卷积码
- 格式:doc
- 大小:302.02 KB
- 文档页数:20
卷积码1、什么是卷积码?卷积码作为一种编码方法,是将k个信息比特编成n个比特,但k和n通常很小,因此时延小,特别适合以串行形式进行传输。
通常它更适合于前向纠错,因而对于许多实际情况它的性能优于分组码,而且运算较简单。
2、卷积码的编译原理?(1)编码原理下图示出卷积码编码器一般原理方框图。
编码器由三种主要元件构成,包括Nk级移存器、n个模2加法器和一个旋转开关。
每个模2加法器的输入端数目可以不同,它连接到一些移存器的输出端。
模2加法器的输出端接到旋转开关上。
将时间分成等间隔的时隙,在每个时隙中有k比特从左端进入移存器,并且移存器各级暂存的信息向右移k位。
旋转开关每时隙旋转一周,输出n比特(n)k)。
(2)译码原理卷积码的解码方法可以分为两类:代数解码和概率解码。
代数解码是利用编码本身的代数结构进行解码,不考虑信道的统计特性。
概率解码则是基于信道的统计特性和卷积码的特点进行计算,其中一种概率解码方法是维特比算法。
当码的约束长度较短时,它比序贯解码算法的效率更高、速度更快,目前得到广泛的使用。
维特比算法的基本原理是将接收到的信号序列和所有可能的发送信号序列比较,选择其中汉明距离最小的序列认为是当前发送信号序列。
若发送一个k位序列,则有2k种可能的发送序列。
计算机应存储这些序列,以便用作比较。
当k较大时,存储量太大,使实用受到限制。
维特比算法对此作了简化,使之能够实用。
3、与分组码相比,卷积码的优势是什么?与分组码不同的是,卷积码编码后n个码元不但与本码组的k个信息码元有关,而且与前面的N-1段信息有关,编码的过程中相互关联的码元有N*n个。
卷积码的纠错能力同样是随N的增大而增大,其差错率随N的增大而指数的下降。
在编码器相同的情况下,卷积码的性能优于分组码。
另一点不同是,分组码有严格的代数结构,但是卷积码至今没有严格的数学手段把纠错能力和码结构有机地联系起来,目前大都是采用计算机搜索来搜索好用的码组。
4、卷积码编译电路的组成结构?(1)信号发生器(2)卷积码编码器(3)信道(4)卷积码译码器参考文献:[1]通信原理(第6版)樊昌信、曹丽娜,国防工业出版社·北京,2012[2]SystemView通信仿真开发手册,孙屹,国防工业出版社,2004[3]SystemView动态系统分析及通信系统仿真设计,罗卫兵、孙桦、张捷,西安电子科技大学出版社,2001。
引言卷积码是深度空间通信系统和无线通信系统中常用的一种差错控制编码。
在编码过程中,卷积码充分利用了各码字间的相关性。
在与分组码同样的码率和设备复杂性的条件下,无论从理论上还是从实践上都证明,卷积码的性能都比分组码具有优势。
而且卷积码在实现最佳译码方面也较分组码容易。
因此卷积码广泛应用于卫星通信,CDMA数字移动通信等通信系统,是很有前途的一种编码方式。
对其进行研究有很大的现实意义。
1 、(2.1.2)卷积码的基本概念1.1(2.1.2)卷积码的结构图(2.1.2)卷积码的编码器由两级移位寄存器组成,它的存数(Q0,Q1)有四种可能:00,10,01和11,相应于编码器的四个状态S0, S1, S2和S3。
(2.1.2)卷积码编码器如图1:由图可知,该卷积码的生成多项式为于是,得到的码多项式是1.2(2.1.2)卷积码的网格图表示为了表示卷积码编码器在不同输入的信息序列下,编码器各状态之间的转移关系,以及状态转移与时间的关系,须画出编码器的网格图。
网格图是一种能清楚显示状态转移的时间依赖性状态图,因而用网格图来表示编码器的操作是很有用的。
图2表示了(2.1.2)卷积码的网格图。
图中四行小圆圈表示移位寄存器的四种状态,虚线表示输入是0时的状态转移,实线表示输入是1时的状态转移,支路上标注的码元为输出比特。
2 、(2.1.2)卷积码编码器的编程实现与仿真波形由以上分析可以发现,(2.1.2)编码器由两个模二加法器组成,分别生成、。
而此时输出的是并行数据,须经过并串转换才能输出,在用VHDL编程时,用LOAD和CLK来控制信息的输入与卷积码的产生,当LOAD为底电平时,在每个CLK的上升沿输入一位信息,并进行异或运算;当LOAD为高电平时,在CLK 的上升沿时刻,把生成的卷积码经过并串转换之后输出。
经过编译调试之后,仿真波形如图3:图中,D-IN为输入的信息位,D-OUT为输出的串行卷积码,Q为移位寄存器的内容。
目录目录 (1)摘要 (2)Abstract (3)一、引言 (4)1.1设计任务及要求 (4)1.2设计仪器设备 (4)1.3 设计目的 (4)二、基本概念 (5)2.1 纠错编码 (5)2.2 卷积码的基本概念 (5)2.3 卷积码编码的概述 (5)2.4卷积码译码的概述 (5)三、卷积码的编译码原理 (6)3.1卷积码的图形描述 (6)3.1.1 树状图 (7)3.1.2 网格图 (8)3.1.3 状态图 (8)3.2 卷积积码的编码算法 (9)3.3卷积码的Viterbi译码 (10)四、卷积码的仿真及性能分析 (12)4.1 SIMULINK仿真模块 (12)4.2 卷积码的参数对误码率的影响 (13)4.2.1 码率对误码性能的影响 (13)4.2.2 约束长度对误码性能的影响 (14)4.2.3 回溯长度对卷积码性能的影响 (16)4.3 仿真分析 (18)总结 (19)参考文献: (20)摘要随着现代通信的发展,高速信息传输和高可靠性传输成为信息传输的两个主要方面,而可靠性尤其重要。
卷积码以其高速性和可靠性在实际应用中越来越广泛。
本文简明地介绍了卷积码的编码原理和译码原理。
在MATLAB中的SIMULINK模块中设计卷积码的编码和译码的整个模块,调用该模块完成对误码率统计仿真。
最后,通过在仿真过程中分别改变卷积码的重要参数来加深理解卷积码的这些参数对卷积码的误码性能的影响。
经过仿真和实测,并对测试结果作了分析。
得出了以下三个结论:(1)当改变卷积码的码率时,系统的误码性能也将随之发生变化。
(2)对于码率一定的卷积码,当约束长度N 发生变化时,系统的误码性能也会随之发生变化。
(3)回溯长度也会不同程度上地影响误码性能。
同时整个设计通过MATLAB仿真满足设计要求。
关键词:卷积码;误码性能;约束长度;MATLAB;回溯长度AbstractWith the development of modern communications, high-speed information transmission and high reliability of transmission as the two main aspects of information transmission, and reliability are very important. Convolution code has a superior performance of the channel code. It is easy to coding and decoding. And it has a strong ability to correct errors. As correcting coding theory has a long development, the practice of convolution code is more and more extensive. In this thesis, the principle of convolution coding and decoding is introduced simply firstly. Designs the convolution code in the MATLAB SIMULINK module the code and the decoding entire module, transfers this module to complete to the error rate statistics simulation .Finally, in order to understand their performances of error rate, many changes in parameters of convolution code are calculated in the simulation process. After simulation and measure, an analysis of test results is presented. The following three conclusions are draw:(1) When the rate of convolution Code changes, BER performance of the system will change.(2) For certain convolution code rate, when the constraint length N change, the system BER can be changed.(3) Retrospective length will affect BER.The design also meet the design requirements by MATLAB simulation. Keywords: convolution code; BER; constraint length; MATLAB; retrospective length一、引言1.1设计任务及要求信道编码是数字通信系统中的重要组成部分,他是保证信号可靠传输的一种重要方式.卷积码以其优越的性能被广泛使用在数字通信系统中。
本课题要求掌握卷积码的组成、功能以及卷积码的译码及其算法,最后通过Matlab仿真,对卷积码的性能进行理论分析和实验仿真。
整个设计需达到以下要求:(1)画出卷积码的原理框图,说明系统中各主要组成部分的功能。
(2)根据选用的软件编好用于系统仿真的测试文件。
(3)给出仿真结果及进行分析。
(4)独立完成课程设计报告。
1.2设计仪器设备电脑、MATLAB软件1.3 设计目的通过自己独立设计培养学生以下能力(1)巩固加深对通信基本知识分析以及卷积码的掌握,提高综合运用通信知识的能力;(2)培养学生查阅参考文献,独立思考、设计、钻研电子技术相关问题的能力;(3)掌握采用仿真软件对系统进行仿真分析。
(4)掌握相关电子线路工程技术规范以及常规电子元器件的性能技术指标;(5)了解电气图国家标准以及电气制图国家标准,并利用电子CAD等正确绘制电路图;(6)培养严肃认真的工作作风与科学态度,建立严谨的工程技术观念;(7)培养工程实践能力、创新能力和综合设计能力。
二、基本概念2.1 纠错编码因为信号在信道中不可避免会受到干扰而出错。
为实现可靠性通信,主要有两种途径:一种是增加发送信号的功率,提高接收端的信号噪声比;另一种是采用编码的方法对信道差错进行控制。
前者常常受条件限制,不是所有情况都能采用。
编码理论可以解决这个问题,使得成本降低,实用性增强。
2.2 卷积码的基本概念卷积码是一种性能优越的信道编码。
(n ,k ,N) 表示把k个信息比特编成n个比特,N 为编码约束长度,说明编码过程中互相约束的码段个数。
卷积码编码后的n 个码元不仅与当前组的k 个信息比特有关,而且与前N - 1 个输入组的信息比特有关[6]。
编码过程中相互关联的码元有N ×n 个。
R = k/ n 是卷积码的码率,码率和约束长度是衡量卷积码的两个重要参数[1]。
2.3 卷积码编码的概述卷积码的编码描述方法有5 种:冲激响应描述法、生成矩阵描述法、多项式乘积描述法、状态图描述法和网格图描述法。
卷积码的纠错能力随着N的增加而增大,而差错率随着N的增加而指数下降。
在编码器复杂性相同的情况下,卷积码的性能优于分组码。
分组码有严格的代数结构,但卷积码至今尚未找到如此严密的数学手段。
分组码的译码算法可以由其代数特性得到。
卷积码虽然可以采用适用于分组码的门限译码(即大数逻辑译码),但性能不如维特比译码和序列译码。
2.4卷积码译码的概述卷积编码的最佳译码准则为:在给定已知编码结构、信道特性和接收序列的情况下,译码器将把与已经发送的序列最相似的序列作为传送的码字序列的估值。
对于二进制对称信道,最相似传送序列就是在汉明距离上与接收序列最近的序列。
卷积码的译码方法有两大类:一类是大数逻辑译码,又称门限译码(硬判决,编者注);另一种是概率译码(软判决,编者注),概率译码又分为维特比译码和序列译码两种。
门限译码方法是以分组码理论为基础的,其译码设备简单,速度快,但其误码性能要比概率译码法差。
当卷积码的约束长度不太大时,与序列译码相比,维特比译码器比较简单,计算速度快。
维特比译码算法是1967年由Viterbi 提出,近年来有大的发展。
它是根据接收序列在码的格图上找出一条与接收序列距离(或其他量度)为最小的一种算法。
目前在数字通信的前向纠错系统中用的较多,而且在卫星深空通信中应用更多,该算法在卫星通信中已被采用作为标准技术。
三、卷积码的编译码原理3.1卷积码的图形描述以图3-1的(3,1,3)卷积码编码器为例说明卷积码编码器的工作过程二它由3触点转换开关和一组3位移存器及模2加法器组成每输入一个信息比特,经该编码器后产生3个输出比特。
为方便起见,先假设该移位寄存器的起始状态全为零,当第一个输人比特为”0”时,输出比特为OO0;若第一个输人比特为I 时,则输出比特为111当输人第二比特时,第一比特右移一位。
此时的输出比特显然与“当前输人比特和前一输人比特”有关当输人第成比特时,第一和第二比特皆右移一位,可看到此时的输出比特与“当前输入比特和前二位愉人比特”有关。
当第四比特输人时,原第一输人比特已移出移位寄存器S输出序列 m 1,m 2,…m j ,… y 1,j y 2,j 输入序列3M 2M 1M y 3,j图3-1 (3,1,3)卷积码编码器d c b b a a000 a 011 110 001 110 001 000 111 000 111 111000 100 101 010 aba b cc dd a d c b b a a 111 a 011 11 010 110 001 001 110 000 111 100 011 100 101 010 ababccd d图3-3 (3,1,3)卷积码的树状图而消失,即第一输人比特已不再影响当前的输人比特,如图3-2所示,以上编码器在移位过程中可能产生的各种序列,可用树状图、网格图或状态图来描述。
3.1.1 树状图图3-3给出了(3,1,3)卷积码的树状图。
按照习惯的做法。
码树的起始节点位于左边;移位寄存器的初始状态取00,取12M M =00,用a 来表示,并把该a 标注于起始节点处。
当输人码元是0时,则由节点出发走上支路;当输人码元是1时.则由节点出发走下支路。