的自感相等,相间互感也相等,自阻抗用Z s 表示,互阻抗用Z m 表示,则三相电压与电流的关系为:⎪⎩⎪⎨⎧++=++=++=cs b m a m c c m b s a m b c m b m a s a I Z I Z I Z E I Z I Z I Z E I Z I Z I Z E (7-1)如果三相电源对称,那么将7-1中三个方程相加就得到:0))(2(=+++=++cb a m sc b a I I I Z Z E E E (7-2) 根据7-2可知:0=++cb a I I I 那么三相电压方程7-1变为:⎪⎩⎪⎨⎧-=++=-=++=-=++=cm s c s b m a m c b m s c m b s a m b a m s c m b m a s a I Z Z I Z I Z I Z E I Z Z I Z I Z I Z E I Z Z I Z I Z I Z E )()()( (7-3)上式说明,三相电流也对称。
上面的三个式子是在三相系统平衡且对称情况下,用单相法进行三相电路计算的基础。
然而电力系统发生的故障大多数情况下都是不对称故障,我们用什么方法来进行分析和计算呢?很显然,不对称的三相系统之所以不可以用单相来代替,如果采用三相电路方程进行计算,不对称故障分析将非常复杂(随着计算机技术的发展,很多计算是采用三相电路计算的)。
电气工程及其自动化专业课程设计不对称故障分析与计算的算法设计学生学号:2012111121学生姓名:班级:20120434指导教师:=起止日期:2015.11.16-2015.12.04哈尔滨工程大学自动化学院不对称故障分析与计算的算法设计一.设计要求1.电力系统网络结构图如图1-1所示:要求:(1)计算三种不对称短路故障下,故障点的短路电流,冲击电流,短路容量。
(2)针对每种短路故障,给出详细的计算步骤及等值电路图。
(3)计算母线A,B 点的短路电流和电压。
图1-12.各元件参数如下:(1)发电机G1:110MW N P =,U 10.5kV N =,"0.21d X =, (2)0.16X =,(0)0.06X =,cos 0.8N ϕ=发电机G2:25MW N P =,U 10.5kV N =,"0.15d X =,(2)0.1X =,(0)0.02X =,cos 0.85N ϕ=(2)变压器T1:10MV A N S =⋅,额定电压6/110kV ,短路损耗59kW k P ∆=,空载损耗 016.5k W P ∆=,阻抗电压百分值%10.5k U =,空载电流百分值0% 1.0I =变压器T2:31.5MV A N S =⋅,额定电压10/110kV ,148kW k P ∆=,038.5kW P ∆=, %10.5k U =,0%0.8I =变压器T3:16MV A N S =⋅,额定电压10/110kV ,86kW k P ∆=,023.5kW P ∆=,%10.5k U =,0%0.9I =(3)线路L1:长度L=100km ,单位长度正序电抗(1)0.408/km X =Ω,零序电抗(0)(1)3X X =,单位长度对地电容6(1) 2.7910S/km b -=⨯。
线路L2:长度L=100km ,单位长度电抗(1)0.4/km X =Ω,零序电抗(0)(1)3X X =,单位长度对地电容60(1) 2.510S/km b -=⨯线路L3:长度L=100km ,单位长度电抗(1)0.38/km X =Ω,零序电抗(0)(1)3X X =,单位长度对地电容60(1)310S/km b -=⨯(4)电动机:2MW N P =,cos 0.85N ϕ=,(1)0.2X =,(2)(1)X X = 负载:86MV A N S j =+⋅,负序电抗标幺值(2)0.35X =。
一、基础资料1. 电力系统简单结构图如图1所示。
图1 电力系统结构图在K 点发生不对称短路,系统各元件标幺值参数如下:(为简洁,不加下标*)发电机G1和G2:S n =120MV A ,U n =10.5kV ,次暂态电动势标幺值1.67,次暂态电抗标幺值0.9,负序电抗标幺值0.45;变压器T1:S n =60MV A ,U K %=10.5 变压器T2:S n =60MV A ,U K %=10.5线路L=105km ,单位长度电抗x 1= 0.4Ω/km ,x 0=3 x 1, 负荷L1:S n =60MV A ,X 1=1.2,X 2=0.35 负荷L2:S n =40MV A ,X 1=1.2,X 2=0.35取S B =120MV A 和U B 为所在级平均额定电压。
二、设计任务1、各元件参数标么值的计算,画出电力系统短路时的等值电路 (1)、进行电力系统计算时,采用没有单位的阻抗、导纳、电压、电流、功率等的相对值进行运算,成为标么值。
标么值的定义为:标么值=有名值/相应的基准值(2)、在作整个电力系统的等值网络图时,必须将其不同电压级的各元件参数阻抗、导纳以及相应的电压、电流归算至同一电压等级——基本级。
而基本级一般电力低通中取最高电压级。
有名值归算时按下式计算(3)、电力元件参数标么值计算,取B S =120MV A ,KV U U AVB 115==(4)变压器T1电抗标么值: ,,变压器中主要是指电抗,因其电抗T T R X =,即T R 忽略,由变压器电抗有名值推出其标为:式中K U %---变压器阻抗电压百分数B S ---基准容量,MVNTNT US ,---变压器铭牌参数给定额定容量,MV 、额定电压KV;B U ----基准电压B U 取平均电压av U ,KV(5)发电机1G 电抗标么值N N B d G S S X X ϕ1``11*=式中``d X ---发电机铭牌参数给定电抗; B S ---基准容量。
对称分量法及元件的序模型与参数Symmetrical Components Method,Sequence ModelAnd Parameters第17讲问题1、计算电力系统三相不对称故障的总体思路?2、如何将相分量分解为正序、负序、零序分量之和?3、正常电力系统如何对正序、负序、零序三序解耦?4、发电机、线路的正序、负序、零序等值参数的定义及等值电路5、中性点上的阻抗对发电机或负荷的正序、负序、零序阻抗有什么影响?6、如何根据变压器的连接组别确定其零序等值电路?如何计算不对称短路故障?1、对于三相短路(对称短路),可用一相代表三相进行计算,采用相量分析方法,非常简单。
2、对于不对称故障,无法用一相代替三相,因而计算复杂,必须寻求新的方法。
单相短路无法用一相代替三相,如何求解?1、对称分量法(Symmetrical Components)•不对称故障后电力系统的特点•对称分量法•正序、负序、零序分量(Positive, Negative and Zero Sequence Components)等值2、各序分量对对称电力系统的作用•正常电力系统元件的对称性;三相参数完全相同三相参数循环(旋转)对称由这些元件连接成的电力系统是三相对称的。
•各序分量电量作用于对称系统的性质各序分量作用于对称系统的性质稳态分析中已有的结论:1、三相对称的网络注入三相正序电流,节点上只产生三相正序电压;三相正序电压施加在三相对称的网络只产生三相正序电流。
发电机正序电压加到电力网上,只产生正序电压与正序电流推测的结论:2、三相对称的网络注入三相负序电流,节点上只产生三相负序电压;三相负序电压施加在三相对称的网络只产生三相负序电流。
3、三相对称的网络注入三相零序电流,节点上只产生三相零序电压;三相零序电压施加在三相对称的网络只产生三相零序电流。
⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡222222222222222222222)()()(a s n ma m s n a n m s a s a n a m a m a s a n a n a m a s cb a s n mm s n n m s c b a I a Z a Z Z I a Z a Z Z I a Z a Z Z I a Z I a Z I Z I a Z I a Z I Z I a Z I a Z I Z I I I Z Z Z Z Z Z Z Z Z U U U 如对称矩阵加负序电流,产生的电压为所以ac a b U a U U a U ==,2负序电流产生的电压为负序电压!⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000000000000000)()()(a s n m a m s n a n m s a s a n a m a m a s a n a n a m a s c b a s n mm s n n m s c b a I Z Z Z I Z Z Z I Z Z Z I Z I Z I Z I Z I Z I Z I Z I Z I Z I I I Z Z Z Z Z Z Z Z Z U U U 对称矩阵加零序电流,产生的电压为所以ab c U U U ==零序电流产生的电压为零序电压!定理2正序量作用于对称系统后只产生正序量;负序量作用于对称系统后只产生负序量;零序量作用于对称系统后只产生零序量;三种分量对对称电力系统相互独立,互相解耦。
不对称故障分析课程设计一、教学目标本课程的教学目标是使学生掌握不对称故障分析的基本概念、理论和方法,培养学生分析和解决电力系统不对称故障问题的能力。
具体目标如下:1.知识目标:(1)掌握不对称故障的定义、分类和特点;(2)了解不对称故障分析的基本原理和方法;(3)熟悉电力系统中不对称故障的检测、诊断和保护措施。
2.技能目标:(1)能够运用不对称故障分析方法,分析并解决实际电力系统中的故障问题;(2)具备电力系统不对称故障保护方案的设计和评估能力;(3)能够运用现代信息技术,查阅相关资料,提升自身专业素养。
3.情感态度价值观目标:(1)培养学生对电力系统安全的责任感,增强安全意识;(2)培养学生团队协作精神,提高沟通与协作能力;(3)培养学生终身学习的理念,激发对电力系统不对称故障分析领域的兴趣。
二、教学内容本课程的教学内容主要包括不对称故障的基本概念、理论和方法,具体如下:1.不对称故障的定义、分类和特点;2.不对称故障分析的基本原理和方法;3.电力系统中不对称故障的检测、诊断和保护措施;4.不对称故障保护方案的设计和评估;5.不对称故障分析在电力系统中的应用案例。
三、教学方法为实现教学目标,本课程将采用以下教学方法:1.讲授法:教师讲解不对称故障分析的基本概念、理论和方法,使学生掌握相关知识;2.讨论法:分组讨论不对称故障分析的实际案例,培养学生的分析问题和解决问题的能力;3.案例分析法:分析电力系统中的不对称故障案例,使学生熟悉故障分析的方法和步骤;4.实验法:安排实验课程,让学生亲自动手进行不对称故障分析,提高学生的实践能力。
四、教学资源为实现教学目标,本课程将配备以下教学资源:1.教材:选用国内知名出版社出版的《不对称故障分析》教材;2.参考书:提供相关领域的经典著作和论文,供学生拓展阅读;3.多媒体资料:制作课件、教学视频等,辅助学生理解抽象概念;4.实验设备:配置电力系统仿真实验设备,供学生进行实验操作。